LINE CONCENTRATOR NO. 2A TROUBLE LOCATION

CONTENTS PAGE

1. GENERAL 2
2. APPARATUS AND REFERENCE MATERIAL 2
3. TESTING PROCEDURE 3
4. REMOTE CIRCUIT TROUBLE ANALYSIS 4
4.1 CF Lamp (Control Failure) 4
4.2 TM3 Lamp (Hold Magnet Failure)5
4.3 TCF Lamp (Trunk Check Failure)6
4.4. AL Lamp (No Other Trouble Lamp Indications) 7
4.5 SF Lamp (Signal Failure) 10
4.6 Clock and Clock Control Check 22
4.7 Clock Pulse Counter Check 25
4.8 Shift Register Check 27
4.9 Signal Circuit Check 30
5. CONTROL CIRCUIT TROUBLE ANALYSIS 34
5.1 RLT Lamp (Release Failure) 34
5.2 TRT Lamp (Terminating-Type Calls) 36
5.3 TRT Lamp (Service Request Calls)43
5.4 RSFO/1 Lamp (Remote Signal Failure) 50
5.5 SF Lamp (Signal Failure) 52
5.6 Clock and Clock Conłrol Check 53
5.7 Clock Pulse Counter Check 55
5.8 Shift Register Check 57
5.9 Signal Circuit Check 61
6. ADJUSTMENTS (CIRCUIT PACK) (USING HEWLETT-PACKARD 522B ELECTRIC COUNTER) 66
6.1 Clock and Clock Control 66
6.2 Remote Signal Circuit Adjustment 66
6.3 Guard Interval Timer (Remote Circuit) 67
6.4 Signal Present Detector (Remote Circuif) 68
6.5 Discriminator (Remote Circuit) 68
6.6 Control Signal Circuit Adjustment 68
6.7 Guard Interval Timer (Control Circuit) 69
6.8 Signal Present Detector (Control Circuit) 70
6.9 Discriminator (Control Circuit) 70
7. ADJUSTMENTS (CIRCUIT PACK) (USING HEWLETT-PACKARD 5300A/5304A ELECTRONIC COUNTER) 71
7.1 Clock and Clock Control 71
7.2 Remote Signal Circuit Adjustment 72
7.3 Guard Interval Timer (Remote Circuif) 72

CONTENTS
PAGE
7.4 Signal Present Detector (RemoteCircuit) 73
7.5 Discriminator (Remote Circuit) 73
7.6 Control Signal Circuit Adjustment 74
7.7 Guard Interval Timer (Contral Circuit) 74
7.8 Signal Present Detector (ControlCircuit) 75
7.9 Discriminator (Control Circuit) 76

1. GENERAL

1.01 This section describes methods and procedures that may be followed in locating trouble in the line concentrator No. 2A remote circuit SD-94816-01 and control circuit SD-94815-01.
1.02 This section is reissued to:

- Revise Table of Contents to add Part 7
- Revise 2.02 to specify a new counter and additional substitute counters

Revise 6.12 to add location of CP6

- Revise 6.211 to add location of CP11
- Revise 6.321 to add location of CP13
- Revise 6.412 to add location of CP9
- Revise 6.52 to add location of CP12 .
- Revise 6.611 to add location of CP8
- Revise 6.712 to add location of CP13
- Revise 6.812 to add location of CP9
- Revise 6.92 to add location of CP10
- Add Part 7.
1.03 Trouble conditions at the remote circuit are generally indicated by a lamp display or a lamp display in addition to an alarm. A trouble in the control circuit, in addition to a lamp display, takes a trouble record indicating line and trunk number, type of call, and progress of a call at the time of failure.
1.04 Part 4 is to be followed for trouble investigations in the remote circuit and Part 5 for the control circuit. To determine which circuit is in trouble, the record of the trouble lamp display at the remote circuit and the trouble record cards at the control circuit should be analyzed.
1.05 If trouble conditions seem to appear and disappear and a trouble analysis using these parts does not uncover the trouble, check adjustments on the circuit boards as covered in Part 6 or 7 .
1.06 If trouble conditions indicate false starts of the concentrator (trouble record card at control circuit or lamp display at the remote circuit with no information), it may be the transmission facilities. The quality of the facilities used for the signaling control channel is to be such that the impulse noise as measured with a 6A impulse counter should not exceed 35 counts in 15 minutes at a noise level of $48-53 \mathrm{dBrn}$.

2. APPARATUS AND REFERENCE MATERIAL

2.01 Logic Circuit Test Set 908A (J79908A):

 Use as covered in Section 100-171-101. (Logic Test Set BSP)
2.02 Hewlett-Packard ModeI 5304A Timer/ Counter and Model 5300 A Measuring

 System Main Frame (Both of Which Comprise a Complete Electronic Counter): This counter in this practice will be referred to as the 5304 A counter. Instructions are also included for the Hewlett-Packard $552 B$ electronic counter. Suitable substitutes, if already available, would be Hewlett-Packard Models $5233 \mathrm{~L}, 5326 \mathrm{~A}$, or 5326 B .2.03 Tektronix* 453 Oscilloscope: The Tektronix 535 A with a CA- or B-type vertical plug-in unit is a suitable equivalent if already available.

[^0]2.04 Hewlett-Packard 412A voltmeter or equivalent capable of reading voltages in the range of 0 to 15 volts ± 1 percent.
2.05 Hewlett-Packard 400 H voltmeter or equivalent capable of reading RMS voltages in the range of 0.10 to 15.0 volts with a $d B$ scale calibrated to read dBm into 600 ohm circuits.
2.06 Trouble Recorder Card Reading Mask Form E-5185.
2.07 Circuit Board Extender (ED-94866-30).
2.08 Blocking and insulating tools as required. Apply as covered in Section 069-020-801.
2.09 5A Attenuating Pad.
2.10 High impedance test receiver or hand test set.

REFERENCE MATERIALS

2.11 CD and SD-94816-01, common systems, Line Concentrator No. 2A Remote Circuit.
2.12 CD and SD-94815-01, common systems, Line Concentrator No. 2A Control Circuit.
2.13 CD and SD-94817-01, common systems, Line Concentrators No. 2A and 2B Circuit Pack Schematics.
2.14 067-109-502 Line Concentrator No. 2A System Test.

3. TESTING PROCEDURE

3.01 Test points referred to in this part are located on terminal blocks on their respective frames (remote and control). Each test point is represented by a letter and a number (eg, A32). The letter refers to the terminal block, while the number refers to the test location on the terminal block. For example, test point A32 would be found (a) in the third row from the right, (b) at the second position from the bottom, and (c) on the A terminal block.
3.02 All test equipment used should be properly calibrated.
3.03 If any of the boards listed below are replaced in the course of trouble analysis, they must be checked for calibration according to Part 6 or 7 and, if necessary, recalibrated. These boards are CP6, $8,9,10,11,12$, and 13.

Battery should not at ANY TIME be connected to any of the test points. This could cause damage to the transistors on the circuit boards. Ground, however, may be applied at any time to any test point. Conduct tests in accordance with Section 032-173-301.
3.04 The TA test call referred to in Parts 4 and 5 is a test substitute for a service request or terminating call. A TA test call is initiated from the remote circuit by connecting the T and R leads of the line to be tested at the frame terminal strip. A TA test call is initiated from the control circuit by placing ground on the $S(00-77)$ lead corresponding to the line being tested. A terminating test call can be substituted for the TA test call from the control circuit provided the failure does not occur on the initial part of the test call which prepares the circuit for the terminating call. If the terminating test call fails on the initial part of the call, see 3.07.
3.05 If trouble occurs only on disconnect calls, a disconnect test call can be substituted for the terminating TA test call in Parts 4 and 5. The disconnect test call can be started at the control circuit by blocking the $\mathrm{D} 0 / 1$ relay released and releasing any operated TK_ relays in the group being tested. Release the circuit, and then remove the blocking tool from the D0/1 relay allowing it to operate and start a disconnect call. Parts 4 and 5 can be used to analyze the trouble since the solid-state functions are identical on a disconnect and terminating call. The relays associated with a disconnect call replace the relays associated with a terminating call. The sequence charts should be used to determine the proper relay operation on the disconnect call.
3.06 If trouble occurs on a special-type call (service denial, release service denial, permanent signal denial, or test calls associated with line 79), Parts 4 and 5 can still be used to analyze the trouble since the solid-state function is identical on each call. The control relay operations will be different for each special-type call, and the sequence
charts should be used to determine proper relay operation.
3.07 In all tests, block the TM1, TM2, TM4, TM5, and TM6 relays released and the TM3 and TRB1 relays operated in the control circuit and the RT, TM3, and TM5 relays released at the remote circuit, unless otherwise specified in the test section.
3.08 Before attempting to analyze a trouble condition in the concentrator, it should first be determined whether the trouble is occurring on service request, terminating-type calls, or both. The conditions under which the trouble occurs will dictate the type of test call to be used in localizing the trouble.
3.09 When the message received or the message to be transmitted is observed on the oscilloscope, the "mark" indications are positive and the "space" indications are at ground unless otherwise indicated. The length of a "space" or "mark" is $\overline{5}$ milliseconds unless otherwise specified. When using an oscilloscope to check a message, the time scale of the scope should be set at 10 milliseconds.
3.10 When a relay is listed as a possible trouble, the operate or release path for the relay should be checked as well as the relay itself.

4. REMOTE CIRCUIT TROUBLE ANALYSIS

Trouble display lamps at the remote circuit are as follows:

SF—Signal Failure
TCF-Trunk Check Failure
TM3-Hold Magnet Failure
CF-Control Failure
DL-Display Lost-Indicates that at least one trouble occurred after the first trouble display.

Information lights indicating type of call and progress of the call are as follows:

D-Disconnect
SD1-Service Denial
SD2—Release Service Denial
SR-Service Request
TER-Terminating
$\mathrm{C} 1,1,4,8,16$-Clock Phase Indication (Binary)
U0, 1, 2, 4, 7-Line Units (2 out of 5)
T0, 1, 2, 4, 7 -Line Tens (2 out of 5)
TK0-7-Trunk Select Level
TK8/9—Trunk Steering Level
4.1 CF Lamp (Control Failure): A CF lamp. indicates trouble in the control circuit. If the SR lamp is lighted, go to 5.301 . If the SR lamp is dark, go to 5.201 .

4.2 TMS Lamp (Hold Magnet Failure)

STEP	ACTION RESULT	POSSIBLE TROUBLE
4.201	Check the lamp indications to determine SR lamp indication. Go to Step 4.202. the type of call. D or SD2 lamp indications. Go to Step 4.204. SD1 or TER lamp indications. Go to Step 4.205.	
4.202	Block the TM3 and SQ1 relays released. Start a TA test call from the remote circuit and observe the OH relay.	\rightarrow Hold magnet, HMK, XPK, XPK1, or SQ1 relay. If the trouble is not associated with any of these relays, check the TM3 timer circuit.
4.203	Check the XPK1 relay. $\quad\left[\begin{array}{l}\text { XPK1 released. } \\ \longrightarrow \text { XPK1 operated. }\end{array}\right.$ \qquad	Select magnets LS, T_, U_, UA_, LRK, TRK, or SMK relay. False operation of the XPK1 relay, or the trunk that was preselected was still connected to a line.
4.204	Block the TM3 and SQ2 relays released. \qquad RH operates. \qquad Initiate the type call which has failed and observe the RH relay. (This call must be \rightarrow RH remains released. \qquad made on a trunk which is connected to an idle line.)	Hold magnet, HRK or SQ2 relay. SI1, T_, U_, UA_, or LRK relay.
4.205	Block the TM3 and SQ2 relays released. \qquad OH operates. Initiate the type of call which has failed and observe the OH relay.	Hold magnet or HMK relay. Also, the XPK or XPK1 relay on terminating calls.
	Caution: Battery should not, at any time, be connected to any of the test points. tors on the circuit boards. Ground may be applied to any test point at any time.	could cause damage to the transisuct tests in accordance with Section

Caution: Battery should not, at any time, be connected to any of the test points. This could cause damage to the transis-032-173-301.
4.206 Check the XPK1 relay. \qquad XPK1 released
Select magnet, TRK, SMK, SI1, T_, $\mathrm{U}_{-}, \mathrm{UA}$, or LKR relay.

XPK1 operated \qquad False operation of the XPK1 relay, or the trunk that was preselected was still connected to a line.

4.3 TCF Lamp (Trunk Check Failure)

 remote circuit to find a trunk which causes a trunk failure. Block the TCF relay released and preselect the faulty trunk. Check to insure that the same trunk is preselected in the control circuit. Initiate a TA test call from the remote circuit and observe the TKA relay.4.302

4.303 Observe the operated A_{-}and B_{-}relays $\rightarrow A_{-}, B_{-}$information matches the \longrightarrow TNK relay. and compare with the trunk preselected TK information. at the start of the TA test call.
$\longrightarrow A_{-}, B_{-}$information fails to match the TK_ information. Go to Step 4.520 .
4.304 Remove the blocking tool from the $\mathrm{TCF} \longrightarrow$ TCF operates. relay and observe that relay.

False operate path for the TCF
TCF remains released. Circuit funcrelay. tioned properly. Go to Step 4.301 and repeat test.

STEP ACTION

4.401 Originate a TA test call from the remote or control circuit and observe relays TM1, TM2, and TM5. If the alarm does not return, try initiating TA test calls from the other remote or control circuit.

RESULT

TM2 releases. Go to Step 4.402 if trouble occurs on a TA test call from the remote circuit and go to Step 4.428 if the call started from the control circuit.
-TM1 releases. Go to Step 4.407.
TM5 operates. Go to Step 4.426.
4.402 Block the TM2 relay operated and the TM5 relay released. Initiate a TA test call from the remote circuit. Observe the RL2 relay.

- RL2 operates and releases.

RL2 operates and fails to release. Go to Step 4.403.
4.403 Check the state of the RL1 relay. \longrightarrow RL1 released. \longrightarrow Relays or relay contacts in check
4.404 Use the 908A test set and check the fre- \rightarrow Scale reading 40.5 ± 2. Go to Step quency at test point A12 (limiter test point). Set the rotary switch to 2500 Hz and the slide switch to AF. 4.405.
\longrightarrow Scale reading 0. Go to Step 4.901.
4.405 Change the rotary switch to TRL $(+) \longrightarrow$ Lamp on. \longrightarrow STA, TA, RL1 relays. and check the potential at test point A33 (output of STA gate) with the 908A test set.
4.406 Use an electronic ac voltmeter, Hewlett Packard Model 400 H or equivalent, to measure the ac potential across test points E34 and E44 (input to RPT coil).
down (locking) path of the RL2 relay.

POSSIBLE TROUBLE

OL relay or contact in associated release path; TM2 timer.

CP9 or CP13. When replacing either of these boards, adjustments of the guard interval timer and the signal present detector must be made in accordance with 6.3 and 6.4, respectively. If a previously adjusted pair of spares is available, they may be used to replace CP9 and CP13.
4.407 Block the TM1 relay operated and the SR and SR1 relays released. Release the circuits and make a TA test call from the remote circuit. Observe the EP relay.

```
\(\rightarrow\) EP operates. Go to Step 4.408.
```

4.408 Remove the block from the SR and SR1 \longrightarrow RR and SR1 operate \qquad TM1 timer. relays. $\longrightarrow S R$ and/or $\operatorname{SR} 1$ remain released $\longrightarrow S R, S R 1$ relays.
4.409 Use the 908A test set to check the poten\rightarrow Lamp on \qquad $\mathrm{LT}_{-}, \mathrm{LU}_{-}$, SO1, or LK relay. SQ2 tial at test point E25 (input to SRG gate). Set the rotary switch to TRL (+).
\rightarrow Lamp off. Go to Step 4.410. or TA contact.
4.410 Release the circuits and check the poten- \longrightarrow Lamp on. Go to Step 4.411. tial at test point B17 (output of CP11 gate).
\longrightarrow Lamp off. Go to Step 4.414.
4.411 Block the TM5 relay operated and check \longrightarrow Lamp on. Go to Step 4.413. the potential at E55 (output of RLS gate).
\rightarrow Lamp off. Go to Step 4.412.
4.412 Check the potential at test point E16 (in- \longrightarrow Lamp on. Remove block from the \longrightarrow Contacts associated with test point
put to RLS gate). TM5 relay. E16.
\rightarrow Lamp off. Remove block from the \longrightarrow (RLS) gate, RLS resistor. TM5 relay.
4.413 Check the potential at test points C21, \longrightarrow Lamp on at any test point. \square Binary cell associated with that test C11, C41, C31, and C51 (output of CTR binary cells).
\longrightarrow Lamp off at all test points. Go to Step 4.701.
4.414 With the TM1 relay blocked operated \rightarrow Lamp on. Go to Step 4.423. and the SR and SR1 relays blocked released, make a TA test call from the
\rightarrow Lamp off. Go to Step 4.415. remote circuit on the same line used in Step 4.407. Check the potential at test point B17 (output of CP11 gate).

STEP	ACTION	
4.415	Check the potential (output of CC1 gate).	RESUIT
\longrightarrow Lamp off. Go to Step 4.425.		

4.416 $\begin{aligned} & \text { Check the potential at test point } \mathrm{D} 26 \rightarrow \text { Lamp on. Go to Step 4.417. } \\ & \text { (output of SR flip-flop). }\end{aligned} \longrightarrow$ Lamp off. Go to Step 4.421.
4.417 $\begin{aligned} & \text { Check the potential at test point } B 54 \longrightarrow \text { Lamp on. } \longrightarrow \text { (Samp off. Go to Step 4.418. }\end{aligned}$
4.418 Check the potential at test point E55 \rightarrow Lamp on. Go to Step 4.419. (output of RLS gate).
4.419 Check the potential at test point E16 (in- \longrightarrow Lamp on.
put to RLS gate).

