## 124-TYPE AMPLIFIERS - DESCRIPTION

## CONTENTS <br> PACE

1. General ..... 1
2. TRANSMISSION AND CIRCUIT FEATURES OF
THE AMPLIFIERS ..... 4

(A) General Features Comnan to all

Five Amplifiers .........

4

Basic Amplifier Circuit
First Stage Tube Connections
and Interstage Circuit Second Stage Tube Connections

Output Circuit

Feedback Circuit

Vacuum Tube Arrangements

Grounding Arrengements . . . .

Noise . . . . . . . . . . 7
(B) Special Features Individual to $\quad$ Each of the Five Amplifiers ... 8

12liA Amplifier . . . . . .. . 8
12! B Anplifier . . . . . . . 8
12lic Amplifier . . . . . . . . 9
124D Amplifier . . . . . . . 9
12l|E Amplifier . . . . . . . . 10
3. installation . . . . . . . . . . . 10
(A) Mounting . . . . . . . . . . . . 10
(B) Noise Pickup ........... 10
(C) Ventilation . . . . . . . . . . 11
(D) Wiring . . . . . . . . . . . . 11
4. ANPLIFIER OPERATING ADJUSTMENTS . . . 11
(A) Line Voltage . . . . . . . . . 11
(B) Vacuum Trbes ......... 11
(C) Power Output (Audio) . . . . . . 11
(D) Input Arrangements . . . . . . . 12
5. ASSOCIATED DRAWING - NOT ATTACHED . . . 12
6. PARTS LIST . . . . . . . . . . . . . 12

1. GENERAL
1.01 This Section describes a new series of amplifiers known as the 12l-type, which includes five different models. The important electrical and mechanical features of each of these amplifiers are discussed in detail. Installation information is also included.
1.02 These amplifiers will be used in special services, such as rrcgram transmission, loud speazer paging and public address systems, one-way speech or music distribution systers, weather announcenont syster's, etc.,
where a compact a-c operated amplifier with built-in power supply is desired.
1.03 The 12la Anplifier is the basic amplifier, employing the simplest input arrangement of any of the amplifiers in this series. It may be used as a power amplifier where no gain control is required or where the gain control is furnished in circuits external to the amplifier.
1.04 The 12l, B Amplifier is designed primarily for use as a monitor amplifier in the Bell System program plant or as a part of a one-way speech or music transmission system. It may also be employed in "Time Announcement" and "Weather Announcement" systems and, in speciel applications, as a line amplifier in short regional program networks for medium quality service or as a temporary or emorgency line amplifier on the major networks.
1.05 The $12 l_{4} \mathrm{C}$ Amplifier is designed for use wherever it is desired to amplify the output of a carbon transmitter to loud speaker level, such as in loud speaker paging systems or test desk to main frame loud speaker systems. For paging system uses, the lalic Anplifier is mounted in a metal cabinet, the assembly being known as the 103 C Amplifier.
1.06 The 12 D Amplifier is intended for use where high gain is required, such as amplifying the output of a moving coil micrephone or phonograph reproducer, to line or loud speaker level. It will be used as a component part of the 103D Amplifier, in which form it will find application in loud speaker paging systems.
1.07 The $12 l_{\text {E Amplifier }}$ is intended for general use as a power amplifier where a self-contained gain control is desired.
1.08 Each of the five amplifiers is a-c operated, requires a 105-125 volt 50-60 cycle source of power, and is equipped with a 1.25 ampere "Fustat" mounted on the chassis (maximum amplifier power consumption with high level audio output and a 125-volt power supply is about 125 watts). With the exception of the $12{ }_{2}$ D Amplifier, which includes an additional single tube, single stage amplifier, coded 116B, and connected ahead of the first main amplifier stage to give added gain, each amplifier employs two stages of amplification with negative feedback, the final stage being push-pull. All five amplifiers have substantially flat gain-frequency characteristics from 35-10,000 cycles, except the high gain
arrangerent of the 124C Amplifier where the frequencies below 1000 oycles are purposely attenuated to improve articulation on loud apeaker paging or announoing system.
1.09 The input impedances of these amplifiers may be made oither high or low, dopendirg upon what input comections are used, except that the l2lid is available with only a high impedance input. The impedance into which each amplifier is designed to operate may be adjusted over a considerable range, depending upon the strapping of the output transformer.

