
\
SOUTHWESTERN BELL PRACTICE
SWB Standard

Section SW-007-590-908
Appendix 10

Issue A, January 1997

SECURING X-WINDOWS

Introduction

X Windows enjoys great popularity with users, in a variety of environments. Its clientherver
model of application management allows for powerful, flexible interaction between users and
computers. Unfortunately, this power comes at the cost of security. X Windows, if not
managed properly, can create a serious vulnerability. This paper explores many of the security
problems and solutions in X Windows.

How X Windows Works

It may seem strange that a graphical user interface can be a potentially serious security
vulnerability. So for starters, let’s take a look at how X Windows works, and how it can be a
problem.

X Windows is really, at its lowest level, a communication protocol, called sensibly enough, X
Protocol. This protocol is used within a single computer, or across a network of computers. It is
not tied to the operating system and is available on a wide range of platforms. X Windows
utilizes a Client-Server model of network communication. This model allows a user to run a
program in one location, but control it from a different location.

Counter to common client-server convention, the user actually works directly on the X server,
which offers a screen, a keyboard, and a mouse. It’s referred to as the sewer because it
generates the inputs for and manages the outputs from the clients. The X clients are
applications, such as xterm, emacs, or xclock. They receive and process inputs and return
outputs.

In most cases, the server and the clients are running on the same computer (host). But, X
Protocol is flexible and makes many different configurations possible. In fact, an X terminal is
a screen, keyboard and mouse which has no computing capability. The only thing it can do is
process X Protocol messages, which come from clients running on other systems. Even if the
server is running on a host, it may be desirable for a client to run on a remote host, even if it is
located in another building or even another state.

So, what does this have to do with computer security? The clients that are able to run on a
server should be carefully controlled. Since multiple clients are running on the same server,
careful control of their inter-communication should be observed. If one client is able to send
information to another client, or one client is able to capture information meant for another
client, the system may be vulnerable.

PROPRIETARY
Not for use or disclosure outside of Southwestern Bell

except under written agreement.

Page 1

SECTION SW-007-590-908
Appendix 10

Unmotected X Windows

Some examples of communication between the X server and an X client include the following:

. X terminal modification - font management, mouse sensitivity, color mapping, keyboard
mapping.

. An X Event - keyboard, mouse, etc.

● X data - modification to the X terminal screen, such as writing text, creating a window, or
drawing an image.

Any client that can access a server can potentially access and change any X communications
that take place on it. This could include the following:

. Modifying session parameters.

. Create/destroy windows - Was that document saved before the window mysteriously
disappeared?

. Capture X events - For example, reading keystrokes on an xterm window, which include a
Iogin and password.

. Create X events - For example, sending keystroke sequences to an emacs window, or an
xterm window, to execute a command.

Clearly, X servers are inherently dangerous. What’s worse, many servers ship with world
accessibility as the default setting.

Apt)roaches To Securitv

What is the best way to secure an X server? Two different approaches are available: host
authentication and token authentication. Each are discussed below.

Host Authentication

Host authentication is the potential acceptance of a connection based on its origin. Typically,
this would be determined by the 1Paddress of the connection’s host. Once a user has logged
in to an X Server, the server is potentially open to connections from any host. A program
called xhost is available to control on a host-by-host level which hosts can display clients on
the X Server. But, most hosts support multiple users, and it is impossible to specify which
users on a particular host have access.

Token Authentication

The second form of authentication is to verify each client based on the token they offer. Using
a program called xauth, each client is given a “magic cookie,” a random value which it must

PROPRIETARY

Not for use or disclosure outside of Southwestern Bell
except under written agreement.

Page 2

SECTION SW 007-590-908
Appendix 10

offer to the X Server to be allowed access.

Host Authentication

Certainly the most widely used mechanism for X security is the xhost program. While simple to
use, xhost is rather inflexible.

Using xhost

Using the xhost program is straightfo~ard. Each X server maintains a list of hosts which may
or may not access it. The xhost program is used for modi~ing that list. The command line
syntax is as follows:

. Display a list of hosts allowed to access this X Server:

xhost

. To add a host, say bar.foo.erg, one would type:

xhost +bar.foo.org

Then, any user and program on that machine may communicate with your X server.

