KS-20159 EQUALIZER-AMPLIFIER

TESTS, ADJUSTMENTS, AND OPERATION

CONTENTS
 PAGE

1. GENERAL

1
2. RECOMMENDED TEST EQUIPMENT . . 1
3. GAIN FREQUENCY 2

CHART 1-GAIN-FREQUENCY TEST . . 2
4. NOISE 3

CHART 2-NOISE TEST 3
5. EQUALIZATION 4

CHART 3-5- OR 8-KHZ EQUALIZATION . 4
CHART 4-15-KHZ EQUALIZATION . . 6
6. EFFECTS OF EXTERNAL COMPONENTS . 8
7. SUBSTITUTION OF AMPLIFIER 9

1. GENERAL

1.01 This section outlines the tests and adjustments to be performed on the KS-20159 L1 (Manufacture Discontinued) and KS-20159 L2 equalizer-amplifiers and the operating procedures when used for local programming.
1.02 This section is reissued for the following reasons:

- To show the KS-20159 L1 equalizer-amplifier Manufacture Discontinued and add the KS-20159 L2 equalizer-amplifier
- To add Part 7 covering the substitution of an amplifier.

This reissue does not affect the Equipment Test List.
1.03 The tests outlined in this section should be performed each time a circuit order or the service order specifies the use of a KS-20159 equalizer-amplifier. These tests may also be used to locate equipment troubles.
1.04 The intent of the tests outlined in this section is to determine whether the equalizer-amplifier is functioning correctly. If trouble is found in the plug-in circuit board, the defective board should be returned to a repair center. If replacing a circuit board does not clear the trouble, the entire equalizer-amplifier should be returned to the repair center.

2. RECOMMENDED TEST EQUIPMENT

2.01 The following items of test equipment are required for tests on the KS-20159 equalizer-amplifier:
(a) $594021 \mathrm{~A}(21 \mathrm{~A})$ transmission measuring set (TMS)
(b) $594003 \mathrm{~A}(3 \mathrm{~A})$ noise measuring set (NMS)
(c) $600-\mathrm{ohm}$ resistor.
2.02 The amplifier covered in this section is a high-quality amplifier with broad frequency range. It is therefore necessary that good testing techniques be used in order to obtain a satisfactory result. Test equipment should be in good working condition and properly calibrated.

> Caution: The KS-20159 L1 AMPL IN jacks have 48-volt battery on them. A ground applied to the tips of these jacks will blow the office fuse. Turn the amplifier OFF before patching into AMPL IN jacks to avoid blowing the office fuse. The

CHART 1 (Cont)

STEP

PROCEDURE

Requirement: The 21A DET indication should be lowered $2 \pm 0.25 \mathrm{~dB}$ for each step except the last.

11 Turn the DB ATT dial to the OFF position.
Requirement: The output should drop by at least 40 dB .

4. NOISE

4.01 The noise of the KS-20159 L1 equalizer-amplifier should be measured in accordance with Chart 2.

CHART 2

NOISE TEST

APPARATUS:

1-J94003A (3A) Noise Measuring Set
1-600-Ohm Resistor

STEP

PROCEDURE

1 Connect the equipment as shown in Fig. 2.
2 Set the DB ATT dial on the amplifier to 0 and the VERNIER GAIN control to maximum clockwise position.

Turn on the 3A NMS and allow ample warm-up time.
4 Turn on the amplifier and note the indication on the 3A NMS.
Requirement: The 3A NMS indication should not exceed 30 dBrn .

Note: The above requirement is dependent upon using a power supply having a noise level not exceeding an indication of +59 dBrn when connected to the amplifier.

CHART 3 (Cont)

STEP

Connect the equalizer for the 5 - or $8-\mathrm{kHz}$ condition as outlined in Table A.
Connect the equipment as shown in Fig. 3.
Set the selector switch (S1) on the equalizer to 5 or 8 kHz .
Set R1 on the equalizer to 100 ohms.
Adjust the 21 A OSC for 5 or 8 kHz at $0-\mathrm{dBm}$ output. (The 21A OSC is a stable instrument whose output power does not vary with change in frequency.)

Adjust the amplifier gain using the DB ATT and VERNIER GAIN controls on the amplifier for a $0-\mathrm{dBm}$ reading on the 21 A DET .

Adjust the 21A OSC for 100 Hz .
Adjust R 1 on the equalizer for a $0-\mathrm{dBm}$ reading on the 21 A DET.
Adjust the 21 A OSC for 5 or 8 kHz .
Note the indication on the 21A DET.
Adjust the 21A OSC for 100 Hz .
Adjust R1 on the equalizer for the same indication as noted in Step 10.
Alternately check the indication at 5 or 8 kHz and adjust R 1 at 100 Hz until the low and high losses are matched.

Check the required test frequencies as listed in Table B.
Requirement: The loss at the intermediate frequencies should be equal to the $100-\mathrm{Hz}$ loss $\pm 1 \mathrm{~dB}$.

If the requirement in Step 14 is met, adjust the 21 A OSC for 1000 Hz and adjust the amplifier gain for 0 dBm on the 21A DET.