### 1.10 Each of these amplifiers may be arranged for a normal power output of 11.5 watts

 or a high level powor output of 14 watts (for a total harmonic content of 1 per cent rms in either case), depending on the connection to the power trunsformer (see Paragraph 4.03). The corresponding amplifier outputs on aprogram basis aro +33 vu and +34 vu for negligible distortion on a high quality reproducing systeal when transmitting a program band from 35-10,000 cycles. Higher power outputs are obtainable with increased harmonic distortion as indicated on Fig. 1, which shows the harmonic content as a function of the power output in watts for both normal and high level conditions.

### 1.11 There are gain control adjustments on all the 124 -type amplifiers except the

 124A. Each is mounted in the upper left-hand portion of the panel with its desigation plate labeled GAIN CONTROL, and mounted in a corresponding position on the front mat. The desigation plates on the l2l|B and E Amplifiers are marked with OFF at the extreme coumter-clockwise position of the scale and " 20 " at the extreme clockwise position. A mark is engraved for each of the 19 steps between the two extreme positions with steps 5.

Fig. 1

Page 2

I24 TPPE AMPLIIFRS - TYRTARL OPERTING CHARACTERISTICS


10, and 15 so designated. Each step down from the " 20 " position represents 2 db of attenuation. The plates on the 124 C and D Amplifiers are marked with OFF at the extreme counterclockwise position and MAX at the extreme clockwise position. A mark is engraved for 19 intermediate positions with the second, fourth, sixth, etc., marks designated as 1, 2, 3, etc., up to the designation 9 which is opposite the second marked position below the MAX position.
1.12 The maximum gains of these amplifiers vary over wide limits, depending upon whether they are connected as bridging or terminating amplifiers, and upon what maximum input levels they are arranged to handle. Typical values of gains obtainable with each of the five amplifiers are given in Table 1.
1.13 The apparatus units comprising each of the five amplifiers are assembled on a depressed panel $7^{\prime \prime}$ high and are arranged for mounting on a standard $19^{\prime \prime}$ relay rack or in an apparatus cabinet. The front of the depressed panel is covered with a metal mat. The overall depth of each of the amplifiers from the rear of the mat is about $7^{\prime \prime}$. The mat furnished with each of the amplifiers may be obtained in any of the finishes indicated in Table 2. The mmber placed after the letter in the amplifier code designates the particular finish.

## TABLE 2

Amplifier Code


124A-15
$124 \mathrm{~B}-15$
$124 \mathrm{C}-15$
$124 \mathrm{D}-15$
1245-15
$124 \mathrm{~B}-24$
$124 \mathrm{C}-24$


Aluminum lacguer
1.14 A perforated rear cover coded as the 102A Cover is available in cases where it is desirable to provide mechanical protection of the vacuum tubes and amplifier compononts It also acts as a protection for the plant personnel against the possibility of burns resulting from accidental contact with the tubes whilg the amplifier is operating. Although the ldan Cover will fit any one of the five 124-type amplifiers, it is furnishod only when specified in the order.
1.15 Each amplifier alone weighs approximately 20 pounds. Equipped with a 102A Cover, this weight is increased to 23 pounds.
1.16 Either Western Electric or commercial types of vacum tubes suitable for use in these amplifiers are available.
1.17 Detailed performance data for each of the five amplifiers operating under various conditions are shown in Table 1.
1.18 Front and rear views of the $12 h_{1} \mathrm{~B}$ Amplifier are shown in Fig. 2. The other four amplifiers are similar in appearance to the 12ly $B$ except in such details as the power switoh, the gain control unit and the input unit.


