GFELLER LINE CONCENTRATOR

49-9-2, 49-11 + 1-2, 49-12-2

APPARATUS REQUIREMENTS AND ADJUSTING PROCEDURES

1. GENERAL

1.01 This section covers the apparatus requirements and adjusting procedures for the Gfeller line concentrator.
1.02 This section is reissued to include apparatus for the models $49-11+1-2$ and 49-12-2 of the Gfeller line concentrator, and the title has been changed accordingly. Additions and corrections have been made to bring this section up-to-date. Since this reissue covers a general revision, arrows ordinarily used to indicate changes have been omitted.
1.03 Gfeller relays are miniature flat-spring type. The contact springs are mounted to the right of the coil and consist of an upper and lower spring pile-up when two or more sets of contacts are required. See Fig. 1A.
1.04 The contacts are numbered by sets or position, similar to the system used for wirespring type relays. Odd number positions are located on the bottom and even number positions are located on the top. Facing the front, they number from left to right. See Fig. 1B, Sketch A.
1.05 Relay winding terminals are numbered by position from 1 to 4 inclusive, counting from the bottom up. The windings are designated by the terminals to which they are connected. Sce Fig. 1P. Sketches B, C, and D.
1.06 Precautions when making adjustments:
(a) Tests and adjustments are service affecting and should be confined to low traffic periods unless required to correct out-of-service conditions.
(b) Contact springs are made of fine gauge material and may be easily distorted by applying excessive pressure when tensioning them.
(c) Fiber contact separators between relay springs are held in place by spring tension and may easily become dislodged.
(d) Use only Gfeller spring benders when adjusting spring tension.

2. REQUIREMENTS

Relays

2.001 Electrical and mechanical requirements are given in the circuit requirement tables which are part of this section. Preparation of the 35 -type test set for dc requirements shall be in accordance with Section 100-101-101.
2.002 Preparation of the 35 -type test set for ac requirements used with the marking relays RA through RF as shown in the circuit requirement table, shall be in accordance with Fig. 2 and the steps given as follows:
(a) Open all of the short-circuiting switches of the telegraph keys and operate all sliders to their extreme right position.
(b) Operate the BAT \& GRD CO key and VM key.
(c) Open the G switch.
(d) Connect a 2 W 17 A cord to the T\&R jack.
(e) Remove short circuit plug from the MC test jack associated with the relay under test and insert the Gfeller test leads.

Fig. IA - Gfeller Relay
Page 2

CONTACT SPRING ARRANGEMENT TYPICAL RELAY WITH CONTACTS AT ALL POSITIONS.
(VIEWED FROM FRONT)

WINDING AND SPRING TERMINALS TYPICAL SINGLE WINDING RELAY WITH 6 SETS OF CONTACTS (VIEWED FROM WIRING SIDE)

Sketch B

WINDING AND SPRING TERMINALS TYPICAL RELAY WITH TWO WINDINGS AND CONTACTS AT POSITION NO.I (VIEWED FROM WIRING SIDE)

WINDING AND SPRING TERMINALS (V) RELAY - THREE WINDINGS AND CONTACTS AT POSITION I,283 (VIEWED FROM WIRING SIDE)

Sketch D

Fig. 18
(f) Connect, by means of a KS-6278 connecting clip, the No. 360 C tool of the 2W17A cord to one side of the $25 \mathrm{ohm}, 10$ watt resistor, and the No. 360B tool to one of the Gfeller test leads using a No. 141 cord tip.
(g) Connect the remaining Gfeller test lead, using a KS-6278 connecting clip to the other side of the 25 ohm 10 watt resistor.
(h) The specified current values may be set up using the 35-type test set rheostats, telegraph keys and noting the voltage reading on the KS- 14510 meter.
(i) The current flowing in the circuit may be found by setting the KS- 14510 meter selector to 3 volts ac and observing the meter reading on the 12 volt scale. The voltage reading, multiplied by 10 is the current value $\pm 2 \mathrm{ma}$. For example: reading is 6.5 volts on the 12 volt scale $-6.5 \times 10=65 \mathrm{ma}$.
(j) The use of the KS-14510 meter is limited to concentrators having 200 ohm coils for the RA through RF relays due to its inaccuracy at lower voltages. For units equipped with 1000 ohm coils, consideration should be given to using an ac milliammeter.
2.003 Numbers encircled in the relay column of the circuit requirement tables indicate the models applicable as follows:

Relays without an encircled number are either applicable to one model alone or are common to all models.
2.01 Cleaning: The contacts and other parts of the relays shall be cleaned when necessary in accordance with Section 069-306-801. After cleaning, make sure both contacts of the bifurcated springs meet requirements.