● To remove that same host, type:

xhost -bar. foo.org

. An X server maybe opened to the world by disabling access control:

xhost +

. Access control maybe re-enabled (i.e., the current list of hosts is again active) by:

xhost -

With no parameters, xhost returns whether or not access control is currently turned on and
which machines are allowed access. This is the only way that xhost can be run remotely, even
if the remote machine is on the access list. When xhost is utilized, a user from an
unauthorized host attempting to connect will be presented with the following response:

Xlib: connection to “display:O.0” refused by server
Xlib: Client is not authorized to connect to Server

Note that disabling a host’s access after a connection has been made will have no effect on
existing connections. The server must be reset in order to break established connections.

PROPRIETARY
Not for use or disclosure outside of Southwestern Bell

except under written agreement.
Page 3

w i
SECTION SW-007-590-908
Appendix 10

This however, is actually a feature. A smart way to use xhost is to only turn on a host’s access
for the period it takes to start a client on that host. Then, access can be disabled. The client
will continue to run, but the host’s access will again be disabled.

Benefits:

The xhost access control mechanism is certainly easy to use. A single program with a simple
syntax is required.

Drawbacks:

The simplicity of xhost is both a benefit and a drawback. All connections from a host must be
accepted or rejected-not on a user-by-user, program-by-program, or connection-by-connection
basis. For many environments, where numerous users are allowed access to a particular host,
this is an insufficient solution. And cedainly, most computers running X sewers have multiple
user accounts, and any user that can log into the computer can access the X server, as the
Iocalhost, completely bypassing the xhost access control.

Unfortunately, many X servers, such as NCD servers, SGI systems, and Mac X for the
Macintosh come with access control disabled by default. For users unfamiliar with the
vulnerability of X servers, this can create a real security problem.

Xhost has higher priority than token authentication. Any user can add systems to the xhost
access list without special privileges or assistance from the system administrator.

Token Authentication

The X server can control a user’s access to an X server through the use of a magic cookie.
This is essentially a machine-readable, randomly generated access code. Each X client must
provide the same magic cookie value to the server before being allowed access. This value is
stored in the file .Xauthority. It can be either created by the X Display Manager, or by the user,
at the beginning of each session.

For the user who is only logged onto one machine, the enhanced security is present but
transparent. Each new client executed by that user on that machine will find the magic cookie
and start without complaint. But, many users work on multiple machines at once. How would
an X client on a remote machine know what the magic cookie is? This is where the xauth
program comes
in.

xauth

Program The xauth program is used for editing and displaying the user’s magic cookie
authorization information. Once the magic cookie is displayed in a human-readable form, it
can be sent to a remote host. On that remote host, xauth is used again to merge the magic
cookie into the user’s .Xauthority file. Assuming a .rhosts file is set up for the user, pushing the

PROPRIETARY
Not for use or dkclosum outside of Southwestern Bell

except under written agraement.

Page 4

●

SECTION SW 007-590-908
Appendix 10

authorization information to a remote host (let’s say ahost.foo.org) can be done with one
command:

xauth extract - $DISPIAY I rsh ahost.foo.org xauth merge -

The first command prints the magic cookie for the current host ($DISPLAY) to the standard
output (the dash). This information is then piped to the remote shell command, which runs the
xauth program on the machine ahost.foo.org. The magic cookie is then read from the
standard input (again, the dash), and merged into the .Xauthority file. The result is that the
user who executed this command can now run X clients on ahost.foo.erg, and have them
displayed on the X Sewer. It is important to have the permissions set correctly for the
.Xauthority file. It should be readable/writable by the owner only (that is, set to “-rw---—”).
Furthermore, beware of NFS exporting a home directory, even read-only] It maybe mounted,
allowing the .Xauthority file to be read.

Note the key improvement here. The user who ran this command is now the only user on
ahost.foo.org who can connect an X client to their X server. All other users on ahost.foo.org
are still blocked out of this X session.