Fig. 2 - 124 B Amplifier - Front and Rear Views

## 2. TRANSMISSION AND CIRCUIT FEATURES OF THE AMPLIFIERS

2.01 The schenatic circuit diagram of the 12hB Amplifier is shown in Fig. 3. The portion of the schematic to the right of the dashed "box" forms the basic circuit for all five amplifiers. The portion in the box shows the five input arrangements individual to the 124 B Amplifier. Input arrangements for each of the five amplifiers will be discussed in Part 2 (B).
(A) Generai Features Common to All Five Amplifiers

## Basic Amplifier Circuit

2.02 The amplifying part of the circuit is basically a 2-stage amplifier employing a push-pull arrangement in the final stage.
2.03 The audio frequency output from the unit that forms the input cirouit of each amplifier is fed into the grid of V1 and through the condenser Cl.1 to the junction of the cathodes of V1 and V2. Grid bias voltage for the amplifying tube VI is obtained by connection of the lower end of the input circuit output to the grounded end of the cathode resistance R2. V2 is a phase inverter tube whose sole function is to provide, in conjunction with V1, a balanced arrangement for driving the push-pull second stage ( $\sqrt{3}$ and $\sqrt{4}$ ). To its grid is applied the voltage drop across R9 through which flows the difference between the output currents of V1 and V2. This feedback arrangement results in automatically adjusting the output voltage of V2 so as to be approximately equal to, and $180^{\circ}$ out of phase with, the output voltage of V1.

First Stage Tube Connections and Interstage Circuit
2. 04 The suppressor grid of each of the first stage tubes is connected to its cachode. The screen grid of V1 is connected to one end of the resistance $\mathrm{R}_{4}$ and the screen grid of V 2 contected to the other end of R4.
2.05 The interstage circuit consists essentially of resistance coupling through the plate resistances R5 and R6 which feed plate battery to V1 and V2, the coupling condensers C5 and C6, and the grid resistances R7 and 88.

## Second Stage Tube, Cormections

2.06 The control grid of each tube obtains its bias voltage by connection to the grounded side of the resistance RlO.1. Each of the deflector plates is connected to its own cathode. Each screen grid is kept to a potential of about 250 volts above ground by its comection to the junction of Rll and R15.2 in the power aupply section of the amplifier.

## Output Circuit

2.07 The plate voltage to the second stage tubes is supplied through the midpoint of the primary of the output transformer $T 2$. The onds of this primary winding are conneoted cirectly to the plates of V3. V4. Condensers C7, Cll and resistance R12 form a protective network to guard egainst high frequency surges with an attendant possible broakdown of the final stage tubes. As this network tenda to reduce somewhat the amplifier gain at the higher frequencies, the capacitance ClO has been provided in the feodback circuit to compensate for this and thus bring the overall gain at the various frequencies to within the required limits. The values of plate voltage for both normal and high level amplifier outputs (soc Paragraph 4.03) depend upon the type of rectifier tube that is
employed. If a Western Electric 27ty Vacuum Tube is used, the plate to ground woltage for the standard output will be about 375 volts and for the high level output will be about 410 volts. If a 5TL or 5U4G rectifier tube is substituted the correspondine plate volteges will be 400 and 430 volts.
2.08 There are four secondary windings on the output transformer which may be connected in a number of ways so that each of the amplifiers can be arranged for operation into a considerable number of nominal load impedances between 1.75 and 600 ohms. A table appearing on the schematic Fig. 3 shows the output transformer strapping for each load impedance. The output impedance of the amplifier, as scen looking back into it from the output terminals 13 and 14 , is about $3 / 4$ of the nominal load impedance for any particular transformer strapping. The 124, Amplifier makes use of an additional pair of terminals 16 and 17 (whish appear on all the 124-type amplifier chassis but are wired in the output circuit only in the $12 L_{1} B$ ), each of which has connected hetween it and the output transformer a 75 -ohem resistance so that when the transformer is connected for a $600-\mathrm{ohm}$ load the impedance looking back into those terminale will also $\mathfrak{b}$, 600 chms.