4.420 Check the potential at test point A55 \longrightarrow Lamp on (output of INC flip-flop).

4.421 Check the potential at test point B46 \longrightarrow Lamp on. \qquad (CC1) gate. (output of CC2 gate).
\rightarrow Lamp off. Go to Step 4.422.
4.422 $\begin{aligned} & \text { Check the potential at test point } \mathrm{B} 56 \\ & \text { (output of CC2 gate). }\end{aligned} \longrightarrow$ Lamp on. Go to Step 4.701.
\longrightarrow Lamp off. \longrightarrow
$\longrightarrow(C C 2)$ gate.
4.423 Check the potential at test point B37 \rightarrow Lamp on. Go to Step 4.424. (output of P110 gate).
\rightarrow Lamp on.
\rightarrow Lamp off.
\rightarrow Lamp on.
\rightarrow Lamp off.
 SEP, EP relays.
4.424 Check the potential at test point A5 (output of P11 flip-flop).

4.425 Change the rotary switch setting to 500 Hz and check the frequency at test point B51 (output of T4 monopulser).
\rightarrow Scale reading 20 ± 2. Go to Step 4.701.

Scale reading 0. Go to Step 4.601 .
4.426 The TM5 timer is an overall timer which will release the remote circuit if the trouble release feature fails. Operation of the TM5 relay indicates that the control of the RLS mercury relay or the RLS relay itself is not functioning properly. This trouble is an electromechanical failure and can be checked by blocking the TM5 relay released and determining which relay fails to function properly in the release.
4.5 SF Lamp (Signal Failure)
4.501 Determine whether the failure occurs on service request calls or terminating-type calls.
\square
Failure on service request calls. Go to Step 4.502.

Failure on terminating-type calls. Go to Step 4.539.

Note: This lamp will light if the transmission facilities should go open momentarily at any time when the circuit is idle. If the trouble cannot be repeated by making TA test calls, the lamp indication was probably caused by a momentary open in the transmission facilities.
4.502 Block the SQ 2 and RT relays released in the remote circuit and the TM1 relay released in the control circuit. Initiate a TA test call from the remote circuit
\longrightarrow SQ2 fails to operate. Go to Step 4.503.
\rightarrow SQ2 operates. Go to Step 4.517. and observe the SQ2 relay. If the call does not fail, repeat TA test calls on different line and trunk combinations until the circuit fails.
4.503 Check the EP relay. $\longrightarrow\left[\begin{array}{l}\text { EP operated. Go to Step } 4.504 . \\ \\ \text { EP released. Go to Step } 4.409 .\end{array}\right.$
4.504 Use the 908A test set to check the poten- \longrightarrow Lamp on. Go to Step 4.505. tial at test point A16 (output of PP flipflop). Set the rotary switch to TRL $(+) . ~ \longrightarrow$ Lamp off. Go to Step 4.506.
4.505 Check the potential at test point A17 \longrightarrow Lamp on (PP0) gate. (output of PP0 gate).

4.506 Use the 908A test set to check test point \rightarrow Lamp winks one or more times. Go A13 (output of ST gate). Set the rotary switch to MP (+). Release the circuits and initiate a TA test call from the reto Step 4.507. mote circuit on a failing line.
4.507 Repeat Step 4.506, checking test point A24 (output of MP monopulser).
 (PP) flip-flop.

Guard interval timer board (CP13). When replacing (CP13), a (CP9) board must also be replaced since these boards are a matched pair. If a matched pair is not available for replacement, check the adjustments in accordance with 6.3 and 6.4.
4.508 Use the oscilloscope to observe the mes- \longrightarrow Correct message observed. If this sage at test point A11 (input to modulator). Release the circuits and initiate a TA test call from the remote circuit. Set the time scale of the oscilloscope to 10 milliseconds per division. trouble check started in Part 5, go to Step 4.901. If this trouble check started in Part 4, go to Step 5.306.
\rightarrow Incorrect message or no message observed. Go to Step 4.509.
4.509 Repeat Step 4.508 observing the message \longrightarrow Correct message observed. Go to at test point B33 (output of OS flip-flop). Step 4.510 .
\longrightarrow Incorrect message or no message observed. Go to Step 4.511.
4.510 Repeat 4.508 observing the message test point B23 (output of M gate).
\longrightarrow Correct message observed. \longrightarrow (INV7) gate.
4.511 Ground test point B36 (input to clock) \longrightarrow Scale reading 20 ± 2 at both test and check the frequency at test points D36 (output of INV3) and B44 (output of INV4) with the 908A test set. Set the rotary switch to 500 Hz and the slide switch to DF.
points. Go to Step 4.512. Remove ground from B36.
\rightarrow Scale reading 0 at both test points.
Go to Step 4.607.
\rightarrow Scale reading 0 at one of the test \longrightarrow (INV3), (INV4) gates. points and 20 ± 2 at the other test points. Remove ground from B36.
4.512 Release the circuits and ground test point \longrightarrow Lamp winks. Go to Step 4.513. B34 (output of clock). Use the 908A test point to check for a pulse at test point B13 (output of INV5 and INV9). Set the rotary switch to MP $(+)$. Initiate a TA test call from the remote circuit on a failing line.
4.513 Use the 908A test set to check the poten- \longrightarrow Lamp off at all test points corretial at test points E17, E56, E37, E27, or E57 for "A" digits 7, 4, 2, 1, or 0, respectively; and test points E47, E28, E18, E48, or E38 for "B" digits 7, 4, 2, 1, or 0, respectively. (LT_ and LU_ input to shift register). Set the rotary switch to TRL (+).
4.514 Rpeat Step 4.512 checking test point B41 \longrightarrow Lamp winks \qquad (INV5), (INV9) gates. (output of T1 monopulser). sponding to " A " and " B " digits to be transmitted. Go to Step 4.801 .
\rightarrow Lamp on at any test point corre- \longrightarrow LT_, $_{-}$LU__, or SO1 relay associated $^{\text {S }}$ sponding to " A " and " B " digits to with that digit. be transmitted.
\rightarrow Lamp remains off. Go to Step 4.515.
4.515 Repeat Step 4.512 checking the output at test point A45 (output of SR flip-flop).
4.516 Change the setting of the rotary switch to TRL $(+)$ and check the potential at test point A37 (input to T1 monopulser).
\rightarrow Lamp on.

4.517

RO operated. Go to Step 4.518 .
\rightarrow RO released. \longrightarrow RT relay and timer circuit or SF1 or SF2 relay operating falsely.
4.518 Check the ABK relay. \longrightarrow

ABK operated
RT relay timer circuit or SF1 or SF2 relay operating falsely.
$4.519 \begin{aligned} & \text { Check the } A_{-} \text {and } B_{-} \text {relays to see which } \longrightarrow A_{-}, B_{_} \text {relays operated correctly. } \longrightarrow A B K \text { relay. } \\ & \text { bits of information }\end{aligned}$ bits of information are in error.
\rightarrow Error in A_, B_ relays. Go to Step 4.520.
4.520 Use the oscilloscope to observe the mes- \longrightarrow Correct message observed. Go to sage at test point A13 (output of ST gate). Release the circuits and initiate a TA test call from the remote circuit on the trunk that is failing. Set the time scale of the oscilloscope to 10 milliseconds per division. Step 4.532.
\rightarrow Incorrect or no message observed. If this trouble check started in Part 5, go to Step 5.901. If this trouble check started in Part 4, go to Step 5.351 if incorrect message is observed or to Step 4.508 if no message is observed.
4.521 Repeat Step 4.510 observing test point \longrightarrow Four marks observed in the proper B31 (output of T3 monopulser). place for the information being received. These marks are represented by positive pulses of a 10 -microsecond duration. Go to Step 4.522.
\rightarrow Incorrect message observed. Go to Step 4.536.

4.523	Use the $908 A$ test set to measure the po-
tential at test point B27 (output of P220	
gate). Set the rotary switch to TRL $(+)$.	

4.524 Ground test point B36 (clock input). Set \longrightarrow Scale reading 20 ± 2. Got to step the rotary switch of the 908 A set to 500 Hz and the slide switch to DF. Check the frequency at test point B51 (output 4.701. of T4 monopulser).
4.525 Check the ABK relay. \longrightarrow ABK operated. Go to Step 4.526.
4.526 Remove the blocking tool from the SQ3 \longrightarrow RL1 released. Go to Step 4.527. relay and check the RL1 relay.
\rightarrow RL1 operated. Go to Step 4.531
4.527 Check the TA relay. \longrightarrow TA operated. Go to Step 4.528.
4.528 Check the SQ3 relay.

\rightarrow SQ3 relay opera

4.529 Measure the frequency at test point A12 \longrightarrow Scale reading greater than 10 . Go to (limiter output) with the 908A test set. Step 4.911 Set the rotary switch to 2500 Hz and the slide switch to AF.
\rightarrow Scale reading 0 . Go to Step 4.530 .
4.530 Check the potential at test point A33 \longrightarrow Lamp on (output of STA gate) with the 908A test set. Set the rotary switch to TRL (+).

Board A3, (CP13). When replacing CP13, CP9 must also be replaced as they are a matched pair. If a matched pair is not available for replacement, check adjustments in ac cordance with 6.3 and 6.4.
\rightarrow Lamp off. \longrightarrow STA, TA relays.
Check the OL relay. \longrightarrow OL operated. Go to Step 4.533.
4.532 Check the RL2 relay. \square \rightarrow RL2 released RL2 relay.

RL2 operated. OL relay.
4.533 Check the frequency at terminal 1 of the FS filter with the 908A test set. Set the rotary switch to 2500 Hz and the slide
\rightarrow Scale reading greater than $10 . \longrightarrow$ OL relay contact 6 . switch to AF.
4.534 Use the 908A test set to measure the fre quency at test point B31 (output of T3 monopulser). Ground test points B36 (input to clock) and A54 (output of DMO gate). Set the rotary switch on the 908A test set to 500 Hz and the slide switch to DF.
4.535 Ground test point B36 (input to clock) Measure the frequency at test points D36 and B44 output of INV3 and INV4, respectively, with the 908A test set. Set the rotary switch to 500 Hz .
\longrightarrow Scale reading 0 at either test point. Go to Step 4.605.
\longrightarrow Scale reading 20 ± 2. Go to Step 4.801.
4.536 Repeat Step 4.519 observing the output \longrightarrow Four marks observed in the proper \longrightarrow (T3) monopulser. at test point B32 (output of WG gate) with the oscilloscope. place for the information being received. These marks are represented by 156 microsecond pulses.

Incorrect message observed. Go to Step 4.537.

Repeat 4.520 observing test point $A 54 \longrightarrow$ Five marks observed in the proper (output of DMO gate). place for the information being received. (Marks are negative with respect to spaces at this test point.) Go to Step 4.538.
4.538 Ground test point B36 (input to clock). Use the 908 A test set to measure the frequency at test point B42 (output of INV6 gate). Set the rotary switch of the 908A Scale reading 20 ± 2. (WG) gate, adjustment on multivi-
\rightarrow Scale reading 0 . Go to Step 4.605 . brator. DF.
4.539 Block the RT relay released in the re- \longrightarrow ABK fails to operate. Go to Step mote circuit and the TM1 relay released in the control circuit. Initiate a TA test call from the control circuit and observe the $A B K$ relay. If the call does not fail, repeat TA test calls on different line and trunk combinations until the circuit fails.
 RT relay and timer circuit or SF1 or SF2 operating falsely.
4.541 Check the A_{-}, B_{-}, and C_{-}relays to see $\longrightarrow A_{-}, B_{-}, C_{-}$relays operated cor- \longrightarrow ABK relay.
which bits of information are in error. rectly.
\rightarrow Error in A_{-}, B_{-}relays. Go to Step 4.543 .
\rightarrow Error in C_ relays. Go to Step 4.542.
4.542 Initiate a TA test call from the control—— Lamp winks. Go to Step 4.543. circuit and check for a pulse at test point B28 (output of CP6A gate). \quad Lamp does not wink. Go to Step 4.701 .
4.543 Use the oscilloscope to observe the mes- \longrightarrow Correct message observed. Go to sage at test point A13 (output of ST gate). Release the circuits and initiate a TA test call from the control circuit on the trunk that is failing. Set the time scale of the oscilloscope to 10 milliseconds per division. A total of six marks should be observed.

Step 4.544 .
\longrightarrow Incorrect message observed. If this trouble check started in Part 5, go to Step 5.901. If this trouble check started in Part 4, go to Step 5.213.

STEP	ACTION	RESULT	possible trouble
4.544	Repeat Step 4.528 observing test point B31 (output of T3 monopulser).	Four marks observed in the proper place for the information being received. These marks are represented by 10 microsecond positive pulses. Go to Step 4.545. Incorrect message observed. Go to Step 4.547.	
4.545	Check the RO relay.	RO operated. Go to Step 4.534. RO released. Go to Step 4.546.	
4.546	Use the 908A test set to measure the potential at test point B47 (output of P160 gate). Set the rotary switch to TRL (+).	\qquad	SRO, RO relays.
4.547	Repeat Step 4.543 observing test point B32 (output of WG gate).	Four marks observed in the proper place for the information being received. These marks are represented by 156 microsecond positive pulses. Incorrect message observed. Go to Step 4.548.	(T3) monopulser.
4.548	Repeat Step 4.543 observing test point A54 (output of DMO gate).	Four marks observed in the proper place for the information being re ceived. Marks are negative with re spect to spaces at this test point. Go to Step 4.538 . Incorrect message observed.	(DMO) gate.
4.549	Check the EP relay.	EP operated. Go to Step 4.550. \rightarrow EP released. \qquad	RT relay and timer circuit or SF1 or SF2 operating falsely.

フ	STEP	ACTION	RESULT	possible trouble
$\stackrel{\rightharpoonup}{\infty}$	4.550	Check the OL and TA relays.	TA operated and OL released. \qquad \rightarrow TA and OL operated. Go to Step 4.551 . \rightarrow TA released and OL operated. \qquad TA and OL released. Go to Step 4.555.	L relay. Q3 relay.
	4.551	Check the potential at terminal 1 of the A4 connector with the 908A test set. Set the rotary switch to TRL (+).	Lamp on. Go to Step 4.553. Lamp off. Go to Step 4.552	
	4.552	Check the potential at test point A3 (output of STA gate).	\qquad	STA, TA relays. (STA) gate. The (STA) gate is part of CP13. When replacing CP13, CP9 must also be replaced since they are a matched pair. If a matched pair is not available for replacement, the adjustments must be checked in accordance with 6.3 and 6.4.
	4.553	Check the frequency at test point A12 Use the 908A test set with the rotary switch set to 2500 Hz and the slide switch set to AF.	$\longrightarrow_{\text {Scale reading } 0 . \text { Go to Step } 5.103} \text { Scale reading } 20 \pm 2 . \text { Go to Step }$	
	4.554	Check the frequency at test point A3 (output of limiter).	\longrightarrow Scale reading 0 . Scale reading 20 ± 2.	CP9, refer to Step 4.552. (Possible Trouble). CP13, refer to Step 4.552. (Possible Trouble).
	4.555	Use the oscilloscope to observe the message at test point A11 (input to modulator). Release the circuits and initiate a TA test call from the control circuit. Set the time scale of the oscilloscope to 10 milliseconds per division. A total of five marks should be observed, each mark being 5 milliseconds in duration.	\rightarrow Correct message observed. If this trouble check started in Part 5, go to Step 4.901. If this trouble check started in Part 4, go to Step 5.212. \rightarrow Incorrect message or no message observed. Go to Step 4.556.	

RESULT

POSSIBLE TROUBLE

4.556 Check the EP relay. $\longrightarrow \longrightarrow \begin{aligned} & \text { EP operated. Go to Step } 4.557 . \\ & \\ & \text { EP released. Go to Step } 4.558 .\end{aligned}$
4.557 Check the OL and TA relays.
\longrightarrow TA operated and OL released. \longrightarrow OL relay.
4.558 Check the potential at test point B57 \longrightarrow Lamp on. Go to Step 4.559. (output of P270 gate) with the 908A test set. Set the rotary switch to TRL (+). \longrightarrow Lamp off \qquad
4.559 Ground test point B36 (input to clock). \longrightarrow Scale reading 20 ± 2. Go to Step Set the rotary switch of the 908 A test 4.701. set to 500 Hz and the slide switch to DF. Check the frequency at test point
\rightarrow Scale reading 0 . Go to Step 4.616 B51 (output of T4 monopulser).
4.560 Repeat Step 4.555 observing test point \longrightarrow Correct message observed. Go to Step B33 (output of OS flip-flop).
4.561.
\rightarrow Incorrect message observed. Go to Step 4.562.
4.561 Repeat Step 4.555 observing test point \longrightarrow Correct message observed.
 B23 (output of M gate).