Fig. 2
2.02 Armature Travel: The requirements specified in the circuit requirement tables are the minimum values for armature travel without the fixed residual disk. Since the disk will normally be in place, the armature travel being measured will be the difference between the thickness of the disk and the minimum armature travel as shown in the circuit requirement table. Insert proper KS-6909 gauge between the nonoperated armature and the pole face or residual disk.

Caution: Exercise care, so as to avoid dis. lodging the residual disk.
2.03 Contact Follow: There shall be a minimum of .005 inches.
Gauge by eye.
2.04 Contact Separation: There shall be a minimum of .005 inches between make contacts with the relay unoperated and between break contacts with the relay operated.
Gauge by eye.
2.05 Contact Make: Both contacts on the bifurcated springs shall make or break at approximately the same time.

Gauge by eye.
2.06 Contact Pressure: Each contact pair shall be as follows (see circuit requirement tables) :

Contacts designated "A": 12 to 24 grams
Contacts designated "B": 14 to 28 grams
Measure with 70J gram gauge applied at point " P " of associated contact sketch of Fig. 5.
2.07 Contact Sequence: For the spring combinations shown in Sketches 3 and 6 of Fig. 5, break contacts shall open before make contacts close, unless otherwise specified in the circuit requirement tables.
2.08 Residual Gap: To meet the proper release requirement, a Residual Gap is provided by a residual disk fastened to the yoke and except for the RA, RB, RC, RD, RE and RF relays no other adjustment is provided. The thickness of the residual disk is specified in the circuit
requirement table. The following additional requirements apply to the RA through RF relays when equipped with a residual set screw.

RA, RB, RC, RD, RE and RF relays equipped with $1000-\mathrm{ohm}$ windings:

> Central office unit - .003 to .004 inches
> Remote unit $\quad .002$ to .004 inches

RA, RB, RC, RD, RE and RF relays equipped with $200-\mathrm{ohm}$ windings:

$$
\begin{aligned}
& \text { Central office unit - } .002 \text { to } .004 \text { inches } \\
& \text { Remote unit - No adjustment }
\end{aligned}
$$

Insert proper KS-6909 gauge between armature and pole face or residual disk so residual screw is free to touch pole face or residual disk through hole in gauge; then manually operate relay.

Caution: Exercise care, so as to avoid dislodging the residual disk.

Vertical Bar Requirements

2.09 Bar Pressure: The requirement to lift vertical bar from its normal position is as follows:

Control office unit: 70 grams minimum
Remote unit: $\quad 50$ grams minimum
Place 70J gauge under bottom of vertical bar; apply pressure upward until bar just leaves its normal position.
2.10 Air Gap: Between the lift magnet pole face and armature hinge in its operated position:
.004 to .012 inches
Insert 74D gauge from the side between pole face and armature of lift magnets as follows:

$$
\begin{aligned}
& \text { 49-9-2 } \quad \text { - vertical bars } 1 \text { and } 9 \\
& 49-11+1-2 \text { - vertical bars BES and } 11 \\
& \text { 49-12-2 } \quad \text { - vertical bars } 1 \text { and } 12
\end{aligned}
$$

Operate the armature manually. To use the gauge on the remaining lift magnets, it will be necessary to remove the vertical bars (see Section 067-201-801). Then insert the gauge between the armature and pole face and
operate armature manually. To avoid removing the vertical bars, the requirement may be gauged by eye by comparison with the measured gap for lift magnets as given above, if these meet the requirements.
2.11 Contact Pressure: For contacts on vertical bar:
Make contacts - 17 to 35 grams
Break contacts - 20 to 35 grams
To measure the pressure of make contacts: operate the vertical bar manually and apply the 70J gauge to the lower surface of the free end of the stationary spring. Observe the pressure required to just break the contacts.
To measure the pressure of break contacts: with the vertical bar nonoperated apply the 70J gauge to the lower surface of the free end of the movable spring. Observe the pressure required to just break the contacts. When measuring pressure on a movable spring which actuates a second spring by means of a stud, lift the second spring clear of the stud with a KS-6320 orange stick while making the measurement.

Horizontal Bar Requirements

2.12 Bar Pressure: The requirement to move
horizontal bar from normal:

25 to 40 grams
Apply 70J gauge to the front right-hand end and apply pressure until horizontal bar just leaves its normal position.
2.13 Air Gap: Between pole face and armature of the horizontal bar in the operated position:
.002 inches maximum
Note: Pole face may touch armature in the operated position.
Insert 74D gauge between pole face and armature and manually operate horizontal bar.

3. ADJUSTING PROCEDURES

3.001 List of Tools, Gauges, Materials, and Test Apparatus:
Note: The following tools are furnished in a kit sent with the concentrator - Fig. 3 depicts these tools.