## Feedback Circuit

2.09 Referring to the schematic, Fig. 3, the main feedback circuit has two paths. One path is from the plate of $\sqrt{3}$ through the resistance R13, the capacitance $C 9$ and the resistence R3. The other path is from the plate of $V 4$ through the resistance $R 14$, the ceplacitance C8 aud the resistance $\mathrm{R}_{4}$. Capacitances C8 and $C 9$ also provide low frequency equalization permitting a less expensive input transformer to be employed. The equalization amounts to about 1.5 db at 35 cycles. The first feedback path connects to the cathode of V1 and the second to the soreen of V1 in order to obtain the proper phase relation and also to neutralize any power ripple that might be fod back. The feedback amounts to betwoen 6 and 8 db and results in a lower output impedance over the audio frequency range as seen looking back into the output terminals of the amplifier, as well as a stabilized and improved amplifier characteristic. In addition, Vl has local feedback by virtue of R3 and R4, and VR has local reodback by virtue of R9. The local feedback circuit as affocting V1 exists automatically due to the resistences R3 and RL being a part of the main feedback circuit. The local feedback circuit as affecting v2 exists automatically due to the resistance R9 being a part of the main feedback circuit.

## Vacaum Tube Arrangementa

2.10 The tubes used in the amplifying circuits of the 124-type amplifiors are of the 6.3 volt heater type. The heaters of the

four amplifier tubes ( 5 in the case of the 124D) are wired in parallel and are conneoted to the 6.3 volt winding, (green leads) of the power transformer T3. Either commercial or Western Electric types of tubes suitable for use in the amplifier are available. The commorcial tubes may be had in either the glass or metal variety (with the exception of the 1612 tube used in the 124 D Amplifier which is available only as a motal tube). The Western slectric tubes are of the glass typo.
2.11 The expected life of the Western Electric tubes is about four times that of their comenercial counterparts when the normal audio power output is employed. When the high level output is used, decreased service life of the commeroial power tubes may be experienced as discussed in Paragraph 4.03.
2.12 A filamentary type of rectifier tube is specified and it too is available as a glasa or metal tube in the commeroial variety and as a glass envelope Western Electric tube. It is preferable to employ a glass type tube for the reotifier whether a commercial or Western Electric tube is ohosen.
2.13 The code numbers, quantity and designation are given in Table 3 for the amplifier and rectifier tubes required.

## TABLE 2

| Type | Quantity | Designation |
| :---: | :---: | :---: |
| 6 J 7 or $6 \mathrm{~J} 7-\mathrm{G}$ or WE 348A | 2 | N, V2 |
| 6L6 or 6L6-G or WE 350B | 2 | V3, 74 |
| $\begin{aligned} & 5 \mathrm{~T}_{4} \text { or } 50 \mathrm{H}_{4}-\mathrm{G} \\ & \text { or WE } 274 \mathrm{~B} \end{aligned}$ | 1 | V5 |
| $\begin{aligned} & \text { *1612 (no WE } \\ & \text { oounterpart) } \end{aligned}$ | 1 | $\begin{aligned} & \text { VI (in the } 116 B \\ & \text { Amplifier) } \end{aligned}$ |

* Used only in the 124 D Amplifier.

Caution: The operating personnel should be warned against handling the vaoulum tubes while the ampliflor is in operation, due to the danger of burns, parEicularly in the case of the rectifler and firal stage amplifier tubes. While the glass tubes do not become as hot as the metal tubes oither type may beo oome a hazard if touched aitor the amplifior has been operating for some trino.
2.14 None of the amplifiers should be operated with a mixed oomplement of Western Eleotric and non-Western Electrio amplifier tuber (with the exception of the 1612 tube whioh is employed in the first atage of the 124D Amplifier and must be used regardless of
the type of tubes employed elsowhere in this amplifier). However, Western Electric amplifier tubes may be used in an amplifior employing a non-Western Electrio rectifier tube or vice versa.
2.15 The first stage tubes in the 124-type amplifiers are equipped with individual shields so that either glass or metal tubes may be employed with the assurance of stable operation and freedom fram high frequency oscillation. When metal tubes are used these shields are not required unless the amplifier is exposed to high external electric fields.