Incorrect message observed \qquad TBL1, TBL resistor, TBL capacitor, TBL contacts 1 and 3 , or (M) gate.
4.562 Release the circuits and ground test point \longrightarrow Lamp winks. Go to Step 4.563. A37 (output of CKT gate). Start a TA test call from the control circuit. When -Lamp remains off. Go to Step 4.564. the circuit stops, ground test point B34 (output of clock). Use the 908A test set to look for a positive pulse at test point B13 (output of INV5, 9 gate). Set the rotary switch to MP (+). Remove the ground from test point A37 and observe the 908 A test set.
4.563 Use the 908 A test set to check the poten- \longrightarrow Lamp off at all test points corretial at test points E17, E56, E37, E27, and E57 for "A" digits 7, 4, 2, 1, or 0, respectively; (TK_ input to shift register) and test points E47, E28, E18, E48, or E38 for "B" digits 7, 4, 2, 1, or 0 , respectively; (TK input to shift register) Set the rotary switch to TRL (+).
4.564 Repeat Step 4.562 checking test point B41 (output of T1 monopulser).
sponding to " A " and " B " digits to be transmitted. Go to Step 4.801.
\rightarrow Lamp on at any test point corresponding to " A " and " B " digits to be transmitted. Go to Step 4.570.
4.565 Change the setting of the rotary switch \longrightarrow Lamp on. Go to Step 4.566 on the 908A test set to TRL (+) and check the potential at test point A37 - Lamp winks. \qquad (INV5), (INV9) gates. (output of CKT gate).
4.566 Check the potential at test point A45 \longrightarrow Lamp on. (output of SR flip-flop). (SD) flip-flop, (SRG) gate or control
\square
Lamp off. of (SRG) gate. (T1) monopulser.

Check the potential at test point D16 \longrightarrow Lamp on.
 (INC) flip-flop, relay contact con(output of INC flip-flop). trolling (RLS) gate.
4.568 Check the potential at test point E35 (input to CKT gate).

Lamp off. Go to Step 4.568.

STEP ACTION RESULT
4.569 Check the potential at test point E46 \longrightarrow Lamp on. (output of R16 gate).
$\longrightarrow \begin{aligned} & \text { Lamp on } . \\ & \text { Lamp off }\end{aligned}$

R16 gate, R16 resistor, or contacts associated with (R16) gate.
4.570 Check the potential at test point A56 \longrightarrow Lamp on (output of INV8 gate).

(INV8) gate.
(CKT) gate, CKT capacitor.
4.571 Check the TK_ relays which should be \longrightarrow TK_ relays operated correctly. Go operated for the trunk information to be transmitted. to Step 4.572.

TK_ relays not operated properly. TK relay.
4.572

4.573 Check the potential at test point B36 \longrightarrow Lamp on. Go to Step 4.574. (clock input) with the 908A test set. Set the rotary switch to TRL $(+)$. \qquad Open connection associated with wiring run for the test point in trouble in Step 4.563.
4.574 Check the potential at test point B26 \longrightarrow Lamp on.

4.575 Check the potential at test point A36 \longrightarrow Lamp on. (output of CKT1 gate).
 (CKT1) gate. Lamp off. Go to Step 4.576.
4.576 Check the potential at test point B16 \longrightarrow Lamp on.
(CP27) gate. (output of CP27 gate).
 (CC3) gate.
4.577 Check the TA relay in the remote circuit \longrightarrow TA relay operated. Go to Step 4.580. which is not being served.

TA relay not operated. Go to Step 4.578 .

STEP	ACTION	RESULT	POSSIBLE TROUBLE
4.578	Check the frequency at test point E44 with the 908 A test set. Set the rotary switch to 5000 Hz .	Scale reading 0. Go to Step 4.579. \rightarrow Scale reading greater than 10 .	Transmission facilities.
4.579	Check the potential at test point A33 with the 908A test set. Set the rotary switch to TRL (+).	Lamp off \qquad Lamp on. \qquad	STA, TA relays. Signal present detector (CP13). When replacing (CP13), (CP9) must also be replaced since they are a matched pair. If a matched pair is not available, adjustments must be checked in accordance with 6.7 and 6.8.
4.580	Check the OL relay.	\longrightarrow OL operated. \qquad \rightarrow OL not operated. Go to Step 4.581	Contact 6 of OL relay, transmission facility. OL relay.

4.6 Clock and Clock Control Check

4.601 Ground test point B36 (input to clock). \longrightarrow Scale reading $32 \pm$ 3. Go to Step Set the rotary switch of the 908 A test set to 5000 Hz and the slide switch to DF. Check the frequency at test point 4.602. B34 (output of multivibrator).
4.602 Check the frequency at test point $\mathrm{B} 55 \longrightarrow$ Scale reading 32 ± 3. Go to Step
(output of CIG gate). 4.603 .

Scale reading 0 \qquad (CIG) gate.
4.603 Check the frequency at test point D17 Scale reading 8 ± 1. Go to Step (output of P21 gate). 4.604.
\square Scale reading 0 \qquad (P1), (P2) binary cell boards.
4.604 Set the rotary switch to 500 Hz . Check \longrightarrow Scale reading 20 ± 2. Go to Step the frequency at test point D37 (output of P80 gate).
4.605 .
\longrightarrow Scale reading 0 .
(PA), (P8) binary cell boards.
4.605 Check the shift pulse as follows: Set the \longrightarrow Scale reading 20 ± 2. Go to Step rotary switch of the 908 A test set to 500 Hz and the slide switch to DF. Ground test point B36. Check the frequency at test point D36 (output of INV3 gate).
4.606 Check the frequency at test point $\mathrm{B} 44 \longrightarrow$ Scale reading 0. Go to Step 4.607. (output of INV4 gate). 4.606.
\rightarrow Scale reading 0 . Go to Step 4.607 .

Scale reading 20 ± 2. Go to Step 4.611.
4.607 Check the frequency at test point A57 \longrightarrow Scale reading 0 . Go to Step 4.608 . (output of RS gate).

Scale reading 20 ± 2. Remove ground \longrightarrow (INV3), (INV4) gates. from test point B36.
4.608 Check the frequency at test point A38 \longrightarrow Scale reading 0. Go to Step 4.609. (output of T5 monopulser).

Scale reading 20 ± 2. Remove ground $\longrightarrow(R S)$ gate. from test point B36.
4.609 Check the frequency at test point B11 \longrightarrow Scale reading 0 . Go to Step 4.610 (output of PG1 gate).

Scale reading 20 ± 2. Remove ground \longrightarrow (T5) monopulser. from test point B36.
4.610 Check the frequency at test points $D 56, \longrightarrow$ Scale reading equal to or greater \longrightarrow (PG1) gate, SP capacitor. D46, D37, D34, and D47 (inputs to PG1 gate). than 20 ± 2 at all test points. Remove ground from test point B36.
\longrightarrow Scale reading 0 at any test point. \longrightarrow Binary cell associated with test Remove ground from test point B36. point.
4.611 Check the write pulse as follows: Ground test point B36 (input to clock) and test point A54 (output of DM0 gate). Set the rotary switch of the 908 A test set to Scale reading 0. Go to Step 4.612.
\rightarrow Scale reading 20 ± 2. Go to Step 4.616.
4.612 Check the frequency at test point B32(output of WG gate).

Scale reading 0. Go to Step 4.613.
Scale reading 20 ± 2. Remove \longrightarrow (T3) monopulser. ground from test point B36 and test point A54.
4.613 Check the frequency at test point $B 42 \rightarrow$ Scale reading 0 . Go to Step 4.614 . (output of INV6 gate).
\rightarrow Scale reading 20 ± 2. Remove \longrightarrow (WG) gate. ground from test points B36 and
A54.
4.614 Check the frequency at test point $B 24, \longrightarrow$ Scale reading 0 . Go to Step 4.615. (output of PG2 gate).
\longrightarrow Scale reading 20 ± 2. Remove \longrightarrow (INV6) gate capacitor. ground from test point A54 and B36.
4.615 Check the frequency at test points $D 27, \longrightarrow$ Scale reading equal to or greater \longrightarrow (PG2) gate. D17, D37, B34, and D47 (input of PG2 gate). than 20 ± 2 at every test point B36. Remove ground from test points B36 and A54.
\rightarrow Scale reading 0 at any test point. \longrightarrow Binary cell associated with test Remove ground from test points B36 point. and A54.
4.616 Check the counter advance pulse as fol- \longrightarrow Scale reading 0. Go to Step 4.617.
lows: Ground test point B36. Set the rotary switch of the 908 A test set to 500 Hz and the slide switch to DF. Check the frequency at test point B51 (output
\rightarrow Scale reading 20 ± 2. Trouble is intermittent. Return to point where trouble was encountered of T4 monopulser).
4.617 Check the frequency at test point B21 \longrightarrow Scale reading 0. Go to Step 4.618. (output of PG3 gate).

POSSIBLE TROUBLE

4.713 Check the frequency at test points D58, D18, A51, D28, and A21 (inputs to CP22 gate).

Scale reading equal to or greater \longrightarrow Board A17, CP22 capacitor. than 6.25 ± 0.5 at all test points. Remove ground from B36.
\rightarrow Scale reading 0 at any test point. \longrightarrow Binary cell associated with test Remove ground from B36. point.
4.714 Check the frequency at test points $D 58, \longrightarrow$ Scale reading equal to or greater \longrightarrow Board A18. D38, A51, D57, and A31 (inputs to CP27 gate).
than 6.25 ± 0.5 at all test points.
Remove ground from B36.
Scale reading 0 at any test point. \longrightarrow Binary cell associated with test Remove ground from B36. point.

4.8 Shift Register Check

4.801 Check the input to the shift register in the following manner: Ground test point B13. Ground test points E17, E56, E37, E27, and E57 for "A" digits 7, 4, 2, 1, and 0 , respectively. Ground test points E47, E28, E18, E48, and E38 for "B" digits 7, $4,2,1$, and 0 , respectively. Set the rotary switch of the 908A test set to TRL $(+)$. Check the potential at test points C36, C26, C56, C46, and C27 for "A" digits $7,4,2,1$, and 0 , respectively, and at test points C17, D21, D11, D41, and D31 for " B " digits 7, 4, 2, 1, and 0 , respectively.
4.802 Check the potential at test points C38, C28, C18, C58, and C48 for "A" digits 7, $4,2,1$, and 0 , respectively. Check the potential at test points D32, D22, D12, D52, and D42 for "B" digits 7, 4, 2, 1, and 0, respectively.
\rightarrow Lamp on at associated test point. Go to Step 4.802.
\rightarrow Lamp off at associated test point. \longrightarrow Shift register cell associated with Remove test leads.
failing digit.
4.803 Check the serial input to the shift reg- \longrightarrow Scale reading 0. Go to Step 4.809 . ister in the following manner: Ground test points A54 and B36. Set the rotary switch to 500 Hz . Set the slide switch to

Scale reading 20 ± 2. Go to Step 4.804.

DF. Check the frequency at test point D43 (output of SA2 flip-flop).
4.804 Check the frequency at test point $\mathrm{D} 44-\square$ Scale reading 0 . Go to Step 4.810 . (output of SA0 flip-flop).
\square Scale reading 20 ± 2. Go to Step 4.805.
4.805 Check the frequency at test point D15 \longrightarrow Scale reading 0. Go to Step 4.811. (output of SB4 flip-flop).
 4.806.
4.806 Check the frequency at test point $D 35 \longrightarrow$ Scale reading 0 . Go to Step 4.812 . (output of SB1 flip-flop).

$$
\begin{aligned}
& \longrightarrow \text { Scale reading } 20 \pm 2 . \text { Go to Step } \\
& 4.807 \text {. }
\end{aligned}
$$

4.807 Check the frequency at test point $D 55 \longrightarrow$ Scale reading 0 . Go to Step 4.813. (output of BS flip-flop).
\longrightarrow Scale reading 20 ± 2. Go to Step 4.808.
4.808 Block the EP relay released. Check the \longrightarrow Scale reading 0
(BS), (OS) shift register boards.
frequency at test point B33 (output of OS flip-flop).

Scale reading 20 ± 2. Remove block from EP relay. Remove ground from A54 and B36. Shift register is operative for serial pulsing. Go to Step 4.814 if " C " digit information is in error.
4.809 Check the frequency at terminal 3 of the B6 connector (input to SA2 flip-flop). Scale reading 0 . Remove leads from \longrightarrow (SA7), (SA4) shift register boards. A54 and B36.

Scale reading 20 ± 2. Remove leads $\longrightarrow(S A 2), S A 1)$ shift register boards. from A54 and B36.
4.810 Check the frequency at terminal 3 of the \longrightarrow Scale reading 0 . Remove leads from \longrightarrow (SA2), (SA1) shift register boards. B7 connector (input to SA2 flip-flop) A54 and B36.

Scale reading 20 ± 2. Remove leads $\longrightarrow(S A 0)$, (SB7) shift register boards. from A54 and B36.
4.811 Check the frequency at terminal 3 of the \longrightarrow Scale reading 0 . Remove leads from \longrightarrow (SA0), (SB7) shift register boards. B9 connector (input to SB4 flip-flop). A54 and B36.

Scale reading 20 ± 2. Remove leads \longrightarrow (SB4), (SB2) shift register boards. from A54 and B36.
4.812 Check the frequency at terminal 3 of the \longrightarrow Scale reading 0 . Remove leads from \longrightarrow (SB4), (SB2) shift register boards. B10 connector (input to SB1 flip-flop). A54 and B36.

Scale reading 20 ± 2. Remove leads $\longrightarrow(S B 1)$, (SB0) shift register boards. from A54 and B36.
4.813 Check the frequency at terminal 3 of the \longrightarrow Scale reading 0 . Remove leads from \longrightarrow (SB1), (SB0) shift register boards. B11 connector (input of BS flip-flop). A54 and B36.

Scale reading 20 ± 2. Remove leads $\longrightarrow(B S),(O S)$ shift register boards. from A54 and B36.
4.814 Check the "C" digit information in the following manner: Ground test point B53. Ground test points D23, D13, D43, D33, and D44 corresponding to "C" digits 7, 4, 2, 1, and 0, respectively. Check the potential at points C34, C44, C16, C33, and C 43 for " C " digits 7, 4, 2, 1, and 0 , respectively. Set the rotary switch to TRL (+).
4.815 Check the potential at test points C24, \longrightarrow Lamp on at associated test point. Go C14, C53, C23, and C13 for "C" digits 7, $4,2,1$, and 0 , respectively. to Step 4.816

Lamp off at associated test point, re \longrightarrow Flip-flop associated with failing move test leads. digit.
4.816 Check the potential at test points C35,
 Remove test leads. digit.
4.9 Signal Circuit Check

4.901 Send Circuit Check

Use the 908 A test set and check the fere- \longrightarrow Scale reading 21.4 ± 2. Go to Step quincy at terminal 1 of the FS filter to ground. Set the rotary switch to 2500 Hz and the slide switch to AF.
4.902.
\rightarrow Scale reading 44.5 ± 4. Go to Step 4.904.
\rightarrow Scale reading 0 . Go to Step 4.906.
4.902 Change the rotary switch of the $908 \mathrm{~A} \longrightarrow$ Lamp on. \longrightarrow Modulator board. When replacing test set to TRL (+) and measure the potential at test point A11.
\rightarrow Lamp off. Go to Step 4.903. modulator board, check adjustments in accordance with 6.2.
4.903 Check the potential at B23 (output of M \longrightarrow Lamp on. Go to Step 4.907. gate).
\longrightarrow Lamp off. \qquad (INV7) gate.
4.904 Change the rotary switch of the $908 \mathrm{~A} \longrightarrow$ Lamp on. Go to Step 4.905 . test set to TRL (+) and measure the potential at test point A11.
\longrightarrow Lamp off
\square Modulator board. When replacing modulator board, check adjustments in accordance with 6.2.
4.905 Check the potential at B 23 (output of $\mathrm{M} \longrightarrow$ Lamp on. gate).

Lamp off. Go to Step 4.907.
(INV7) gate.
4.906 Check the frequency at terminal 8 of the \longrightarrow Scale reading 0 . A1 connector.

Modulator board. When replacing modulator board, check the adjustments in accordance with 6.2.

Contact 6 of OL relay, the OL relay or contacts associated with OL relay.

RESULT

4.907 Use an electronic ac voltmeter, Hewlett- \longrightarrow Reading is $-18 \mathrm{dBm} \pm 7 \mathrm{~dB}+$ the Packard Model 400 H or equivalent, to measure the potential across E32 and E42 (output of RPT coil).
measured loss of the transmission facility. Go to Step 5.911.

Reading is less than $-25 \mathrm{dBm}+$ measured loss of the transmission facility. Go to Step 4.908.
4.908 Measure the ac potential across test points E12 and E22 (output of power amplifier).
\rightarrow Reading is $-18 \mathrm{dBm} \pm 7 \mathrm{~dB}+$ meas \longrightarrow CRA or CRB diodes or TA transsured loss of the transmission fa- former. cility.

Reading is less than $-25 \mathrm{dBm}+$ measured loss of the transmission facility. Go to Step 4.909.
4.909 Measure the ac potential from terminal 3 of the FS filter to ground.

\longrightarrow	Reading is $0.71 \pm .1$ volt RMS. \longrightarrow
	Reading is less than .61 volt RMS.
	Go to Step 4.910.

4.910 Measure the ac potential from terminal 1 of the FS filter to ground.

Reading is $0.71 \pm .1$ volt RMS. \qquad FS filter.

Reading is less than 0.61 volt RMS. \longrightarrow Modulator board. When replacing the modulator board, check the adjustments in accordance with 6.22.
4.911 Receive Circuit Check: Use an electronic ac voltmeter, Hewlett-Packard Model 400 H or equivalent, to measure the potential across test points E34 and E44 (in- \longrightarrow Reading is less than $-25 \mathrm{dBm} . \longrightarrow$ Transmission facility or control cirput to RPT coil).
\rightarrow *Reading is $-18 \mathrm{dBm} \pm 7 \mathrm{~dB}$. Go to Step 4.912. cuit send circuit if it has not been checked.