CODE NO
L.D. 1 A
L.D. 2
L.D. 3
L.D. 5
L.D. 6
L.D. 7

NR3295
-

DESCRIPTION
Open End Wrench
Socket Wrench
Socket Wrench
Spring Adjuster
Spring Adjuster
Spring Adjuster
Blocking Tool
Duck bill Pliers
Tweezers

Note: The following are Bell System Standard.

KS-6320	Orange Stick
P-220366	Dental Mirror
474 A	Wrench
206 and 207	Offset Screwdriver

Note: Modify the 206 and 207 offset screwdrivers, by filing the blades until they fit the lower hinge spring adjusting screw slot (see 3.09). If modifying a 206 and 207 offset screwdriver is not feasible, a suitable screwdriver may be obtained locally.

gauges

74D
70 J
KS-6909
0.10 mm

TEST APPARATUS
35-Type
J94723A

Gauge Nest
$0-150$ Gram Gauge
Gauge Nest
Gfeller feeler gauge

Test Set
Pulse checking test set (SD-96362-01)

3.01 Cleaning (Reqt 2.01)

Clean the contacts and other parts of the relay in accordance with Section 069-306-801.

3.02 Armature Travel (Reqt 2.02)

Armature travel may be adjusted by placing or removing relay washers at the rear of the relay between the coil and yoke at the point designated X in Fig. 4. When the armature travel has been adjusted it should correspond when operated, with view A or B but not view C.

TWEEZERS

L.D. 5
L.D. 6
L.D. 7

Fig. 3-Gfeller Tool Kit

Fig. 4 - Gfeller Relay Armature and Core Relationship

3.03 Contact Follow (Reqt 2.03)

3.04 Contact Separation (Reqt 2.04)
3.05 Contact Make (Reqt 2.05)

Caution: When adjusting springs be careful not to dislodge separators.

3.06 Contact Pressure (Reqt 2.06)

3.07 Contact Sequence (Reqt 2.07)

To correct contact pressure, adjust the contact spring with the LD5 tool. Insert the slot of the tool over the bifurcated portion of the spring, slide the tool to the rear, lifting the spring from the spring support. Add or remove tension at the rear of the spring.

To correct the contact follow, separation, make, or sequence, adjust the spring or spring support with the LD5, LD6, or LD7 tool depending on the thickness of the spring. Insert the tool so that the forked section of the spring is entirely within the slot of the tool. Slide tool to within $3 / 16$ inch of the pile-up and apply pressure.

3.08 Residual Gap (Reqt 2.08)

Where a residual adjusting screw is provided, insert the proper KS-6909 gauge between the armature and the pole face or the residual disk so that adjusting screw passes through the hole in the gauge. Loosen locknut with the Gfeller open end wrench, and with armature manually operated, adjust set screw to obtain required gap. After making this adjustment, check contact follow.

3.09 Vertical Bar Pressure (Reqt 2.09)

If the requirement is not met, increase the tension on the lowest hinge spring as follows: at the rear of the hinge spring, loosen the locknut on the adjusting screw with the 474 A wrench. Turn the screw clockwise with the modified 206 or 207 offset screwdriver. Keep the tension at or
near the minimum so that the lift magnet will meet its operate requirement.
3.10 Air Gap: Between the lift magnet pole face and armature hinge in its operated position (Reqt 2.10).

If the minimum requirement is not met, sufficient air gap may be obtained by loosening the 4 mounting screws holding the lift magnets and contact assembly mounting bar and auding shims to meet the requirement. After tightening the mounting screws, recheck requirement 2.07 . If the maximum requirement is exceeded, corsideration should be given to repiacing the hinge spring armature assembly.

3.11 Contact Pressure (Reqt 2.11)

Make Contacts: If the tension is less than minimum, adjust the contact follow to maximum. If the requirement is still not met, the stationary spring is not resting against its support with sufficient tension. Since this spring is pretensioned during manufacture, it must be removed from the assembly and retensioned or the spring assembly may be replaced. If the tension is greater than maximum, decrease tension of the movable spring against its support by gently moving the spring away from the support using an orange stick.

3.12 Horizontal Bar Pressure (Reqt 2.12)

If the requirement is not met remove the horizontal bar as covered in Section 06\%-201-801. lncrease or decrease the tension on the horizuntal bar retaining springs using an orange stick.

3.13 Air Gap between Armature and Pole F'ace (Reqt 2.13)
 If the requirement is not met first check for binding or obstructing foreign material. If nothing is found, consideration should be given to the replacement of the horizontal bar.