## Grounding Arrangements

### 2.16 The following points of the amplifier

 are oonneoted to the terminal marked " $G^{\prime \prime}$ for external grounding: The lower side of the secondary winding of the input transtormer in the $124 A, B, C$ and $E$ Amplifiers; the lower side of the secondary winding of the repeating coil in the $12 L_{4} B$ Amplifier, and the cathode (through a 40 mf condenser C2.1) of the tube in the preliminary 116B Amplifier that forms a part of the 124D Amplifier. The ohassis of the amplifier is also connected to the " $\mathrm{G}^{\prime \prime}$ terminal. In addition, the mid-point of the primary winding of the repeating coil in the 12lis Amplifier is brought out to terminal 2 eo that it may be conneoted to ground if desir. able from a noise standpoint.Caution: If the 124B Amplifier is or ployed in a reversible progrem diroult and it is desirable to ground the midpoint of the primary winding of the repeating coil, an extermal 2 mf oon denser should be connected betweon that mid-point (omplifler terminal 2) and the actual ground conneation.

Noise
2.17 With any of the five 124-type amplifiers adjusted for maximum gain, the input terminated in the nominal impedance out or which that amplifier is designed to operate, and the output terminals connected to the load impedance for which the output transformer is strapped, the noise at the output terminale should not be highpr than the figures given in Table 4.

TABLE 4
Noise in db Above Reference Noise With Program Woighting (using 2 Type Noise Measuring Set or 4 H Weighting
Amplifior
124A, B

| $C$ and $E$ | 45 | 60 |
| :--- | :--- | :--- |

124
76
2.18 The noise at the output terminals of the $12 l_{1} B$, $C$ and $E$ Amplifiers is independent of the gain control settings. The noise at the output of the 121 D Amplifier becomes about equal to that at the output of any of the other 12l4-type amplifiers when its gain is deoreased to a value about equal to the maximum gain of the other four amplifiers.
2. 19 When any of the l2l-type amplifiers is used as a line amplifier operating at or near zero ou level, the gein and output capac1ty will be in excess of that normally $r e-$ quired and the ratio of signal-to-amplifier noise may be improved by the use of a pad between the amplifier output terminals and its load (with the pad located near the amplifier).
(B) Special Features Individual to Each of the FIre hmplifiors

## 12laA Amplifior

2.20 This amplifier is a fixed gain amplifier. Its input circuit is shown in Pig. 4 and consists essentially of the input transformer TlOL, series resistances RlO2 and


Fig. 4 - 12lil Amplifier - Input Arrangement
R103 in the primary circuit and a shunt reaistance Rllol across the secondary. The two sories resistances are inoluded to permit the amplifier to operate out of a wide variety of source impedances with little or no effect on the frequency characteristic. The shunt resistance was choson to have a value such as to give the most uniform high frequency amplifier characteristic commensurate with the amplifier gain requirements. This amplifier may be connected for use either as a bridging or a high gain terminating amplifier with characteristics as indicated in Table 1.

## 124 $B$ Amplifier

2.21 This amplifier is equipped with a gain control adjustable in 19 steps of 2 db attenuation per step from the maximum gain. Refering to the schematic shown on Iig. 3 the input circuit consists essentially of a repeating coil TRC2; an input transformer T2Oi; a gain contrel potentiometer PCOl; a low impedence 20 db U-type pad composed of the reaistances R2O1, R2OC, R203; a high impedance 20 db U-type pad composed of the resistances

R206, R207, R208; a series building-out resistance R2O4; and a resistance R205 and a capacitance C201 bridged across the secuniary of the repeating coil T202. (This resistancecapacitance combination is wired across T202 at the factory so that the amplifier as received will have a 600-ohm input impedance.) The capacitance ceol is provided in order that the impederce looking into the amplifier with input arrangerent No. 2 will be 600 ohms +10 per cent. c.or the range of $50-8000$ cycTes. There are five different input arrangements profided for this arplifier, the ono to be chosen depending upon the type of service in which the amplifier will be employed and the maximum input levels which may be encountered. Each input arrangement is slown on the schematic Fig. 3 and each will be discussed in some detail below.