* The reading at this point should be $-18 \mathrm{dBm}+$ measured loss of the transmission facility. The circuit should function with $\mathrm{a} \pm 7 \mathrm{~dB}$ variation of this figure. However, when a variation occurs from the indicated level, the transmission facility and/or the adjustment of the modulator board should be checked.
4.912 Check the ac potential across test points \longrightarrow Reading is $-18 \mathrm{dBm} \pm 7 \mathrm{~dB}$. Go to E14 and E24 (input to transformer). Step 4.913.
\longrightarrow Reading is less than $-25 \mathrm{dBm} . \longrightarrow$ CRD, CRC diodes or TB transformer.
4.913 Check the ac potential from terminal $15 \longrightarrow$ Reading is less than $-25 \mathrm{dBm} \longrightarrow$ Input transformer. When replacing of the A2 connector to ground. board CP13, board CP9 must also be replaced since they are a matched pair, or adjustments must be checked in accordance with 6.3 and
\rightarrow Reading is $-18 \mathrm{dBm} \pm 7 \mathrm{~dB}$. Go to Step 4.914. 6.4 for the guard interval timer and the signal present detector, respectively.
4.914 Check the ac potential from terminal $3 \longrightarrow$ Reading is $-21 \mathrm{dBm} \pm 7 \mathrm{~dB}$. Go to of the FR filter to ground. Step 4.916.

Reading is less than -28 dBm . Go to Step 4.915.
4.915 Check the ac potential from terminal 1 of the FR filter to ground.
 CP9, board CP13 must also be replaced since they are a matched pair, or adjustments must be checked in accordance with 6.3 and 6.4 for the guard interval timer and the signal present detector, respectively.

Check the ac potential from A42 to \longrightarrow Reading is less than 7.0 volts RMS. ground (input to discriminator).
\rightarrow Limiter board. When replacing board CP9, board CP13 must also be replaced since they are a matched pair, or adjustments must be checked in accordance with 6.3 and 6.4 for the guard interval timer and the signal present detector, respectively.

ACTION
4.917 Release the circuits and ground test point C45 (output of M gate) at the control circuit. Use the 908A test set to check the frequency at A12 (limiter test point) in the remote circuit. Set the rotary switch to 2500 Hz and the slide switch to AF .
4.918 Check the potential at A13 (output of ST gate) with the 908 A test set. Change the rotary switch to TRL (+). the guard Receive circuit

Lamp off. Go to Step 4.919.

POSSIBLE TROUBLE
RESULT
\rightarrow Reading is 44.5 ± 2. Go to Step 4.918.

Reading is $40.5 \pm 2 . \longrightarrow$ Control circuit send circuit. Go to Step 5.901.
4.919 Check the potential at terminal 1 of the A4 connector (output of signal present detector). \longrightarrow Lamp off. \qquad Discriminator board. When replacing CP12, check the adjustments in accordance with 6.5.
4.920 Use an electronic ac voltmeter, Hewlett- \longrightarrow Scale reading less than 2 volts RMS. \longrightarrow Limiter board (CP9). When replacPackard Model 400 H or equivalent, to measure the potential from test point A2 to ground.

5. CONTROL CIRCUIT TROUBLE ANALYSIS

Trouble display lamps at the control circuit are as follows:

RL'T - Release Timeout	TF — Trunk Failure
RSF $0 / 1$ - Remote Signal Failure	TM5 - Timer 5
SF $0 / 1$ - Signal Failure	TRT - Trouble Timeout

Trouble recorder punches indicating type of call and progress of the call are as follows:

FT - Frame Tens	SR - Service Request Call
FU-Frame Units	TER - Terminating Call
GRP - Group (0/1)	DIS - Disconnect Call
LT - Line Tens	SD - Service Denial Call
LU - Line Units	RSD - Release Service Denial Call
TT - Trunk Tens	CP - Clock Phase
TU - Trunk Units	TM5 - Timer Phase

5.1 RLT Lamp (Release Failure)

STEP ACTION
RESULT

POSSIBLE TROUBLE

5.101 $\begin{aligned} & \text { Initiate a TA test call from the remote } \\ & \text { or control circuit. Observe the TM2 and }\end{aligned} \longrightarrow$ TM2 relay operates. Go to Step 5.102. TM3 relays.

TM3 relay releases. Go to Step 5.106.
5.102 Block the TM2 relay normal. Repeat the \longrightarrow RL1 operates and releases. Go to same TA test call as in Step 5.101. ObStep 5.103. serve the RL1 relay.
\rightarrow RL1 operates and does not release. Go to Step 5.105.
5.103 Check the operate time of the TM2 relay. \longrightarrow Operate time between 28 and 84 milliseconds. Go to Step 5.104.
\rightarrow Operate time less than 28 millisec- \longrightarrow TM2 relay. onds.
5.104 Check the operate time of the RL2 relay. \longrightarrow Operate time greater than 12 milli- \longrightarrow RL 2 relay. seconds.
\rightarrow Operate time less than 12 millisec- \longrightarrow Release time of relays in RL1 lockonds. ing path.

RESULT
RL2 operates \qquad Contacts in RL1 locking path. test call as in Step 5.101 and check the operation of the RL2 relay.

RL2 does not operate RL2 relay, contacts in RL2 operate path.
5.106 Block the TM3 relay operated. Initiate \longrightarrow RL2 relay operates and does not rethe same TA test call as in Step 5.101. Observe the RL2 relay. lease. Go to Step 5.107.
\rightarrow RL2 relay operates and releases. \qquad TM3 relay or associated control contacts.
5.107 Check TA0/1 relay for group 0/1, re- \longrightarrow TA0/1 operated. Go to Step 5.112. spectively.
$\rightarrow \mathrm{TAO} / 1$ released. Go to Step 5.112 .
5.108 Check output at test point A26 or A52 \longrightarrow Lamp lights. \square ITA0/1, TA0/1 relays. (for group 0/1, respectively) with a 908 A test set. Set the rotary switch to TRL $(+)$. 5.109.
5.109 Check the potential at test point A27/A5 for group 0/1, respectively.

5.110 Check the OL0/1 relay in the control cir cuit for group $0 / 1$, respectively.

OL0/1 operated
 OL0/1 relay. OL0/1 released. Go to Step 5.111.
5.111 Use the 908A test set to measure the fre- \longrightarrow Scale reading greater than 10 . Go to quency at terminal 1 of the FS0/1 filter Step 5.911 . for group 0/1, respectively. Set the rotary switch of the 908A test set to 2500 Hz
\longrightarrow Scale reading 0. Go to Step 5.906 and the slide switch to AF.

Caution: Battery should not, at any time, be connected to any of the test points. This could cause damage to the transistors on the circuit boards. Ground may be applied to any test point at any time. Conduct tests in accordance with Section 032-173-301.

STEP	ACTION RESULT	POSSIBLE TROUBLE
5.112	Check the potential at test point F27 \longrightarrow Lamp lights. Go to Step 5.113. (output of RLS gate) with a 908A test set. Set the rotary switch to TRL $(+)$.	(RLS) gate, resistor 117 open.
5.113		RL2 relay, relay contacts in locking path of RL2 relay. $A_{-}, B_{-}, S_{-}, S_{-}$relays and associated drivers; NK, IR relays.

5.2 TRT Lamp (Terminating-Type Calls)

5.201 Block the RL1 relay normal. Originate \longrightarrow LK operates. Go to Step 5.202. a TA test call from the control circuit. Check the LK relay.
\longrightarrow LK operates. Go to Step 5.202.
\longrightarrow LK does not operate.
\longrightarrow EP relay operates. Go to Step 5.211.
\longrightarrow EP relay does not operate. Go to

Contacts of LT_, LU_ relays, LK0/1 relay.
5.202 Check the EP relay.

5.203 Set the rotary switch of the 908A test set \longrightarrow Lamp off. Go to Step 5.206. to TRL (+). Check the potential at test point F15 (OTG flip-flop).

Lamp on. Go to Step 5.204.
5.204 Check the potential at test point A28 \longrightarrow Lamp on. (OTG) flip-flop. (output of TP gate).

Lamp off. Go to Step 5.205.
5.205 Check the potential at the following test points: C55, B43, A21, E38, and E13.

(TP) gate.
Relay contacts or solid-state components associated with test point.

STEP ACTION

RESULT

POSSIBLE TROUBLE

5.206 Check the trouble record for the counter \longrightarrow Counter has not been advanced. Go phase.
to Step 5.207.
Counter advanced but has not reached counter phase 16 . Go to Step 5.701 .

Counter advanced to counter phase
16. Go to Step 5.209
5.207 Check the potential at test point C52 \longrightarrow Lamp off. Go to Step 5.701. (output of CC gate) with the 908A test set. Set the rotary switch to TRL (+).
\rightarrow Lamp on. Go to Step 5.208.
5.208 Check the potential at test point E23 and \longrightarrow Lamp off at both test points. C12 (output of CP16 and CP27 gates, respectively).
\rightarrow Lamp on at either test point. \square Board A23. (CP_) gate associated with test point.
5.209 Check trouble record card on several \longrightarrow Counter phase 16 on all calls. \longrightarrow (P160) gate, contact of TCA0/1 recalls for counter phase.

\qquad lay, IEP, EP relays.
5.210 Check the frequency at test point $\mathrm{C} 13 \longrightarrow$ Scale reading 0 (output of K multivibrator). Set the rotary switch to 5000 Hz and the slide \rightarrow Scale reading 32 ± 3 (CP16) gate. switch to DF.

Check the PP relay. \qquad PP relay does not operate. Go to Step 5.212
5.212 Connect oscilloscope to test point A37/ A14 for group 0/1, respectively (output of the ST0/ST1 gate). Release both the remote and control circuits. Originate a TA test call from the control circuit and observe the message received. A total of five marks should be received. Each mark is 5 milliseconds in duration.

Incorrect message received. If this trouble check started in Part 5, go to Step 4.555. If this trouble check started in Part 4, go to Step 4.901.
\rightarrow Correct message received. Go to Step 5.224.

No message received. Go to Step 5.213 .
5.213 Release the control circuit. Connect the \longrightarrow Correct message observed. If this oscilloscope to test point A11 (input to M0/M1 modulator). Originate a TA test call from the control circuit and observe the message being sent. A total of six marks should be observed. Each mark is 5 milliseconds in duration. trouble check started in Part 5, go to Step 4.543. If this trouble check started in Part 4, go to Step 4.901.
\rightarrow No message observed. Go to Step 5.214 .

Incorrect message observed. Go to Step 5.801.
5.214 Repeat Step 5.213 observing the message \longrightarrow No message observed. Go to Step at test point B31 (output of the shift 5.216 . register).

Incorrect message observed. Go to Step 5.223.

Correct message observed. Go to Step 5.215 .
5.215 Check the potential at test point E28 (in- \longrightarrow Lamp on. put of M gate) with the 908A test set. Set the rotary switch to TRL (+).

- Lamp off.

5.216 Place ground on test point C52 (input of \longrightarrow Scale reading 20 ± 2. Go to Step the K multivibrator). Set the rotary 5.217. switch of the 908 A test set to 500 Hz . Check the frequency at test point D36

Scale reading 0. Go to Step 5.220. (output of INV12 gate).
5.217 Check the frequency at test point D26 \longrightarrow Scale reading 20 ± 2. Go to Step (output of INV11 gate). 5.218.

Scale reading 0. Go to Step 5.220.
5.218 Check the frequency at test point $\mathrm{C} 56 \longrightarrow$ Scale reading 20 ± 2. Go to Step (output of INV5 gate). 5.219 .

Scale reading 0. Go to Step 5.220.
5.219 Check the frequency at test point $\mathrm{C} 58 \longrightarrow$ Scale reading 20 ± 2. Go to Step (output of INV10 gate). 5.228.
\rightarrow Scale reading 0. Go to Step 5.220.
5.220 Check the frequency at test point $B 35 \longrightarrow$ Scale reading $20 \pm 2 . \operatorname{Remove} \longrightarrow$ (INV12), (INV11), (INV15), or (output of RS gate). ground from C52.

Scale reading 0. Go to Step 5.221.
5.221 Check the frequency at test point $B 15 \longrightarrow$ Scale reading 20 ± 2. Go to Step
(output of T5 monopulser). 5.222
\longrightarrow Scale reading 0. Go to Step 5.605.
5.222 Check the potential at test point F37 \longrightarrow Lamp off \qquad
5.223 Release the circuits. Ground test point \longrightarrow Scale reading 0. Go to Step 5.224. C52 (input of the K multivibrator). Change the rotary switch on the $908 \mathrm{~A} \longrightarrow$ Scale reading 6.25 ± 1. Go to Step test set to 50 Hz and check the frequency 5.227. at test point C36 (output of INV1, 9, 13 gaes).
5.224 Check the frequency at test point D24 \longrightarrow Scale reading 0. Go to Step 5.225. (output of T1 monopulser).
5.225 Check the frequency at test point $\mathrm{B} 32 \longrightarrow$ Scale reading 0 . Go to Step 5.226. (output of IGC gate).

Scale reading 6.25 ± 1.
(T1) monopulser.
5.226 Check the frequency at test point $\mathrm{B} 23 \longrightarrow$ Scale reading 0 .
 (INV6), (CP0) gates - board A22. (output of INV6 gate).

Scale reading 6.25 ± 1.
(IGC) gate.
5.227 Check the frequency at test point $F 47 \longrightarrow$ Scale reading 0
(INV14), (INV15) gates - board (output of INV14, 15 gates).

Scale reading 6.25 ± 1. Go to Step 5.807.
5.228 Release the circuits. Use the 908A test \longrightarrow Lamp winks. Go to Step 5.231. set to check for a pulse at test point A17/A43 for group 0/1, respectively (output of MT0/1 monopulser). Set the Lamp remains dark. Go to Step 5.229. rotary switch to MP (+). Initiate a TA test call from the control circuit and observe the lamp on the 908 A test set.
5.229 Repeat Step 5.228 checking test point \longrightarrow Lamp winks. A55/A32 for group 0/1, respectively (output of DM0/1 gate).

Lamp remains dark. Go to Step 5.230 .

CP13, board A4/A7 for group 0/1. When replacing board A4/A7, board A6/A3 (CP9) must also be replaced since they are a matched pair. If a matched pair is not available for replacement, adjustments for the guard interval timer and the signal present detector should be checked in accordance with 6.7 and 6.8, respectively.
5.230 Repeat Step 5.228 checking test point \longrightarrow Lamp winks \qquad (DM0/DM1) gate. B11/A38 for group 0/1, respectively (output of INV3/INV4 gate).

Lamp remains dark. \qquad (INV3/INV4) gate.
5.231 Use the 908A test set to check the poten- \longrightarrow Lamp on. Go to Step 5.232. tial at test point B33 (output of INV16 gate). Change the rotary switch to TRL \longrightarrow Lamp off. Go to Step 5.233. (+).

Ground test point D52 (output of A00 gate). Check the potential at terminal 1 of the IR relay with a Hewlett-Packard de voltmeter, Model 412A or equivalent.

Potential at terminal 1 is 12 ± 1.2 volts. Go to Step 5.243. Remove ground from test point D52.

Potential at terminal 1 is near ground. Go to Step 5.241. Remove ground from test point D52.
5.241 Check the potential at test point B37 \longrightarrow Lamp off. (output of the P270 gate). With the 908A test set. Set the rotary switch to TRL (+).

Lamp on. Go to Step 5.242.
Contacts of NK, TA0/1 relays, or IR relay.
5.242 Check the potential at test point C (output of CP27 gate).

Lamp on.
 (P270) gate.
5.243 Release both the remote and control circuits. Connect oscilloscope to test point A55/A32 for group 0/1, respectively (output of DM0/DM1 gate). Originate a TA test call from the control circuit and observe the message being received. A total
\rightarrow Incorrect message received. Trouble is in remote circuit. Go to Step 4.555.

Correct message received. Go to Step 5.244 . of five marks should be received. Each mark is 5 milliseconds in duration.
5.244 Repeat Step 5.234 with the oscilloscope connected to test point C16 (output of T3 monopulser). Each mark is represented by a 10 -microsecond pulse.

Correct message observed. Go to Step 5.248.
\rightarrow Incorrect message observed. Go to Step 5.245.
5.245 Connect the oscilloscope to test point B42 (output of DMO1 gate). Repeat Step 5.234. Each mark is represented by a 5 millisecond negative going pulse.

Correct message observed. Go to Step 5.246 .

Check the potential at test point A48 (output of WI gate) with the 908A test set. Set the rotary switch to TRL (+).
\longrightarrow Lamp off. Go to Step 5.601.

STEP	ACTION RESULT	POSSIBLE TROUBLE
5.247	Check the potential at test point $\mathrm{B} 22 \longrightarrow$ Lamp on. (output of CTR160 gate).	(WI) gate. (CTR16) binary cell.
5.248	Ground test point C52. Check the fre- quency at test points C58, C56, D26, and D36 (output of INV10, INV5, INV11, andScale reading 20 ± 2. At all test points. Go to Step 5.801. INV12) with the 908 A test set. Set the rotary switch to 500 Hz.	
5.249		
5.250		CTK relay, hold magnet, select magnet, CT_ relay. Trunk check failure, TIS relay.
5.251	Check the RL2 relay.	Contact in RL2 locking path. RL2 relay, contacts in RL2 operate path.
5.3 T	TRT Lamp (Service Request Calls)	
5.301	Block the RL1 relay normal. Initiate a \qquad ABK operated. Go to Step 5.336. TA test call from the remote circuit. Observe the ABK relay. ABK did not operate. Go to Step 5.302.	
5.302	Check the A and B relays. \quadA and B relays check on a 2-out-of-5 basis. A and B relays do not check on a 2 - out-of-5 basis. Go to Step 5.303.	ABK relay, contact of SRC2.