X Display Manager

The X Display Manager, xdm, is a client which provides Iogin screens for multiple X Servers.
When a user logs in through the X Display Manager, xdm writes a magic cookie to the user’s
home directo~, in the file .Xauthority. X servers are not always stand-alone computers. They
can be X terminals as well, whose sole function is to run clients from other systems. These
types of machines require a xdm to provide the initial Iogin screen. Stand-alone computers
may utilize xdm as well. In addition to providing a more user friendly Iogin sequence, xdm
provides support for magic cookie authentication. This authentication must first be turned on
by the following X resource entry in the file /usr/lib/Xl l/xdm/xdm-config:

DisplayManager*authorize: true

With this, xdm will generate a new magic cookie value each time a user logs in, and store that
value in their .Xauthority file.

If xdm is not being used, it is still possible to use this type of authentication; this will be
explained below.

Generating a Magic Cookie Without Xdm

Xdm will manage your .Xauthority file for you, but if xdm is not used, it is still possible to have
magic cookie authentication. The only problem is that on many Xl 1 servers, the user needs to
generate the magic key value (OpenWindows is one exception-it will generate a magic cookie
when started). This can be done in a variety of ways. For example, if Kern shell is being used,
it has a built-in random number generator

PROPRIETARY
Not for use or discloswe outside of Southwestern Bell

except under written agreement.
Page 5

SECTION SW-007-590-908
Appendix 10

randomkey=’ksh -c ‘echo $(($RANDOM * $RANDOM * 2))”
xauth add ${ HOS~:O.$randomkey
If ksh is not being used, the clock maybe used to obtain a “random key”:

randomkey=’date +“YOyYOmYOdYOHYOMYOS’”
xauth add ${ HOS~:O . $randomkey

Xrsh in Xl 1R5

Xrsh is a script provided in Xl 1R5, in the contrib/clients/xrsh directo~. For those users who
run clients remotely via rsh, this can be a handy script. It utilizes xauth to automatically copy
the magic cookie code to the remote machine before running the remote client. For example,
to run an xterm window on the host foo, type:

xrsh -auth xauth foo xterm

Benefits:

Authorization is now done on a user-by-user basis, not a host-by-host basis. In an
environment where one host supports a large number of users, this can be very important.

Drawbacks:

The xdm and xauth programs are time consuming for both the administrator and the end user
to use and maintain. They require a good understanding of the X client-sewer model on the
part of the user.

Note that magic cookie authorization should be used in addition to xhost security. In fact,
“xhost -“ should be used to disable all host-based access.

Xterm Vulnerabilities

The xterm program is used to provide the user with a command line prompt (a shell in Unix).
Because a great deal of critical user/computer interaction takes place through a command line
prompt, it is important to be able to execute this program safely. The xterm program has
several security vulnerabilities worth mentioning.

One write-access “feature” provided by xterm should NOT be utilized, Send Events are key
and button events that have been generated artificially (i.e., not by a keyboard or a mouse). By
default, xterm refuses all Send Event requests from the X server. This can be over-ridden,
however, in two ways. The first way is by adding an X resource definition to either the
.Xdefaults file or the appdefaults/Xterm file:

xterm*aliowSendEvents: True

Page 6

PROPRIETARY
Not for use or disclosure outside of Southwestern Bell

except under written agreement.

t
SECTION SW 007-590-908

Appendix 10

The second way of allowing the X Server to send X events is through the xterm Main Options
menu (accessed by holding down the CTRL key while pressing the left mouse button).
NEITHER of these should ever be done, as they open the xterm to communication from
sources other than the user who initiated it.

Read access is controlled through a different mechanism, however. On the Main Options
menu is a “Secure Keyboard” option. When turned on, ALL keyboard events are sent
exclusively to the xterm window (mouse interaction is not modified). This prevents other clients
from capturing critical keyboard events, such as entering a password. Of course, only one X
client at a time may have this option turned on. This option is useful for critical data entry, but
is really impractical for continuous use because it must be turned off to interact with any other
windows.

PROPRIETARY
Not for use or disclosure outside of Southwestern Bell

except under written agreement.

Page 7
7 Pages