Input Arrangement No. 1
2.22 Intended for use in applications such as loud speaker monitoring where high input levels will not be encountered (the lalis oporating, for example, out of the monitoring winding of a line amplifier), where high gain is desired and where it is not essential that the impedance looking in to the amplifier shall match the source impedence. Makes use of the repeating coll TZO2 in order to meet longitudinal balance requirements but has the termination across the secondary of the repeating coil removed in order to realize maximum gain.

Input Arrangement No. 2
2.23 Intended for use as a loud speaker monitoring amplifier in applications where it operates out of a low level bridge or, in special applications, as a line amplifier in short regional networks for medium quality service or as a temporary or energency amplifier in major network servite, where high input levels will not be encountered, where a moderately high gain is desired, and where it is required that the impedance locking into the amplifier shall match the source impedance. Makes use of repeating coil T202 with the resistance R205 and capacitance C201 connected across the secondary winding in order to meet longitudinal balance requirements and provide an impedance of 600 ohms looking into the amplifier input terminals.

## Input Arrangement No. 3

2.24 Intended for use as a brideing amplifier (11,000 ohms input) in applications such as the one in which it is connected across an incoming 600-ohm program circuit where high input levels will not be encountered. Makes use of the repeating coil T202 to meet longitudinal balanoe requirements but has the termination across the secondary of this coil removed in order that the amplifier may present a high impedance to the source.

Input Arrangemont No. 4
2.25 Intended for use as a bridging amplifier (11,000 ohms input) in applicetions auch as the one in which it is connected across an outgoing program ciroult or program bus where high input levels may be encountered. The repeating coil $T 202$ is not employed in this arrangement and consequently the input circuit does not have the same degree of balance from the longitudinal standpoint as in the first three arrangements. It does, however, make use of a high impedance 20 db pad in order that higin levels may be connected to the amplifier input and at the same time the amplifler may present a high impedance to the source.

## Input Arrangement No. 5

2.26 Intended for use as a loud speaker monitoring amplifier in applications where it is required that the impedance looking into the amplifier shall be 600 ohms and where high input levels may be encountered, such as the application in which it operates out of a high level bridge associated with the Ifc program amplifler. Makes use of the repeating coil T202, and the terminating resistance R205 and capacitance CZOl in order to meet longitudinal balance and input impedance requirements. This arrangement also employs the low impedance 20 db U-type pad between the input terminals of the mplifier and the input to the repeating coil so that the maximum level across the input of the coil will be no higher than in arrangements 1,2 and $j$ above.

## 12lıC Amplifier

2.27 This anplifier may be employed oither as a terminating or a bridging amplifier in applications where a carbon transmitter source is required. Referring to Fig. 5, its input circuit consists essentially of the input transformer T301, the series resistance R302,


Fig. 5-12ly Ampllfier - Input Arrangement
a shunt resistance R303, a series capacitance C301, the gain control potentiometer P301 and the building-out resistance R301. The network composed of R303, C301 and P301 attenuates the frequencies below 1000 cycles (see Table 1 for details) in order to reduce chest and breathing noises when the amplifier with its high gain input works out of an operator's transmitter.

## 12lp Amplifier

2.28 This amplifier is a high gain amplifior presenting a very high impodance to the source and equipped with a gain control continuously adjustable over a range of 35 db .


Fig. 6 - 124 D mplifior - Input Arrangement

Reforwing to Fig. 6, the input circuit consists ossentially of a coded ll6B Amplifier which forms an integral part of the 124D Anplifier and is mounted on its chassis. A shunt resistance Rl, a gain control potentiom--ter P401 with its associated resistance R401 and capacitance Cl3, are also included. This condenser is provided in order to prevent a surge of current, due to the rapid operation of the gain control on the 116B Amplifier, from affecting the grid bias of $V 1$ in the main amplifier to such an extent as to block it. The 116B Amplifier is a single tube, single stage amplifier having a 1000 -cycle maximum gain of approximately 40 db .