5.303 Check the RTR relay. \longrightarrow RTR operated. Go to Step 5.319.

RTR not operated. Go to Step 5.304.
5.304 Check the SRC1 relay. $\longrightarrow \longrightarrow \begin{aligned} & \text { SRC1 operated. Go to Step } 5.305 . \\ & \\ & \text { SRC1 not operated. Go to Step } 5.306 .\end{aligned}$
5.305 Check the PP relay

$\rightarrow P$ operated.

RTR, SRC2 relays. PP not operated. Go to Step 5.314.
5.306 Check the potential at test point F56/ \longrightarrow Lamp on. Go to Step 5.307. F46 for group 0/1, respectively (output of SR0/SR1 gate). \quad Lamp off. Go to Step 5.308.
5.307 Check the potential at test point D34/ \longrightarrow Lamp on.
 (SR00/SR10) gate. B41 for group 0/1, respectively (output of SR00/SR10 gate). \quad Lamp off. ISR0/ISR1, SR0/SR1, SRC1 relays.
5.308 Check the potential at test point $D 44 / \longrightarrow$ Lamp on. Go to Step 5.317. D54 for group 0/1, respectively (output of PP0/PP1 flip-flop).

Lamp off. Go to Step 5.309.
5.309 Check the potential at test point B12/ \longrightarrow Lamp on. Go to Step 5.313. B51 for group 0/1, respectively (output of SRG0/SRG1 gate).
\rightarrow Lamp off. Go to Step 5.310
5.310 Check the potential at test point B23 \longrightarrow Lamp on. Go to Step 5.311. (output of INV6 gate).
\longrightarrow Lamp on. Go to Step 5.311.
5.312 Check the potential at test point A58/ \longrightarrow Lamp on.

(SR0/SR1) flip-flop.
B21 for group 0/1, respectively (output of SR0/SR1 flip-flop).
\rightarrow Lamp off.
 SRG0/SRG1) gate.
5.313 Check the potential at test point D15/ \longrightarrow Lamp on. \qquad (SR0/SR1) flip-flop. D25 for group 0/1, respectively (input of SR0/SR1 gate).
\rightarrow Lamp off. (SR0/SR1) gate.
5.314 Check the potential at test point A21/ \longrightarrow Lamp on. Go to Step 5.315. B43 for group 0/1, respectively, with the 908A test set (output of PP0/PP1 gate). Lamp off. Go to Step 5.317. Set the rotary switch of the 908A test set to TRL (+).
5.315 Check the potential at test point $B 33 \longrightarrow$ Lamp on. Go to Step 5.316. (output of INV16 gate).

(PP), (INV16) gates - board A29.
5.316 Check the potential at test point B52 \longrightarrow Lamp on. (output of PP0 gate). \qquad (PP0) gate.
\rightarrow Lamp off. IPP, PP relays.
5.317 Use the 908A test set to check for pulses \longrightarrow Lamp winks. \longrightarrow (PP0/PP1) flip-flop. out of the (MT0/MT1) monopulsers. Set the rotary switch to MP $(+)$ and origi- \longrightarrow Lamp remains dark. Go to Step nate a TA test call from the remote cir5.318 cuit. Check for pulses at test point A17/ A43 (for group 0/1, respectively).
5.318 Repeat Step 5.317 checking test point \longrightarrow Lamp winks A55/A32 for group 0/1, respectively (output of DM0/DM1 gate).

Lamp remains dark. Go to Step 5.319.
CP13, board A7/A4 for group 0/1. When replacing board A7/A4, board A8/A5 must also be replaced since they are adjusted as a matched pair. If a matched pair is not available for replacements, CP13 and CP9 must be checked in accordance with 6.7 and 6.8.
5.320 Repeat Step 5.319 checking the message \rightarrow Correct message observed Go at test point C16 (output of T3 monopulser). A total of four marks should be observed. Step 5.333.
-Incorrect message observed. Go to Step 5.321 .
5.321 Repeat Step 5.319 checking the message \longrightarrow Correct message observed. Go to being received at test point B 42 (output of DMO1 gate). Step 5.322.
\rightarrow Incorrect message observed.
5.322 Check the potential at test point A48 \longrightarrow Lamp off. Go to Step 5.323. with the 908A test set (output of WI gate). Set the rotary switch to TRL (+).
\rightarrow Lamp on. Go to Step 5.331.
5.323 Check the trouble record card for counter phase.

Counter has not been advanced. Go to Step 5.324.
\rightarrow Counter has been advanced to Phase 11. Go to Step 5.608.
5.324 Check the potential at test point $B 13 \longrightarrow$ Lamp off. Go to Step 5.325. with the 908A test set (output of SRO1 gate). Set the rotary switch to TRL (+).
\rightarrow Lamp on. (SRO1) gate.
5.325 Check the potential at test point C44 \longrightarrow Lamp off. Go to Step 5.326. (output of CKT1 gate). Lamp on. Go to Step 5.237.
5.326 Check the potential at test point C32 \longrightarrow Lamp off. Go to Step 5.328. (output of CP22 gate).

Lamp on. \qquad (CP22) gate.
5.327 Check the potential at test point C35 \longrightarrow Lamp off. Go to Step 5.330. (output of INV7 gate).

Lamp on. \qquad
5.328 Check the potential at test point C42 \longrightarrow Lamp on. Go to Step 5.329. (output of CC2 gate).

Lamp off.
(CC2) gate.
 RESULT

POSSIBLE TROUBLE
5.338 Check the TUK relay

TUK operated.
Hold magnet, HMK relay.
TUK has not operated.
T_{-}, U_{-}, UA relays, TUK relay.
5.339 Check the EP relay.
 EP operated. Go to Step 5.346.

EP has not been operated. Go to Step 5.340 .
5.340 Check the potential at test point C32 with \longrightarrow Lamp on. Go to Step 5.345. the 908A test set (output of CP22 gate). Set the rotary switch to TRL $(+) . \quad \longrightarrow$ Lamp off. Go to Step 5.341.
5.341 Check the trouble record card for counter \longrightarrow Counter has not been advanced be-
phase. yond counter phase 11. Go to Step 5.342.

Counter advanced but did not stop in counter phase 22. Go to Step 5.708.
5.342 Check the potential at test point F54 (in- \longrightarrow Lamp off. Go to Step 5.343. put of CKT gate).
\rightarrow Lamp on. \qquad SS relay.
5.343 Check the potential at the test point B54 \longrightarrow Lamp off. (output of CKT gate).

Lamp on. Go to Step 5.344 .
5.344 Check the potential at test point C44 \longrightarrow Lamp on. \qquad (CKT1) gate. (output of CKT1 gate).

C44 \longrightarrow Lamp on. \longrightarrow Lamp off. Go to Step 5.326.
5.345 Check the potential at test point $\mathrm{C} 28 \longrightarrow$ Lamp off. \qquad SRC1 contact, IEP or EP relay. (output of P220 gate).
\longrightarrow Lamp on. (P220) gate.
5.346 Check the TA0/1 relay for group 0/1, re- \longrightarrow TA0/1 relay operated. Go to Step spectively. 5.355 .

TA0/1 relay has not been operated.
Go to Step 5.347.

RESULT

OL0/1 not operated
 OL0/1 relay. spectively.

OL0/1 operated. Go to Step 5.348 .

Check the frequency at terminal 1 of the Scale reading greater than 10 \qquad False ground on OLA0/1. FS0/FS1 filter for group 0/1, respectively. Use the 908 A test set with the rotary switch set to 5000 Hz .
5.349 Check the potential at test point A26/ \longrightarrow Lamp on. \square ITA0/1 relay. False ground on A52 (for group $0 / 1$, respectively) with the 908A test set (output of STA0/STA1 gate). Set the rotary switch to TRL (+).
5.350 Check the frequency at test point A25/ \square Scale reading 0 \square Board A7/A4 for group 0/1, respectively. When replacing board A7/A4, board A8/A5 must also be replaced since they are a matched pair. Otherwise, replacements should be checked in accordance with 6.7 and 6.8.
5.351 Release the remote and control circuits. Connect oscilloscope to test point A11 (input of M0/M1 modulator). Initiate a service request call from the remote circuit information sent to the remote circuit. A total of five marks should be observed. Each mark is 5 milliseconds in duration.

Correct message observed. If trouble check was started at the remote circuit, go to Step 5.901. If trouble check was started in control circuit, go to Step 4.519.

No message observed. Go to Step 5.352 .

Partial or incorrect message sent. Go to Step 5.801.
5.353 Connect the 908A test set to test point C26 (output of INV1, 9, 13 gates). Ground test points C52 (input to clock) and F54 (input to CKT gate). Set the rotary switch of the 908 A test set to

Scale reading 6.25 ± 1.0 Go to Step 5.801 . 50 Hz and check the frequency at test point C26.
5.354 Check the frequency at test point D24 \longrightarrow Scale reading 0
5.354 Check the frequency at te
(output of T1 monopulser).

Scale reading 0. Go to Step 5.354 .

Scale reading 6.25 ± 1.0
(T1) monopulser.
(INV1), (INV9), (INV13) gates board B11.
5.355 Remove the block from the RL1 relay.
 RL1 does not operate \square RL1 relay.

RL1 operates and releases. Go to Step 5.101.

RL1 operates and does not release.
Go to Step 5.101.

5.4 RSFO/1 Lamp (Remote Signal Failure)

5.401 Initiate a TA test call from the control \longrightarrow TA0/1 relay not operated in the circuit to group 0/1, respectively. Check the TA0/1 relay in the group that is not group not being served. Go to Step being served. 5.402 .

TA0/1 relay operated in group not being served. Go to Step 5.406.
5.402 Check the potential at test point A27 if \longrightarrow Lamp off. Go to Step 5.405. group 0 is not being served or at test point A53 if group 1 is not being served.

Lamp on. Go to Step 5.403. Use the 908 A test set with the rotary switch set to TRL (+).
5.403 Check the frequency at test point A25/A51 for group 0/1, respectively (group not being served). Use the 908A test set with the rotary switch set to 5000 Hz and the slide switch set to AF.
5.404

Check the frequency at terminal 1 of th FSO/1 filter (group not being served).
\rightarrow Scale reading greater than 10 . \qquad
Scale reading 0 . Go to Step 4.577. (For remote circuit not being served.) OLA0/1 relay.
5.405 Check the potential at test point A26/ \longrightarrow Lamp off A52 for group 0/1, respectively (group not being served). Set the rotary switch of the 908A test set to TRL (+).

RESULT

POSSIBLE TROUBLE

CP13—board A7/A4 for ground 0/1. When replacing A7/A4 (CP13), board A8/A9 (CP9) must also be replaced as they are a matched pair. If a matched pair is not available, adjustments must be checked in accordance with 6.7 and 6.8.

CP13-board A7/A4 for group 0/1. When replacing A7/A4 (CP13), board A8/A5 (CP9) must also be replaced as they are a matched pair. If a matched pair is not available, adjustments must be checked in accordance with 6.7 and 6.8.

ITA0/1, TA0/1 relays; TM6 timer.
5.406 Check the type of call on which an RSF \longrightarrow RSF occurs on service request calls. \longrightarrow Contact of EP, SCR1 relays; TM6 indication occurs.
timer.

RSF occurs on terminating-type calls. Go to Step 5.407.

Both TA0 and TA1 are operated \square Faulty TM6 timer, contact on TA0/1 relay.

TA0/1 relay not operated in group
being served. Go to Step 5.408 .
5.408 Check the frequency at test point $\mathrm{A} 25 / \longrightarrow$ Scale reading 10 ± 3. Go to Step A51 for group 0/1, respectively (group being served). Use the 908A test set with the rotary switch set to 5000 Hz and the slide switch set to AF.
5.409 Check the frequency at terminal 1 of the FS0/1 filter (group being served).
5.409 .

Scale reading 0. Go to Step 5.410.

Scale reading greater than 10 . Go to Step 4.557.

Scale reading 0 .

5.410 Check the potential at test point A27/ \longrightarrow Lamp on. Go to Step 5.411. A53 for group 0/1, respectively (group being served). Use the 908A test set with \longrightarrow Lamp off. the rotary switch set to TRL $(+)$.
\qquad CP13-board A7/A4 for group 0/1. When replacing A7/A4, board A8/ A5 (CP9) must also be replaced as they are a matched pair. If a matched pair is not available, adjustments must be checked in accordance with 6.7 and 6.8 .
5.411 Check the potential at A26/A52 for \longrightarrow Lamp on. group 0/1, respectively (output of STA0/ STA1 gate).

CP13-board A7/A4 for group 0/1. When replacing A7/A4, board A8/ A5 (CP9) must also be replaced as they are a matched pair. If a matched pair is not available, adjustments must be checked in accordance with 6.7 and 6.8 . ITA0/1, TA0/1 relays.

5.5 SF Lamp (Signal Failure)

5.501 Check OL0/1 relay. \square OL0/1 operated. Go to Step 5.502

OL0/1 normal. Go to Step 5.503.
5.502 Check OP relay. \longrightarrow OP relay operated

\longrightarrow	Contact of OP relay, false ground on SF0/1 relay.
	Contact on OL0/1 relay, OP relay
faulty.	

Contact of OP relay, false ground on SF0/1 relay.
faulty.
5.503 Check the frequency at test point $\mathrm{A} 25 / \longrightarrow$ Scale reading greater than 10 . Go to A51 for group 0/1, respectively. Use the 5.504. 908A test set with the rotary switch set to 5000 Hz .

Scale reading 0. Go to Step 5.506 .
5.504 Check the potential at test point A27/ \longrightarrow Lamp off. Go to Step 5.505. A53 for group 0/1, respectively. Use the 908A test set with the rotary switch set \quad Lamp on. Go to Step 5.911. to TRL (+).
5.505 Check the potential at test point A26/ \longrightarrow Lampon. \longrightarrow ITA0/1 relay, false ground on A52. \qquad TA0/1 relay.
(STA0/1) gate - CP13 - board A7/A4 for group 0/1. When replacing A7/A4, board A8/A5 (CP9) must also be replaced as they are a matched pair. If a matched pair is not available, adjustments must be checked in accordance with 6.7 and 6.8.
5.506 Check the frequency at terminal 1 of the \longrightarrow Scale reading greater than 10 . Go to FS0/FS1 filter for group 0/1. remote circuit Step 4.577.

Scale reading $0 . \longrightarrow$ OLA0/1 relay.

5.6 Clock and Clock Control Check

5.601 Ground test point C52 (input to K mul- \longrightarrow Scale reading 20 ± 2. Go to Step tivibrator). Check the frequency at test point C43 (output of P8 binary cell) with the 908 A test set. Set the rotary switch 5.605 . to 500 Hz and the slide switch to DF.
5.602 Check the frequency at test point $\mathrm{C} 13 \longrightarrow$ Scale reading 32 ± 2. Go to Step (output of K multivibrator). Set the rotary switch to 5000 Hz . 5.603 .

Scale reading 0. Go to Step 5.602.
\square
Scale reading 0
5.603 Check the frequency at test point $\mathrm{C} 23 \longrightarrow$ Scale reading 32 ± 2. Go to Step (output of CIG gate). 5.604.

Scale reading 0
(CIG) gate.
5.604 Check the frequency at test point $\mathrm{C} 15 \longrightarrow$ Scale reading $8 \pm .8 . \longrightarrow$ (P4), (P8) binary cell boards.
(output of P21 gate).

Scale reading $0 . \longrightarrow(\mathrm{P} 4),(\mathrm{P} 8)$ binary cell boards.

Shift Pulse Check

5.605 Check the frequency at test point B15 \longrightarrow Scale reading 0. Go to Step 5.606 . with the 908 A test set (output of T5 monopulser). Set the rotary switch to 500 Hz_{z} and the slide switch to DF. Ground test point C52 (input to K multivibrator).
5.606 Check the frequency at test point $\mathrm{B} 14 \longrightarrow$ Scale reading 0. Go to Step 5.607. (output of PG1 gate).

Scale reading 20 ± 2. Go to Step 5.608.
\longrightarrow Scale reading 0. Go to Step 5.607.
\longrightarrow Scale reading 20 ± 2. Scale reading $20 \pm 2 . \longrightarrow \mathrm{T} 5$ monopulser, SP capacitor.
5.607 Check the frequency at test points $\mathrm{C} 13, \longrightarrow$ Scale reading equal to or greater \longrightarrow (PG1) gate. C34, C24, C33, and C43 (inputs to PG1 gate). than 20 ± 2 at all test points.
\rightarrow Scale reading 0 at any test point. $\longrightarrow(\mathrm{K})$ multivibrator or binary cell associated with test point.

Write Pulse Check

5.608 Ground test points A48, B42, and C52. \longrightarrow Scale reading 0. Go to Step 5.609. Check the frequency at test point B45 with the 908A test set (output of WG gate). Set the rotary switch to 500 Hz

Scale reading 20 ± 2. Remove $\longrightarrow(\mathrm{T} 3)$ monopulser. ground from all test points. and the slide switch to DF.
5.609 Check the frequency at test point $B 55 \longrightarrow$ Scale reading 0. Go to Step 5.610. (output of INV8 gate).