If the requirement in Step 14 is not met, proceed with the compromise method that follows.

COMPROMISE METHOD

If a hump or dip which does not exceed 2 dB in magnitude occurs in the response, proceed with Step 17. If it is greater than 2 dB , see Part 6.

CHART 4 (Cont)

STEP PROCEDURE

8

13 Alternately check the indication at 15 kHz and adjust R 1 at 100 Hz until the high and low losses are matched.

15 If the requirement in remedy (a) is met, adjust the 21 A OSC for 1 kHz and adjust the amplifier gain for a $0-\mathrm{dBm}$ reading on the 21 A DET.

16
Adjust R 1 on the equalizer for a $0-\mathrm{dBm}$ reading on the 21 A DET.
Adjust the 21A OSC for 15 kHz .
Note the reading on the 21 A DET.
Adjust the 21A OSC for 100 Hz .
Adjust R1 on the equalizer to equal the value noted in Step 10.

Check the losses at 1 and 8 kHz .
Note: At this point one of the three conditions typically exists. The conditions and their remedies are as follows.

Condition (a): The losses at 1 and 8 kHz are within $\pm 1 \mathrm{~dB}$ of the $100-\mathrm{Hz}$ loss.
Remedy (a): Check the response at the required test frequencies listed in Table B.
Requirement: The loss at the test frequencies should be equal to the $100-\mathrm{Hz}$ loss ± 1 dB.

If the requirement in remedy (a) is not met, see condition (b) or (c), whichever is more applicable.

Condition (b): A hump occurs in the response curve which exceeds 1 dB .
Remedy (b): Sweep through the frequency band of 100 Hz to 15 kHz and note the peak magnitude of the hump. Rotate S 1 on the equalizer to the next higher position and repeat the procedure starting with Step 5.

Condition (c): A dip occurs in the response curve which exceeds 1 dB .

Remedy (c): Sweep through the frequency band of 100 Hz to 15 kHz and note the peak magnitude of the dip. If the magnitude of the dip is greater than the magnitude of the hump in the preceding switch position, return to the preceding position and try the compromise method that follows. If the magnitude of the dip is less than the magnitude of the hump in the preceding switch position, proceed to the compromise method.
equalized response, whereas too large a resistance will only partially remove the dip.

SERIES OR SHUNT CAPACITANCE

6.04 Connecting a capacitor either in shunt or series with the selected internal capacitor may in some cases provide additional flattening between 5 and 15 kHz . The need for shunt capacity is typically characterized by a hump in the equalized response within this frequency range which cannot be removed, even in position $15 \mathrm{kHz}-4$. Adding the shunt capacity will reduce the resonant frequency of the circuit and the equalized loss. However, lowering the frequency too much will tend to produce either a hump or a horizontal S shape in the response which, in either case, will give a relatively sharp roll-off very near 15 kHz . Typically, it should not be required to lower the resonant frequency by more than 5 kHz . For the $15 \mathrm{kHz}-4$ position, this requires a shunt capacitor of about $0.015 \mu \mathrm{f}$ which should be connected as shown in Fig. 4C.
6.05 The equalized response which requires series capacitance for additional flattening is difficult to characterize because of its similarity to the type of response requiring series or shunt resistance. The effect of this capacitance is to raise the resonant frequency of the circuit and to increase the equalized loss. Since the resonant frequencies of all four $15-\mathrm{kHz}$ positions are relatively high, very little additional flattening may be expected by raising them further. In any case they should not be
raised by more than 5 kHz . This will require a series capacitance between 0.009 and $0.25 \mu \mathrm{f}$, depending upon which switch position is used. The series capacitance should be connected as shown in Fig. 4D.

7. SUBSTITUTION OF AMPLIFIER

7.01 It is possible to substitute the amplifier portion of a spare unit for testing purposes. The procedure is as follows.
(1) Set the attenuator of the spare to the same loss as on the regular amplifier.
(2) Turn the power switches of both amplifiers OFF.
(3) Patch the amplifiers as follows:

- EQ OUT of regular to AMP IN of spare
- AMP OUT of spare to LINE OUT of regular.
(4) Turn the power switches ON.

Note: To substitute an entire equalizer-amplifier for another, the option straps on the spare (options Y or Z, X or W, and U or V) must be made the same as on the working unit. The attenuator and equalizer settings must be set the same. Then the spare unit can be substituted by patching at the LINE IN/AMP IN and AMP OUT/LINE OUT jacks.

Fig. 3-Test Setup for Equalizing a Single Section Using the KS-20159 Equalizer-Amplifier

Fig. 4-External Component Connections

TABLE B
TEST FREQUENCIES (IN Hz)

5-KHZ CIRCUITS	8-KHZ CIRCUITS	15-KHZ CIRCUITS
100	50	50
250	70	70
500	100	100
1000	250	250
2000	500	400
3000	1000	500
4000	2000	1000
4500	3000	2000
5000	4000	3000
	5000	4000
	6000	5000
	7000	6000
	8000	7000
		8000
		9000
		10,000
		11,000
		12,000
		13,000
		14,000
		15,000