## 1245 Amplifier

2.29 This ampiifier is equipped with the same kind of gain control (adjustable in 19 steps of 2 db attenuation per step from the maximum gain) as in the $124 B$ Amplifier but does not include a repeating coil as this amplifier ( $12 L_{1} \mathrm{E}$ ) is not intended to work out of a telephone circuit, either message or program. Zeferring to Fig. 7, the input circuit conaists essentially of: a low impedance $20 \mathrm{db} \mathrm{U}-$ type pad composed of resistances R507, R508, R509; a high impedance 20 db U-type pad composed of resistances R504, R505, R506; the series resistances R501 and R503; the input


Fig. 7 - 12LE Amplifior - Input Arrangement
transformer T501; the gain control potentiometer P501; and the resistance R 502 bridged ecross the secondary of the transformer. There are three different input arrangements proFided for this amplifier, the one chosen dopeading upon the type of service in which the cmpififor will be employed and the maximum input levels which may be encountered.

Input Arrangement No. 1
2.30 Intended for use in applications such as public address systems, music distribution systems or as a loud speaker amplifior for broadcast studio control rooms or audition rooms where high input levels will not be encountered, where high gain is desired (the amplifier input connected, for example, to the monitoring circuit of a preliminary amplifier) and where it is not essential that the impedance looking into the amplifier shall match the source impedance.

Input Arrangement No. 2
2.31 Intended for use in applications such as public address systems, music distribution systems, or as a loud speaker amplifier for broadcast studio control rooms or audition rooms where a bridging amplifier is required and where high input levels may be encountered (the amplifier input connected, for example, icross a high level 8 or 600-oher program bus). 2'his al rengement is similar to the No. 1 input irrangement. just described except that the high impedance U-type pad is connected between the amplifier input and the primary of the input transformer.

## Input Arrangement No. 3

2.32 Intended for use in applications such as public address systems, music distribution systems or as a loud speaker amplifier for broadoast studio control rooms or audition rooms, where it is required that the impodance looking into the amplifier shall be 600 ohys aud where high input levels may be encountered (the amplifier input oonnected, for example, to one of the high level outputs of a 600 -ohm program bridge). Makes use of the low impedance 20 db U-type pad between the input to the amplifier and the primary of the transformer T501.

## 3. INSTALLATION

## (A) Mounting

3.01 Theae amplifiers may be mounted either vertically or horizontally in a relay rack or on a shelf or in an apparatus cabinet.

## (B) Hoise Pickup

3.02 The noise piokup in one l2l-type amplifier due to another 124-type amplifior operating close to it will be negligible if the nearest sides of the omplifiors are separated by at least 7 inches. No partioular vertical separation is required other than that necessary for ventilation (see Paragraph 3.05).
3.03 Due to the use of a shielded power transformer in oach of the 124-type amplifiors, the noise piokup from any one into a

12 or 14 -trye prograi emplifier mounted in the anve or adjacont bay will be negligible. A separation of at least 18 inches in any direction betwoen a 124-type amplifier and a Lhal or D91220 Ropenter is required.
3.04 The input transformor in each of the 124-type anplifiers is shielded against olectromagnetic piokup by a case of high permeability magnotic matorial. Due to the prosence of this hield, no appreoiable magotio pickup will ordinarily be encountored in any of the ampliffers if it is mounted so that its input transformer is more than about 3 inches distant fram disturbins souroes of power equipment of the type likely to be found in program or messege bays. In speoial cases where such exposure ann not be avoided, it may be possible to obtain some reduction in noise by rotating the input trensformer (exoept in the oase of the $12 f^{1}$ Amplifier where both the repeating coil and input transformer aro permanently fastened to the chassis) until the point of minimum pickup is reached as deterfined by a noise measuring set connected coros: the amplifier output terminals.