Scale reading $20 \pm 2 . \longrightarrow(W G)$ gate.

5．610 Check the frequency at test point $\mathrm{C} 54 \longrightarrow$ Scale reading 0 ．Go to Step 5.611 （output of PG2 gate）．

Scale reading 20 ± 2 ．Remove \longrightarrow（INV8）gate． ground from all test points．

5．611 Check the frequency at test points $\mathrm{C} 13, \longrightarrow$ Scale reading equal to or greater \longrightarrow（PG2）gate． C25，C15，C33，and C43（inputs to PG2 gate）． than 20 ± 2 at all test points．Re－ move ground from all test points．
\rightarrow Scale reading 0 at any test point．$\longrightarrow(\mathrm{K})$ multivibrator or binary cell as－ Remove ground from all test points．sociated with the test point．

Counter Advance Check

5．612 Check the frequency at test point B34 \longrightarrow Scale reading 0．Go to Step 5．613． with the 908A test set（output of T4 monopulser）．Set the rotary switch to 500 Hz and the slide switch to DF． Ground test point C52（input to K multi－ vibrator）． Scale reading $20 \pm 2 \longrightarrow$ Clock and clock control operative point at which trouble check started and repeat tests．

5．613 Check the frequency at test point B24 \longrightarrow Scale reading 0．Go to Step 5．614． （output of PG3 gate）．

Scale reading equal to or greater $\longrightarrow \mathrm{T} 4$ monopulser or CA capacitor． than 20 ± 2 at all test points．Re－ move leads from all test points．

5．614 Check the frequency at test points $\mathrm{C} 13, \longrightarrow$ Scale reading equal to or greater C34，C15，C33，and C43（inputs to PG3 than 20 ± 2 at all test points．Re－ gate）． move leads from all test points．

Scale reading 0 at any test point．Go \longrightarrow（PG3）gate． to Step 5.601.

5．7 Clock Pulse Counter Check
5．701 Ground test point C52（input to K multi－\longrightarrow Scale reading of 50 ± 5 ．Go to Step
vibrator）．Check the frequency at test point C11 with the 908A test set（output of CTR21 gate）．Set the rotary switch to 5．703．

50 Hz and the slide switch to DF．
5.702 Check the frequency at test point B34 (output of T4 monopulser). Set the rotary switch to 500 Hz .

Scale reading 0. Go to Step 5.612 .
5.703 Check the frequency at test point $\mathrm{B} 48 \rightarrow$ Scale reading 12.5 ± 1.5. Go to Step (output of CTR81 gate).
5.704

Scale reading 0
(CTR4), (CTR8) binary cell boards.
5.704 Check the frequency at test point C31 \longrightarrow Scale reading $6.25 \pm .5$ end of test. (output of CTR161 gate).

Remove ground from test point (C52).

Scale reading 0 .
5.705 Ground test point C52 and check the fre- \longrightarrow Scale reading equal to or greater \longrightarrow Board A22. quency at test points B22, B57, C21, B18, and B47 (inputs to CP0 gate) with the 908 A test set. Set the rotary switch to 50 Hz .
than $6.25 \pm .5$ at all test points.

Scale reading 0 at any test point. Go to Step 5.701.
5.706 Ground test point C52 and check the frequency at test points $\mathrm{B} 58, \mathrm{C} 11, \mathrm{C} 21, \mathrm{~B} 48$, and B22 (inputs to CP11 gate) with the 908A test set. Set the rotary switch to 50 Hz .

Scale reading equal to or greater \longrightarrow Board A20. than $6.25 \pm .5$ at all test points.
\longrightarrow Scale reading 0 at any test point. Go to Step 5.701
5.707 Ground test point C52 (input to K multi- \longrightarrow Scale reading equal to or greater \longrightarrow Board A21. vibrator). Check the frequency at test points B18, C31, C21, B57, and B47 (inputs to CP11 gate) with the 908A test set. Set the rotary switch to 50 Hz .
than $6.25 \pm .5$ at all test points.
Scale reading 0 at any test point. Go to Step 5.701.
5.708 Ground test point C52 (input to K multivibrator). Check the frequency at test points B47, C11, C31, B18, and B16 (inputs to CP22 gate) with the 908A test set. Set the rotary switch to 50 Hz .

Scale reading equal to or greater $\longrightarrow(\mathrm{CP} 22)$ gate.
than $6.25 \pm .5$ at all test points.
Scale reading 0 at any test point. Go to Step 5.701.

possible trouble

5.709 Ground test point C52 (input to K multi vibrator). Check the frequency at test points C31, C21, C11, B58, and B48 (inputs to CP27 gate) with the 908A test set. Set the rotary switch to 50 Hz .

Scale reading equal to or greater \longrightarrow (CP27) gate. than $6.25 \pm .5$ at all test points.

Scale reading 0 at any test point. Go to Step 5.701.

5.8 Shift Register Check

5.801 Check the input to the shift register with the 908 A test set. Set the rotary switch to TRL (+). Ground test point C13 (output of K multivibrator) and initiate a TA test call from the control circuit. Check the potential at test points F11, F21, F31, F41, and F51 for "A" digits 7, $4,2,1$, and 0 , respectively. Check the potential at test point F12, F22, F32, F42, and F52 for " B " digits 7, 3, 2, 1, and 0 , respectively. Check the potential at test Lamp does not light at associated test point. Go to Step 5.802.
\longrightarrow Lamp lights at associated test point. \longrightarrow Contacts of LT_, LU_, or LI relay Remove ground from test point C13. if line information is missing. Contacts of T1SR, DT1, TRC2, TK_, G0/1 or E/OT0/1 relay if trunk information is missing. Contacts of D1S 02/12, RSD 0/1, SD 0/1, or TER $01 / 11$ relay if class of call information is missing. points F13, F23, F33, F43, and F53 for "C" digits 7, 4, 2, 1, and 0 , respectively.
5.802 Connect the 908A test set to test point \longrightarrow Scale reading $6.25 \pm .5$. Go to Step D24 (output of T1 monopulser). Set the rotary switch to 50 Hz . Connect test points F15 and C52 to ground.
5.804 .

Scale reading 0. Go to Step 5.803 .
5.804 Check the frequency at test point $\mathrm{C} 26 \longrightarrow$ Scale reading $6.25 \pm .5$. Go to Step (output of INV1, 9, 13 gates). 5.805. Remove ground leads from the circuit.

Scale reading 0.
(INV1), (INV9), (INV13) gates, board B11.
5.805 Repeat 5.801 this time checking the po- \longrightarrow Lamp lights at associated test point. tential at test points C46, C36, C27, C17, and C47 for "A" digits 7, 4, 2, 1, and 0, respectively. Check the potential at test points C37, C18, C57, C48, and C28 for " B " digits 7, 4, 2, 1, and 0 , respectively. Check potential at test points D21, D11, D41, D31, and D12 for "C" digits 7, 4, 2, 1 , and 0 , respectively. Set the rotary switch on the 908A test set to TRL (+).
5.806 Check potential at test points $\mathrm{D} 42, \mathrm{D} 32, \longrightarrow$ Lamp lights at associated test point. \longrightarrow Relay driver associated with failing D22, D13, and D52 for "A" digits 7, 4, 2, 1 , and 0, respectively. Check potential at test point D43, D33, D23, D14, and D53 for " B " digits 7, 4, 2, 1, and 0 , respectively.
5.807 Check that the message is being shifted in the following manner. Ground test points A48 (output of WI gate), B42 (output of DMO1 gate), and C52 (input Go to Step 5.806.
\rightarrow Lamp does not light at associated \longrightarrow Shift register call associated with test point. failing digit. to K multivibrator). Check the frequency at test point B45 with the 908A test set. Set the rotary switch to 500 Hz and the slide switch to DF.
5.808 Check the frequency at test point C (output of T3 monopulser).

Scale reading 0 .

(T3) monopulser.
5.809 Check the frequency at test point B (output of T5 monopulser). 5.809 .

\qquad (T5) monopulser. (output of RS gate).
\rightarrow Scale reading 20 ± 2. Go to Step 5.810 .
5.810 Check the frequency at test point B3

5.819 Check the frequency at test point D58 \longrightarrow Scale reading 0. Go to Step 5.827 . (output of SC1 flip-flop).

Scale reading 20 ± 2. Go to Step 5.820 .
5.820 Check the frequency at test point $\mathrm{D} 45 \longrightarrow$ Scale reading 0 . Go to Step 5.828 . (output of SC2 flip-flop).

Scale reading 20 ± 2. Go to Step 5.821 .
5.821 Check the frequency at test point $D 16 \longrightarrow$ Scale reading 0 . Go to Step 5.829. (output of SC0 flip-flop).

Scale reading 20 ± 2. Go to Step 5.822.
5.822 Block the EP relay normal. Check the \longrightarrow Scale reading 0. Go to Step 5.830. frequency at test point B31 (output of OS flip-flop).
\rightarrow Scale reading 20 ± 2. Remove block from EP relay. Shift register is operative.
5.823 Check the frequency at terminal 3 of \longrightarrow Scale reading 0 . Remove leads from \longrightarrow (SA7), (SA4) shift register boards. the B2 connector (input to SA2 flip-flop). A48, B42, and C52.

Scale reading 20 ± 2. Remove leads \longrightarrow (SA2), (SA1) shift register boards. from A48, B42, and C52.
5.824 Check the frequency at terminal 3 of the B3 connector (input to SA0 flip-flop).

Scale reading 0 . Remove leads from \longrightarrow (SA2), (SA1) shift register boards. A48, B42, and C52.
\rightarrow Scale reading 20 ± 2. Remove leads $\longrightarrow(\mathrm{SA} 0)$, (SB7) shift register boards. from A48, B42, and C52.
5.825 Check the frequency at terminal 3 of the B4 connector (input to SB4 flip-flop).

Scale reading 0 . Remove leads from \longrightarrow (SA0), (SB7) shift register boards. A48, B42, and C52.

Scale reading 20 ± 2. Remove leads $\longrightarrow(\mathrm{SB} 4),(\mathrm{SB} 2)$ shift register boards. from A48, B42, and C52.

B5 connector (input to SB1 flip-flop).

Scale reading 0 . Remove leads from \longrightarrow (SB4), (SB2) shift register boards. A48, B42, and C52.
\rightarrow Scale reading 20 ± 2. Remove leads $\longrightarrow(\mathrm{SB} 1)$, (SB0) shift register boards. from A48, B42, and C52.
5.827 Check the frequency at terminal 3 of the \longrightarrow Scale reading 0 . Remove leads from \longrightarrow (SB1), (SB0) shift register boards B6 connector (input to SC7 flip-flop). A48, B42, and C52.
\rightarrow Scale reading 20 ± 2. Remove leads \longrightarrow (SC7), (SC4) shift register boards. from A48, B42, and C52.
5.828 Check the frequency at terminal 3 of the \longrightarrow Scale reading 0 . Remove leads from \longrightarrow (SC7), (SC4) shift register boards B7 connector (input to SC2 flip-flop). A48, B42, and C52.
\rightarrow Scale reading 20 ± 2. Remove leads \longrightarrow (SC2), (SC1) shift register boards. from A48, B42, and C52.
5.829 Check the frequency at terminal 3 of the \longrightarrow Scale reading 0 . Remove leads from \longrightarrow (SC2), (SC1) shift register boards. B8 connector (input to SC0 flip-flop). A48, B42, and C52.
\rightarrow Scale reading 20 ± 2. Remove leads $\longrightarrow(\mathrm{SC} 0),(\mathrm{BS})$ shift register boards. from A48, P42, and C52.
5.830 Check the frequency at terminal 17 of the \longrightarrow Scale reading 0 . Remove leads from \longrightarrow (SC0), (BS) shift register boards. A10 connector (input to OS flip-flop). A48, B42, and C52.
\longrightarrow Scale reading 20 ± 2. Remove leads \longrightarrow (OS) flip-flop, (RLS) gate.
from A48, B42, and C52.
5.9 Signal Circuit Check
5.901 Send Circuit Check: Use the 908 A test \longrightarrow Scale reading 40.5 ± 2. Go to Step set and check the frequency at terminal 1 of the FS0/1 filter for group 0/1, respectively. Set the rotary switch to 2500 Hz and the slide switch to AF.
5.902.
\rightarrow Scale reading 44.5 ± 2. Go to Step 5.904 .

POSSIBLE TROUBLE

5.902 Change the rotary switch of the 908 A test set to TRL $(+)$ and measure the potential at test point A11 (input to modulator).

Lamp on. \square Modulator board in position A1/A2 for group $0 / 1$, respectively. When replacing the modulator board, check adjustments in accordance with 6.6.
5.903 Check the potential at test point C4 (input of INV2 gate).
\rightarrow Lamp off. \qquad (INV2) gate.
5.904 Change the rotary switch of the 908 A test set to TRL (+) and measure the potential at test point A11 (input to modulator).

\rightarrow Lamp on. Go to Step 5.905.
\rightarrow Lamp off. \qquad Modulator board in position A1/A2 for group $0 / 1$. When replacing modulator board, check adjustments in accordance with 6.6.
5.905 Check the potential at test point C45 \longrightarrow Lamp on. (INV2) gate. (output of M gate).
\rightarrow Lamp off. Go to Step 5.907.
5.906 Check the frequency at terminal 17 of \longrightarrow Scale reading 0 . the A1/A2 connector for group 0/1, respectively.
\longrightarrow Scale reading $0 . \longrightarrow$

Modulator board in position A1/A2 for group $0 / 1$. When replacing the modulator board, check adjustments in accordance with 6.6.

Contacts 13 and 12 of OLA0 relay, contacts 23 and 22 of OLA1 relay for group 0 or 1 , respectively - or contacts associated with OL0/1 or OLA0/1 relays.
5.907 Use an electronic ac voltmeter, HewlettPackard Model 400 H or equivalent, to measure the potential across test points E32 and E42 for group 0, respectively, or E34 and E44 for group 1, respectively (output of TA/TB coil).
\square *Reading is $-18 \mathrm{dBm} \pm 7 \mathrm{~dB}+$ measured loss of the transmission facility. Go to Step 4.911.
\rightarrow Reading is less than $-25 \mathrm{dBm}+$ measured loss of the transmission facility. Go to Step 5.908.

RESULT

POSSIBLE TROUBLE

 justments in accordance with 6.62.
5.911 Receive Circuit Check: Use an electronic ac voltmeter, Hewlett-Packard Model 400 H or equivalent, to measure the potential across test points E37 and E47 for group 0, respectively, or E35 and E45 for group 1, respectively (input to TC/TD coil).
5.912 Check the ac potential cross test points $\longrightarrow{ }^{*}$ Reading is $-18 \mathrm{dBm} \pm 7 \mathrm{~dB}$. Go to E17 and E27 for group 0 or E15 and E25 for group 1, respectively (input to T0/T1 transformer). Step 5.813.
\longrightarrow Reading is less than -25 dBm . \qquad CRE, CRF diodes or TC repeat coil for group 0 or CRG, CRH diodes or TD repeat coil for group 1.

[^1]5.913 Check the ac potential at terminal 15 of \longrightarrow Reading is less than -25 dBm . the A6/A3 connector for group 0/1, respectively.
\rightarrow Reading is $-18 \mathrm{dBm} \pm 7 \mathrm{~dB}$. Go to Step 5.914.
5.914 Check the ac potential at terminal 3 of \longrightarrow Reading is $-21 \mathrm{dBm} \pm 7 \mathrm{~dB}$. Go to the FR0/1 filter to ground for group $0 / 1$, respectively. Step 5.916.
\rightarrow Reading is less than -28 dBm . Go to Step 5.915.
5.915 Check the ac potential at terminal 1 of \longrightarrow Reading is $-21 \mathrm{dBm} \pm 7 \mathrm{~dB}$. the FR0/1 filter to ground for group 0/1, respectively.

\qquad FR0/1 filter for group 0/1.
Limiter board. When replacing board C19 (A6/A3 for group 0/1), board CP13 (A7/A4 for group 0/1) should also be replaced since they are each a matched pair. If a matched pair is not available, adjustments must be made in accordance with 6.7 and 6.8 for the guard interval timer and the signal present detector, respectively.
5.916 Check the ac potential from test points A35/A12 to ground for group 0/1, respectively (output of limiter).

Reading is less than 7.0 volts RMS.
\rightarrow Reading is greater than or equal to 7.0 volts. Go to Step 5.917.
5.917 Release the circuits and ground test point \longrightarrow Reading is 25.4 ± 2. Go to Step B23 (output of M gate) at the remote circuit. Use the 908A test set to check the frequency at test point A54/A31 (limiter test point) for group 0/1, respectively, in 5.918 .

Input transformer. When replacing board CP13 (A7/A4 for group 0/1), board CP9 (A6/A3 for group 0/1) should also be replaced since they are each a matched pair. If a matched pair is not available adjustments must be made in accordance with 6.7 and 6.8 for the guard interval timer and the signal present detector, respectively.

6. ADJUSTMENTS (CIRCUIT PACK) (USING HEWLETT-PACKARD 522B ELECTRONIC COUNTER)

6.1 Clock and Clock Control

6.11 Connect a 115 -Vac power source to Hewlett-Packard 522B electronic counter or equivalent, and operate the POWER switch to ON. Set the controls as follows:

control	position
TRIGGER INPUT	COM
TRIGGER SLOPE (START)	+
TRIGGER LEVEL VOLTS (START)	+3
TRIGGER SLOPE (STOP)	-
TRIGGER LEVEL VOLTS (STOP)	+1
TIME LNIT	MILLISEC
STANDARD FREQUENCY COLNTER	100 kHz
FUNCTION SELECTOR	TIME INTERVAL
DISPLAY TIME	MIN

Using the cord supplied with the 522 B counter, connect one end to the START jack of the 522B counter. Connect the other end to the B34 terminal of FS14 clock and clock control circuit of the line concentrator No. 2A remote circuit or the C13 terminal of FS32 clock and clock control circuit of the line concentrator No. 2A control circuit.
6.12 Using any cord, apply ground potential to the B36 terminal of FS14 clock and clock control circuit (remote circuit) or to the C52 terminal of FS32 clock and clock control circuit (control circuit). Operate the RESET switch on the Hewlett-Packard 522 B counter. The reading of the 522 B counter should read between 150 and 160 microseconds. This is accomplished when the last digit column just. flashes between 5 and 6 . Adjust R1 on CP6, location A16, to attain 150 to 160 microseconds if necessary. (R1 has 25 revolutions from one extreme to another.) At the Hewlett-Packard 522B counter, operate the RESET
switch between each adjustment. Use the card extender ED-94866-() for access to the RL potentiometer on CP6.
6.13 Set the controls of the 522 B counter as follows:

CONTROL

FREQUENCY UNIT
FUNCTION SELECTOR
DISPLAY TIME
Change the cord at the Hewlett-Packard 522B counter from the START jack to the INPUT jack.
6.14 Operate the RESET switch on the

Hewlett-Packard 522 B counter. After 10 seconds, the reading of the 522 B counter should be $3200 \pm 0.5 \mathrm{~Hz}$. If the reading is not 3200 ± 0.5 Hz , adjust R 2 on CP6 to attain the required value. (R2 has 25 revolutions from one extreme to another.) At the Hewlett-Packard 522 B counter, operate the RESET switch between each adjustment. The clock frequency may not hold within ine $\pm 0.5 \mathrm{~Hz}$ tolerance once the card is inserted back in the tray. A drift of $\pm 8 \mathrm{~Hz}$ is not abnormal and should not inhibit any circuit operation. Remove all cords from the line concentrator circuit and remove the board extender.

6.2 Remote Signal Circuit Adjustment

6.21 Modulator (Remote Circuit)

6.211 Set up the controls of a Hewlett-Packard 522 B counter or equivalent as follows:

CONTROL

FREQUENCY LNIT
FUNCTION SELECTOR
DISPLAY TIME

POSITION

10 kHz
FREQUENCY
MIN

Using the proper cord, connect one end to the INPUT jack of the 522 B counter and the other end to relay (OL) contact 6 B . Using any test lead, apply ground to the A11 test point terminal of FS11 signal circuit. The reading of Hewlett-Packard 522 B counter should be $1070 \mathrm{~Hz} \pm 0.1 \mathrm{~Hz}$. If the
reading is not correct, adjust (T 1) of CP 11 , location A1, with a nonmagnetic screwdriver and operate the RESET switch between each adjustment.
6.212 Remove the ground from the A11 test point terminal. Operate the RESET switch on the 522 B counter. The reading should be exactly identical with the value obtained in 6.211.
6.213 Using a test cord, apply ground to the B23 terminal of the signal circuit. Operate the
RESET switch once on the Hewlett-Packard 522B counter. The reading should be $1270 \pm 0.1 \mathrm{~Hz}$. If the reading is not correct, adjust (T2) of CP11 with a nonmagnetic screwdriver and operate the RESET switch between each adjustment.
6.214 At the completion of this test, remove the ground potential from the B23 terminal and the input cord from the (OL) relay and from the 522B counter INPUT jack.

6.22 Power Amplifier (Remote Circuit)

6.221 Connect the power cord of a Hewlett-Packard 400 H ac vacuum tube voltmeter or equivalent to a 115 -Vac power source, and operate the ON switch. Allow 5 minutes to warm up. Using a pair of test cords, connect the input jacks of the Hewlett-Packard 400 H to the E12 and E22 test points of the signal circuit. After verifying the proper cross-connections with the operating company, adjust R10 of CP11 until the desired output level is $-18 \mathrm{dBm}+$ the measured loss of the transmission facility.
6.23 At the completion of test, return the power switch to OFF and remove the 115 -Vac power source and the input test cord from the Hewlett-Packard 400 H ac vacuum tube voltmeter. Remove the test cords from the E12 and E22 test points.

CROSS-CONNECTION INFORMATION OF CP11

CONNECT		TELEPHONE COMPANY
TERM.	TO	TERM.

6.3 Guard Interval Timer (Remote Circuit)

6.31 Preparation

6.311 Connect a 115 -Vac power source to the Hewlett-Packard 522B counter or equivalent, and operate the POWER switch to ON. Set the controls as follows:

control	position
TRIGGER INPUT	COM
TRIGGER SLOPE (START)	+
TRIGGER LEVEL VOLTS	+1.5
(START)	
TRIGGER SLOPE (STOP)	-
TRIGGER LEVEL VOLTS	+1.5
(STOP)	
TIME UNIT	MILLISEC
STANDARD FREQUENCY	100 kHz
COUNTED	
FUNCTION SELECTOR	TIME INTERVAL
DISPLAY TIME	

Using the cord supplied with the 522B counter, connect one end to the START jack of the 522B counter. Connect the other end to the A53 terminal of the signal circuit (FS11) (remote circuit).
6.312 Using a test lead equipped with alligator clips, connect one end to test point A13 and the other end to the A21 terminal of FS15 clock pulse counter circuit of the remote circuit.

6.32 Procedure for Test

6.321 Using a test lead, apply ground potential to the B36 terminal of FS14. The reading of the Hewlett-Packard 522B counter should be 4.06 ± 0.01 milliseconds. If the reading is different than the specified time, adjust R5 of CP13, location A 3 and operate the RESET switch between each adjustment.
6.322 At the completion of test, remove test leads from B36, A53, A13, and A21 terminals. Remove the cord from the trigger input of the 522B counter.

6.4 Signal Present Detector (Remote Circuit)

6.41 Procedure for Test

6.411 Take the control circuit out of service. This will insure that the proper signal is being received from the control circuit for test purposes. Connect the Hewlett-Packard 400 H vacuum tube voltmeter or equivalent across test points E24 and E14 (remote circuit). Plug a 5A attenuating pad in jacks R0DR and R0L1 of the FS11 signal circuit. Adjust the attenuator until a reading of -38.5 dBm or 9.1 millivolts RMS is on the Hewlett-Packard 400 H meter.
6.412 Connect a Hewlett-Packard 412A voltmeter or equivalent to test point A33. If the voltmeter reads $11-12$ volts, adjust potentiometer R2 on CP9, location A2, until the voltage changes to less than 1 volt. Then adjust potentiometer R2 in the opposite direction until the voltage just changes to the required level of $11-12$ volts. If the voltage reading is less than 1 volt at the start, potentiometer R2 is to be adjusted until the voltage just changes to $11-12$ volts. (R 2 is the 10 K potentiometer on the rear half of CP9.)
6.413 At completion of the test, remove all test leads and put both units back into service.

6.5 Discriminator (Remote Circuit)

6.51 Connect a $115-\mathrm{Vac}$ power source to the Hewlett-Packard 522B counter or equivalent, and operate the power switch to ON. Set the controls as follows:

control	position
TRIGGER INPUT	COM
TRIGGER SLOPE (START)	+
TRIGGER SLOPE (STOP)	-
TRIGGER LEVEL VOLTS (START)	+2
TRIGGER LEVEL VOLTS (STOP)	+2
TIME UNIT	MILLISEC

CONTROL POSITION
STANDARD FREQUENCY 10 kHz COUNTED

FUNCTION SELECTOR TIME INTERVAL DISPLAY TIME MIN

Using the cord supplied with the 522 B counter, connect one end to the START jack of the 522B counter. Connect the other end to terminal A44 of the FS11 signal circuit.

6.52 Procedure for Test

Initiate a TA test call from the control circuit. The 522B counter should read either (1) 5.0 ± 0.25 milliseconds, (2) 10.0 ± 0.5 milliseconds, or (3) 15.0 ± 0.5 milliseconds. Operate the RESET switch and repeat test twice. If readings are not consistently correct, adjust potentiometer R3 on CP12, location A4, remote unit discriminator.
6.53 Change the controls of the 522B counter as follows:

CONTROL
 POSITION

TRIGGER SLOPE (START)
TRIGGER SLOPE (STOP)
$+$
Operate the RESET switch on the Hewlett-Packard 522 B to clear the counter. Initiate a TA test call from the control circuit. When triggered, the counter should read (1) 5.0 ± 0.25 milliseconds, (2) 10.0 ± 0.5 milliseconds, (3) 15.0 ± 0.5 milliseconds, or (4) some other multiple of 5.0 milliseconds. If a multiple of 5.0 milliseconds is obtained, repeat until one of the first three readings is obtained. If one of the above is not obtained consistently. adjust R3 on CP12 and repeat the test in 6.52 for the positive pulse.

6.6 Control Signal Circuit Adjustment

6.61 Modulator (Control Circuit)
6.611 Set up the controls of the Hewlett-Packard 522B counter or equivalent as follows:

CONTROL	POSITION
FREQUENCY UNIT	10 kHz
FUNCTION SELECTOR	FREQUENCY
DISPLAY TIME	MIN

Using the proper cord, connect one end to the INPUT jack of the 522 B counter and the other end to (1) terminal 17 of the A1 connector if board A1 was changed or (2) to terminal 17 of the A2 connector if board A2 was changed. Using any test lead, apply ground to the All terminal of FS28 send circuit. The reading of the Hewlett-Packard 522 B counter should be $2025 \mathrm{~Hz} \pm 0.2 \mathrm{~Hz}$. If the reading is not correct, adjust (T1) of CP8, location A1 (location A2 for L2 only), with a nonmagnetic screwdriver and operate the RESET switch between each adjustment.
6.612 Remove the ground from the All terminal. Operate the RESET switch in the 522B counter. The reading should be exactly identical with the value obtained in 6.611 .
6.613 Using a test cord, apply ground potential to test point C45 of the signal circuit. Operate the RESET switch once on the Hewlett-Packard 522 B counter, and the reading should be 2225 ± 0.2 Hz . If the reading is not correct, adjust ($\mathrm{T} \overline{2}$) of CP8 with a nonmagnetic screwdriver and operate the RESET switch between each adjustment.
6.614 At the completion of this test, remove the ground potential from the C45 terminal and the input cord from terminal 17 or the A1/A2 connector and from 522B counter INPUT jack.

6.62 Power Amplifier (Control Circuit)

6.621 Connect the power cord of a Hewlett-Packard 400 H ac vacuum tube voltmeter or equivalent to a 115 -Vac power source, and operate the power switch to ON. Allow 5 minutes to warm up. Using a pair of test cords, connect the input jacks of Hewlett-Packard 400 H to the E12/E14 and E22/E24 test points (for group 0/1, respectively) of the send circuit. After verifying the proper cross-connections with the operating company, adjust R10 of CP8 until the desired output level is -18 $\mathrm{dBm}+$ the measured loss of transmission facilities.
6.63 At completion of the test, return the power switch to OFF and remove the $115-\mathrm{Vac}$ power source and the input test cord from the Hewlett-Packard 400 H ac vacuum tube voltmeter. Remove the test cords from the E12/E14 and E22/E24 test points.

CROSS-CONNECTION INFORMATION OF CP8

\left.| CONNECT | | TELEPHONE COMPANY |
| :---: | :---: | :---: |
| TERM. | TO | TERM. |$\right]$| FACILITY LOSS | | |
| :---: | :---: | :---: |
| C | H | 8 to 0 dB |
| C | F | 0 to -8 dB |
| G | H | |
| C | D | -8 to -15 dB |
| E | H | |
| F | E | -15 to -23 dB |
| G | H | |

6.7 Guard Interval Timer (Control Circuit)

6.71 Preparation

6.711 Connect a 115-Vac power source to the Hewlett-Packard 522B counter or equivalent, and operate the power switch to ON. Set the control as follows:

control	POsition
TRIGGER INPUT	COM
TRIGGER SLOPE (START)	+
TRIGGER LEVEL V OLTS	+1.5
(START)	
TRIGGER SLOPE (STOP)	-
TRIGGER LEVEL VOLTS	+1.5
(STOP)	
TIME UNIT	MILLISEC
STANDARD FREQUENCY	100 kHz
COUNTED	TIME INTERVAL
FUNCTION SELECTOR	MIN

Using the cord supplied with the 522 B counter, connect one end to the START jack of the 522B counter. Connect the other end to the A46/A23 terminal (for group 0/1, respectively) of the signal circuit (FS29).
6.712 Using a test lead equipped with alligator clips, connect one end to terminal No. 2 of CP13, location A7 (location A4 for L2 only), and the other end to test point B47 of FS33, clock pulse counter circuit of the control circuit.

6.72 Procedure for Test

6.721 Using a test lead, apply ground potential to the C52 terminal of FS29. The reading of the Hewlett-Packard 522B counter should be 4.06 ± 0.01 milliseconds. If the reading is different than the specified time, adjust R5 on CP13 and operate the RESET switch between each adjustment.
6.722 At the completion of test, remove test leads from C52, A46/A23, and B47 terminals and from terminal 2 of CP13. Remove the cord from the trigger input of the 522 B counter.

6.8 Signal Present Detector (Control Circuit)

6.81 Procedure for Test

6.811 Take the remote circuit out of service.

This will insure that the proper signal is being received from the remote circuit for test purposes. Connect the Hewlett-Packard 400 H vacuum tube voltmeter or equivalent across test points E47 and E37 or E45 and E35 for group 0/1, respectively. Plug a 5 A attenuator pad in jacks R0DR and R0LI or R1DR and R1DI (for group $0 / 1$, respectively) of the FS29 signal circuit. Adjust the attenuator until a reading of -38.5 dBm or 9.1 millivolts RMS is obtained on the Hewlett-Packard 400 H meter.
6.812 Connect a Hewlett-Packard 412A voltmeter or equivalent to the proper test terminal (A26/A52 for group 0/1). If the voltmeter reads $11-12$ volts, adjust potentiometer R2 on CP9, location A6 (location A 3 for L2 only), until the voltage changes to less then 1 volt. Then adjust potentiometer R2 in the opposite direction until the voltage just changes to the required level of 11-12 volts. If the voltage reading is less than 1 volt at the start, the potentiometer R2 is to be adjusted until the
voltage just changes to 11-12 volts. (R2 is the 10 K potentiometer on the rear half of CP9.)
6.813 At completion of the test, remove all test leads and put both units back into service.

6.9 Discriminator (Control Circuit)

6.91 Connect a $115-V a c$ power source to a Hewlett-Packard 522B counter or equivalent, and operate the power switch to ON. Set the controls as follows:

CONTROL
 POSITION
 TRIGGER INPUT (START) COM
 TRIGGER SLOPE (STOP) -
 TRIGGER LEVEL VOLTS +2 (START)
 TRIGGER LEVEL VOLTS +2 (STOP)
 TIME UNIT
 MILLISEC
 STANDARD FREQUENCY 10 kHz COUNTED
 FUNCTION SELECTOR
 TIME INTERVAL DISPLAY TIME MIN

Using the cord supplied with the 522B counter, connect one end to the START jack of the 522B counter. Connect the other end to test point A57/A34 (for group 0/1, respectively) of the FS29 receive circuit.

6.92 Procedure for Test

Initiate a TA test call from the remote circuit. The 522 B counter should read either (1) 5.0 ± 0.25 milliseconds, (2) 10.0 ± 0.5 milliseconds, or (3) 15.0 ± 0.5 milliseconds. $\bar{O} p e r a t e$ the RESET switch and repeat twice. If readings are not consistently correct, adjust potentiometer R3 on CP10, location A8 (location A5 for L2 only), control circuit discriminator.
6.93 Change the controls of the 522B counter as follows:

CONTROL

POSITION
TRIGGER SLOPE (START)
TRIGGER SLOPE (STOP)
Operate the RESET switch on the Hewlett-Packard 522B to clear the counter. Initiate a TA test call from the remote circuit. When triggered, the counter should read (1) 5.0 ± 0.25 milliseconds, (2) 10.0 ± 0.5 milliseconds, (3) 15.0 ± 0.5 milliseconds, or (4) some other multiple of 5.0 milliseconds. If a multiple of 5.0 milliseconds is obtained, repeat until one of the first three readings is obtained. If one of the above is not obtained consistently, adjust R3 on CP10 and repeat the test in 6.92 for the positive pulse.

7. ADJUSTMENTS (CIRCUIT PACK) (USING HEWLETT-PACKARD 5300A/5304A ELECTRONIC COUNTER) (HEREAFTER REFERRED TO AS THE 5304A COUNTER)

7.1 Clock and Clock Control

7.11 Connect a 115 -Vac power source to Hewlett-Packard 5304A counter. Turn ac power ON with 5304A SAMPLE RATE control. Set the controls as follows:

CONTROL

COM/SEP/CHK

ATTEN (INPUT A)
AC/DC (INPUT A)
SLOPE (INPUT A)
LEVEL (INPUT A)
ATTEN (INPUT B)
$\mathrm{AC} / \mathrm{DC}$ (INPUT B)
SLOPE (INPUT B)
LEVEL (INPUT B) MAX CLOCKWISE
T.I. A TO B/FREQ A

SAMPLE RATE

POSITION

COM

X10

AC
$+$
$20^{\prime} \mathrm{CLOCK}$ POS

X1

AC

-

$1 \mu \mathrm{sec}$
MAX CLOCKWISE

Note: None of the tests in this section require the DELAY feature found on the 5304 A counter. To disable this feature, turn the DELAY knob fully counterclockwise.