## (c) Ventilation

3.05 When one of these amplifiers is mounted on a relay rack, one apace ( $1-3 / 4^{n}$ ) chould be left between the top of the amplifler and the nearest piece of equipment above for ventilation. Whem mounted on a partially olosed shelf or in a perriorated metal oabinet, however, 50 square inahes of opening to free air near the bottom of the amplifier and a sinilar area provided above the amplifier is uaually required and at least one space ( $1-3 / 4^{\text {h }}$ ) provided between the top of the housing and the nearest part of the emplifier.
3.06 If additional 124-type ampilfiers are mounted on the same bay or in the same apparatus cabinet, proportionally increased ventilation will be required, and amplifiers or other apparatus unfts should be separated at least $3-1 / 2$ inches from the top of any one of the l24-type amplifiers.
3.07 In kiy case, a test of sufficiont ventilation will be that the air temperature 1 inoh above the oenter of the power transformer surface (whichis in the upper loft-hinnd corner as one faces the rear of the amplifier) is not greater than $30^{\circ} \mathrm{F}$. above the room temperature after the amplifier has been operated four hours.

## (D) Wiring

3.08 In order to avoid noise pickup in the input leade, 500 CL Cable (using one pair only of the two quads that make up the cable) is employod for the input wiring to the 124-type amplifiers. The unueed pairs and the motal tape surroumding the quads are left floating at both ends of the cable.
3.09500 CL Cable (using one pair only of the two quads that make up this cable) 1t also employed for the output wiring from the 124 -type amplifiers, the umused pairs and the metal tape surrounding the quads being left floating at both onds of the cable.

## 4. AMPLIFIER OPERATMIG ADJUS TITANT8

(A) Line Voltage
4.01 If the a-o power aupply at a given asplifier location is within the range of 105-115 volts, the supply is connected to terminals Ll and I2 on the terminal strip associated with the power transformer T3; if it is within the range of 115-125 volts, the supply is oomeoted to terminals Ll and L3.

## (B) Tacuum Tubes

4002 With the a-o supply connected to the proper terminals of the power transformor T3 as explained in Paragraph 4.01, the heator currents for the amplifier tubes should be satisfactory and with those currents within the correct operating limits the grid poten tials and plate currents, should in general be corract. Therefore, no other power supply adjustants are provided. The amplifier perm formance as dotailed in Table 1 assumes that the tubes are satisfactory as regards cathode aotivity.

## (C) Powor Output (Audio)

4.03 The power output is adjusted in accordance with circuit order or other instructions which may, when necessery, be is. sued to the field. If the normal audio froquency output of 11.5 watts with 1 per cent. total harmonio content is specified, the orange leads from T3 are connected to the plate terminals of vacumm tube socket VS5 and the red leads taped and pushed out of the may (the amplifiers are wired this way at the factory). If the higher audio output of $1_{4}$ watte. with 1 per cent. total harmonic content is specified, the orange leads are removed from the plate terminals of VS5, their ends taped and moved out of the way and the red leads substituted. The red leads are comnected to the onds of the high voltage secondery winding of 13 so that the meximum potential difforonce exists between them. Ine orange loads are comeoted to taps, part way in fromeither end of the high voltage winding, and consequently have a lower potential across the Use of an inornased plate voltage to obtain higher audio frequency outputa from the mplifiers may rem sult in deoreased life of the flnal stage 616 or 6Ib-G tubes for they will then be operated somewhat in exoess of thieir rated maximula power. If Western Eleotric tubes are aployed, satisfactory life should be obtained under both high powar and normal audio frequency output oondítions.


6.02 The item designations shown on Table 7 are those indicated on the l15B Amplifier schematic on the input arrargement drawing for the 124 D Amplifier shown in Paragraph 2.28.
6.03 When an amplifier part as shown on the standard drawing differs from the corresponding part as indicated in Table 6 or 7 , the part shown on the standard drawing shali be considered to be the correct one.