Using a BNC to BNC coaxial cable (or cord), connect one end to the INPUT A jack of the 5304A counter. Connect the other end to the B34 terminal of FS14 clock and clock control circuit of the line concentrator No. 2A remote circuit or to the C13 terminal of FS32 clock and clock control circuit of the line concentrator No. 2A control circuit.
7.12 Using any cord, apply ground potential to the B36 terminal of FS14 clock and clock control circuit (remote circuit) or to the C 52 terminal of FS32 clock and clock control circuit (control circuit).

Operate the RESET switch on the Hewlett-Packard 5304 A counter. The reading of the 5304 A counter should read between 150 and 160 microseconds. Adjust R1 on CP6, location A16, to attain 150 to 160 microseconds if necessary. (R1 has 25 revolutions from one extreme to another.) At the Hewlett-Packard 5304 A counter, operate the RESET switch between each adjustment. Use the card extender ED-94866-() for access to the RL potentiometer on CP6.
7.13 Set the controls of the 5304A electronic counter as follows:

CONTROL

POSITION
T.I. A TO B/FREQ A

10 S

COM/SEP/CHK
SEP
7.14 Operate the RESET switch on the Hewlett-Packard 5304 A counter. After 10 seconds, the reading of the 5304 A counter should be $3200 \pm 0.5 \mathrm{~Hz}$. If the reading is not 3200 ± 0.5 Hz , adjust R 2 on CP6 to attain the required value. (R 2 has 25 revolutions from one extreme to a nother.) At the Hewlett-Packard 5304A counter, operate the RESET switch between each adjustment. The clock frequency may not hold within the $\pm 0.5 \mathrm{~Hz}$ tolerance once the card is inserted back in the tray. A drift of $\pm 8 \mathrm{~Hz}$ is not abnormal and should not inhibit any circuit operation. Remove all cords from the line concentrator circuit and remove the board extender.

7.2 Remote Signal Circuit Adjustment
 7.21 Modulator (Remote Circuit)

7.211 Set up the controls of a Hewlett-Packard 5304 A counter or equivalent as follows:

CONTROL

POSITION

T.I. A T0 B/FREQ A 10S

COM/SEP/CHK SEP

Using a BNC coaxial cable (or cord), connect one end to the INPUT A jack of the 5304 A counter and the other end to relay (OL) contact 6 B . Using any test lead, apply ground to the A11 test point terminal of FS11 signal circuit. The reading of Hewlett-Packard 5304 A counter should be 1070 Hz +0.1 Hz . If the reading is not correct, adjust (T1) of CP11, location A1, with a nonmagnetic screwdriver and operate the RESET switch between each adjustment.
7.212 Remove the ground from the All test point terminal. Operate the RESET switch on the 5304 A counter. The reading should be exactly identical with the value obtained in 7.211 .

7.213 Using a test cord, apply ground to the B23

 terminal of the signal circuit. Operate the RESET switch once on the Hewlett-Packard 5304A counter. The reading should be $1270 \pm 0.1 \mathrm{~Hz}$. If the reading is not correct, adjust (T2) of CP11 with a nonmagnetic screwdriver and operate the RESET switch between each adjustment.7.214 At the completion of this test, remove the ground potential from the B23 terminal and the input cord from the (OL) relay and from the 5304 A counter INPUT A jack.

7.22 Power Amplifier (Remote Circuit)

7.221 Connect the power cord of a Hewlett-Packard 400 H ac vacuum tube voltmeter or equivalent to a $115-\mathrm{Vac}$ power source, and operate the ON switch. Allow 5 minutes to warm up. Using a pair of test cords, connect the input jacks of the Hewlett-Packard 400 H to the E12 and E22 test points of the signal circuit. After verifying the proper cross-connections with the operating company, adjust R10 of CP11 until the desired output level is $-18 \mathrm{dBm}+$ the measured loss of the transmission facility.
7.23 At completion of the test, return the power switch to OFF and remove the 115 -Vac power source and the input test cord from the Hewlett-Packard 400 H ac vacuum tube voltmeter. Remove the test cords from the E12 and E22 test points.

CROSS-CONNECTION INFORMATION OF CP11

CONNECT			TELEPHONE COMPANY FACILITY LOSS
TERM.	то	TERM.	
C		H	8 to 0 dB
C		F	0 to -8 dB
G		H	
C		D	-8 to -15 dB
E		H	
F		E	-15 to -23 dB
G		H	

7.3 Guard Interval Timer (Remote Circuit)

7.31 Preparation

7.311 Connect a 115 -Vac power source to the Hewlett-Packard 5304A counter or equivalent, and apply ac power with the 5304A SAMPLE RATE control. Set the controls as follows:

CONTROL	POsımion
COM/SEP/CHK	COM
ATTEN (INPUT A)	X 1
AC/DC (INPUT A)	AC
SLOPE (INPUT A)	+
LEVEL (INPUT A)	MAX CLOCKWISE
ATTEN (INPUT B)	-
AC/DC (INPUT B)	MAX CLOCKWISE
SLOPE (INPUT B)	$1 \mu \mathrm{sec}$
LEVEL (INPUT B)	MAX CLOCKWISE

Using a BNC to BNC coaxial cable (or cord), connect one end to the INPUT A jack of the 5304 A counter. Connect the other end to the A53 terminal of the signal circuit (FS11) (remote circuit).
7.312 Using a test lead equipped with alligator clips, connect one end to test point A13 and the other end to the A21 terminal of FS15 clock pulse counter circuit of the remote circuit.

7.32 Procedure for Test

7.321 Using a test lead, apply ground potential to the B36 terminal of FS14. The reading of the Hewlett-Packard 5304 A counter should be 4.06 ± 0.011 milliseconds. If the reading is different than the specified time, adjust R5 of CP13, location A3, and operate the RESET switch between each adjustment.
7.322 At completion of the test, remove test leads from B36, A53, A13, and A21 terminals. Remove the cord from the trigger input of the 5304 A counter.
7.4 Signal Present Detector (Remote Circuit)
7.41 Procedure for Test
7.411 Take the control circuit out of service. This will insure that the proper signal is being received from the control circuit for test purposes. Connect the Hewlett-Packard 400 H vacuum tube voltmeter or equivalent across test points E24 and E14 (remote circuit). Plug a 5A attenuating pad in jacks R0DR and R0LI of the FS11 signal circuit. Adjust the attenuator until a reading of -38.5 dBm or 9.1 millivolts RMS is on the Hewlett-Packard 400 H meter.
7.412 Connect a Hewlett-Packard 412A voltmeter or equivalent to test point A33. If the voltmeter reads 11-12 volts, adjust potentiometer R2 on CP9, location A2, until the voltage changes to less than 1 volt. Then adjust the potentiometer R2 in the opposite direction until the voltage just changes to the required level of 11-12 volts. If the voltage reading is less than 1 volt at the start, potentiometer R2 is to be adjusted until the voltage just changes to $11-12$ volts. (R 2 is the 10 K potentiometer on the rear half of CP9.)
7.413 At the completion of the test, remove all test leads and put both units back into service.

7.5 Discriminator (Remote Circuit)

7.51 Connect a $115-\mathrm{Vac}$ power source to the Hewlett-Packard 5304A counter or equivalent, and apply ac power with the 5304A SAMPLE RATE control. Set the controls as follows:

CONTROL
COM/SEP/CHK

ATTEN (INPUT A)

AC/DC (INPUT A)
SLOPE (INPUT A)

LEVEL (INPUT A)
ATTEN (INPUT B)
AC/DC (INPUT B)
SLOPE (INPUT B)
LEVEL (INPUT B)
T.I. A TO B/FREQ A

SAMPLE RATE

POSITION
COM
X10
AC
$+$
2 O'CLOCK POS

X10
AC
-
2 O'CLOCK POS $^{\prime}$
$10 \mu \mathrm{sec}$
MAX CLOCKWISE

Using a BNC to BNC coaxial cable (or cord), connect one end to the INPUT A jack of the 5304 A counter. Connect the other end to terminal A44 of the FS11 signal circuit.

7.52 Procedure for Test

Initiate A TA test call from the control circuit. The 5304 A counter should read either (1) 5.0 ± 0.25 milliseconds, (2) 10.0 ± 0.5 milliseconds, or (3) 15.0 ± 0.5 milliseconds. $\bar{O} p e r a t e$ the RESET switch and repeat the test twice. If readings are not consistently correct, adjust potentiometer R3 on CP12, location A4, remote unit discriminator.
7.53 Change the controls of the 5304 A counter as follows:

CONTROL

SLOPE (INPUT A)
SLOPE (INPUT B)

POSITION
\qquad
$+$

Operate the RESET switch on the Hewlett-Packard 5304 A to clear the counter. Initiate a TA test call from the control circuit. When triggered, the counter should read (1) 5.0 ± 0.25 milliseconds, (2) 10.0 ± 0.5 milliseconds, (3) 15.0 ± 0.5 milliseconds, or (4) some other multiple of 5.0 milliseconds. If a multiple of 5.0 milliseconds is obtained, repeat until one of the first three readings is obtained. If one of the above is not obtained consistently, adjust R3 on CP12 and repeat the test in 7.52 for the positive pulse.

7.6 Control Signal Circuit Adjustment

7.61 Modulator (Control Circuit)

7.611 Set up the controls of the Hewlett-Packard 5304 A counter or equivalent as follows:

CONTROL

T.I. A to B/FREQ A

POSITION
10S
COM/SEP/CHK SEP

SAMPLE RATE

MAX CLOCKWISE

Using a BNC to BNC coaxial cable (or cord), connect one end to the INPUT A jack of the 5304 A counter and the other end to (1) terminal 17 of the AI connector if board A1 was changed or (2) to terminal 17 of the A2 connector if board A2 was changed. Using any test lead, apply ground to the A11 terminal of FS28 send circuit. The reading of the Hewlett-Packard 5304 A counter should be $2025 \mathrm{~Hz} \pm 0.2 \mathrm{~Hz}$. If the reading is not correct, adjust (T1) of CP8, location A1 (location A2 for L2 only), with a nonmagnetic screwdriver. Operate the RESET switch between each adjustment.
7.612 Remove the ground from the A11 terminal. Operate the RESET switch in the 5304 A counter. The reading should be exactly identical with the value obtained in 7.611 .
7.613 Using a test cord, apply ground potential to test point C45 of the signal circuit. Operate the RESET switch once on the Hewlett-Packard 5304 A counter, and the reading should be 2225 ± 0.2 Hz . If the reading is not correct, adjust (T2) of CP8 with a nonmagnetic screwdriver and operate the RESET switch between each adjustment.
7.614 At the completion of the test, remove the ground potential from the C45 terminal and the input cord from terminal 17 of the A1/A2 connector and from 5304 A counter INPUT A jack.

7.62 Power Amplifier (Control Circuit)

7.621 Connect the power cord of a Hewlett-Packard 400 H ac vacuum tube voltmeter or equivalent to a 115 -Vac power source, and operate the power switch to ON. Allow 5 minutes to warm up. Using a pair of test cords, connect the input jacks of Hewlett-Packard 400 H to the E12/E14 and E22/E24 test points (for group 0/1, respectively) of the send circuit. After verifying the proper cross-connections with the operating company, adjust R10 to CP8 until the desired output level is -18 $\mathrm{dBm}+$ the measured loss of the transmission facilities.
7.63 At completion of the test, return the power switch to OFF and remove the 115 -Vac power source and the input test cord from the Hewlett-Packard 400 H ac vacuum tube voltmeter. Remove the test cords from the E12/E14 and E22/E24 test points.

CROSS-CONNECTION INFORMATION OF CP8

CONNECT		TELEPHONE COMPANY			
TERM.	TO	TERM.		FACILITY LOSS	
:---:	$	$			
:---:	:---:	:---:			
C	H	0 to $\quad 0 \mathrm{~dB}$			
C	F	0 to -8 dB			
G	H				
C	D	-8 to -15 dB			
E	H				
F	E	-15 to -23 dB			
G	H				

7.7 Guard Interval Timer (Control Circuit)

7.71 Preparation

7.711 Connect 115-Vac power source to the Hewlett-Packard 5304A counter or equivalent, and apply ac power with the 5304A SAMPLE RATE control. Set the controls as follows:

control	position
COM/SEP/CHK	COM
ATTEN (INPUT A)	X 1
AC/DC (INPUT A)	AC
SLOPE (INPUT A)	+
LEVEL (INPUT A)	MAX CLOCKWISE
ATTEN (INPUT B)	X 1
AC/DC (INPUT B)	AC
SLOPE (INPUT B)	-
LEVEL (INPUT B)	MAX CLOCKWISE
T.I. A TO B/FREQ A	$1 \mu \mathrm{sec}$
SAMPLE RATE	MAX CLOCKWISE

Using a BNC to BNC coaxial cable (or cord), connect one end to the INPUT A jack of the 5304A counter. Connect the other end to the A46/A23 terminal (for group 0/1, respectively) of the signal circuit (FS29).
7.712 Using a test lead equipped with alligator clips, connect one end to terminal No. 2 of CP13, location A7 (location A4 for L2 only), and the other end to test point B47 of FS33, clock pulse counter circuit of the control circuit.

7.72 Procedure for Test

7.721 Using a test lead, apply ground potential to the C52 terminal of FS29. The reading of the Hewlett-Packard 5304A counter should be
4.06 ± 0.01 milliseconds. If the reading is different than the specified time, adjust R5 on CP13 and operate the RESET switch between each adjustment.
7.722 At completion of the test, remove test leads from C52, A46/A23, and B47 terminals and from terminal 2 of CP13. Remove the cord from INPUT A jack of the 5304A counter.

7.8 Signal Present Detector (Control Circuit)

7.81 Procedure for Test

7.811 Take the remote circuit out of service. This will insure that the proper signal is being received from the remote circuit for test purposes. Connect the Hewlett-Packard 400 H vacuum tube voltmeter or equivalent across test points E47 and E37 or E45 and E35 for group 0/1, respectively. Plug a 5 A attenuator pad in jacks R0DR and R0LI or R1DR and R1DI (for group $0 / 1$, respectively) of the FS29 signal circuit. Adjust the attenuator until a reading of -38.5 dBm or 9.1 millivolts RMS is obtained on the Hewlett-Packard 400 H meter.
7.812 Connect a Hewlett-Packard 412A or equivalent voltmeter to the proper test terminal (A26/A52 for group 0/1). If the voltmeter reads 11-12 volts, adjust potentiometer R2 on CP9, location A6 (location A3 for L2 only), until the voltage changes to less than 1 volt. Then adjust potentiometer R2 in the opposite direction until the voltage just changes to the required level of 11-12 volts. If the voltage reading is less than 1 volt at the start, potentiometer R2 is to be adjusted until the voltage just changes to $11-12$ volts. (R 2 is the 10 K potentiometer on the rear half of CP9.)
7.813 At completion of the test, remove all test leads and put both units back into service.

7.9 Discriminator (Control Circuit)

7.91 Connect a 115 -Vac power source to a Hewlett-Packard 5304A counter or equivalent, and apply ac power with the 5304A SAMPLE RATE control. Set the controls as follows:

CONTROL

COM/SEP/CHK
ATTEN (INPUT A)
AC/DC (INPUT A)
SLOPE (INPUT A)
LEVEL (INPUT A)
ATTEN (INPUT B)
$\mathrm{AC} / \mathrm{DC}$ (INPUT B)
SLOPE (INPUT B)
LEVEL (INPUT B)
T.I. A TO B/FREQ A

SAMPLE RATE

AC

POSITION

COM
X10
$+$
2 O'CLOCK POS
X10
AC
-
2 O'CLOCK $^{\prime}$ POS
$10 \mu \mathrm{sec}$
MAX CLOCKWISE

Using a BNC to BNC coaxial cable (or cord), connect one end to the INPUT A jack of the 5304A counter.

Connect the other end to test point A57/A34 (for group 0/1, respectively) of the FS29 receive circuit.

7.92 Procedure for Test

7.921 Initiate a TA test call from the remote circuit. The 5304 A counter should read either (1) 5.0 ± 0.25 milliseconds, (2) 10.0 ± 0.5 milliseconds, or (3) 15.0 ± 0.5 milliseconds. Operate the RESET switch and repeat twice. If readings are not consistently correct, adjust potentiometer R3 on CP10, location A8 (location A5 for L2 only), discriminator.
7.93 Change the controls of the 5304 A counter as follows:

CONTROL
SLOPE (INPUT A)
SLOPE (INPUT B)
Operate the RESET switch on the Hewlett-Packard 5304 A counter to clear the counter. Initiate a TA test call from the remote circuit. When triggered, the counter should read (1) 5.0 ± 0.25 milliseconds, (2) 10.0 ± 0.5 milliseconds, (3) 15.0 ± 0.5 milliseconds, or (4) some other multiple of 5.0 milliseconds. If a multiple of 5.0 milliseconds is obtained, repeat until one of the first three readings is obtained. If one of the above is not obtained consistently, adjust R3 on CP10 and repeat the test in 7.92 for the positive pulse.

[^0]: Registered trademark of Tektronix, Inc

[^1]: * The reading at this point should be -18 dBm . The circuit should function with a $\pm 7 \mathrm{~dB}$ variation from -18 dBm . However, if a variation occurs from -18 dBm , the transmission facility and/or adjustment of the modulator at the remote circuit should be checked.