Fig. 5 - Contact Spring Sketches - Gfeller Relays

CIRCUIT REQUREMENTS - CENTRAL OFFFE UNIT																								
mavy	Proevero Bequroment fors						Mock er		$\begin{aligned} & 500 \\ & \text { Prop. } \\ & \hline 0 . \end{aligned}$	Tmo	Fom	ma	$\begin{aligned} & \text { Rovel. } \\ & \text { Dolut. } \end{aligned}$	$\begin{aligned} & \text { Mive } \\ & \text { Ans. } \\ & \text { Traved } \\ & \text { inceloe } \end{aligned}$	nomentas									
	crim	CR	Cr	cta	crs	cra																		
D	3	2	1		1...		1 (K01)	184	G/BAT	184	0	100	. 008	. 024										
(1,3)	B	B	B																					
D	3	2	1	1			1, K0.1)	184	C/BMT	184	0	100	008	024										
(2)	B	B	B	B																				
P1	3	7		7			I(P^{-})	184	G/BAT	1垢	0	8	.008	. 020	2dy break before 1									
thru	B	B		B			$17(\mathrm{X})$	184	c/BAT	184	N0	4.2-4			makes									
16							4 (C$)$	122	G/BAT	1*2	0	58			After 1 makes									
P1	3	7	4	7			$1(17)$	184	G/BAT	184	0	8	0008	.020	2,384 break before 1									
	B	B	B	B			$1(\mathrm{~K})$	184	G/BAT	1明	NO	4.2-4			makes ___									
							4 K	12.2	G/BAT	182	0	58			After 1 makes									
G1	7	2	7				$1\left(\frac{1}{1}\right)$	4	BAT	184	0	33	. 004	. 020	To open contact PD2									
throp	B	A	B				4(K)				0	50			After contact PD2 ope									
C7	1	2	7	4			$1(k)$	4	BAT	1814	0	33	.004	020	To open contrat ED2									
	B	A	B	B			$4(\mathrm{~K})$				0	50			After contact PD2 ope									
G8	7	2	7				1'́k)	4	BAT	184	0	33	. 004	. 020	To open contact PD2									
	B	A	B				4 K				0	50			After contact PD2 ope									
$\begin{gathered} K \\ (1,3) \end{gathered}$	\cdots	8	4	8			5(A1)	184	G/BAT	$\underline{184}$	0	4	004	. 024	To make 1 (K)									
	B	B	B	B			1 (ABI)				0	10			To fully operate									
(1) \# Make before brear							2 (V1)																	
(2)	${ }^{3}$	81	4		I		$5(A)$	184	G/BAT	184	0	4	. 004	. 024	Te make I(K)									
	B	B1	B		B-1		I(ABT)				0	10			To fully operate									
	* Make before break						2701																	
K0	2	2	2				6(A2)	1	FRD	314	0	15	004	020										
KO	2	2	2	1			6 (A2)	1	GRD	184	0	15	. 004	. 020										
(2)	B	B	B	B			3 (PIPS)																	
K01	3	2	2	2	2	2	6(A2)	1	GED	184	0	15	.004	. 020										
	B	B	B	B	B	B	1(PIRT)																	
								-																

	CIRCUIT REQUIREMENTS - CENTRAL OFFICE UNIT														
mory	Combet Anvini Mo. (Hes. S) and						$\begin{aligned} & \text { Alock } \boldsymbol{\infty} \\ & \text { Un } \end{aligned}$	$\begin{aligned} & \text { Comane } \\ & \text { Yout Sol } \\ & \text { To Torme } \end{aligned}$	$\begin{aligned} & \text { Tone } \\ & \text { Propen } \end{aligned}$	Toe	Tm	ma	$\begin{aligned} & \text { Moved } \\ & \text { Duncte } \end{aligned}$	Min. Arm. Inches	nomantes
	C1	[92	cra	cta	crs	C76									
Fir	3	1						MC3	MPT	184	0	689	. 008	. 024	See 2.002
	B	B									\boldsymbol{R}	50%			(See Note 1)
ES1	1	1	1	1			$2(B C) 1$ (A2	182	G/BAT	182	0	20	.008	. 220	
(1,3)	B	B	B	B			3(PC) 3(PD)				NO	12			
RSI									G/BAT	182	0	15	. 008	. 020	
(2)	B	B	B	B			3(PC) 3(PD)				NO	9			
BS2	1	1	1	1			2 (RC) 1 (A2)	184	G/BAT	124	0	10	. 008	. 020	RS2 alone-break conn.
	B	B	B	B			$3(P C) 3$ PD)				NO	6			between RS2\&RS3 wdg.
															term. 4
								184	G/BAT	184	0	20			RS2 \&RS 3 in parallel
											NO	12			
ES3	1						$2(\mathrm{KC}) 1(\mathrm{AL}$	124	6/BAL	124	0	8	. 008	. 020	RS2 \& RS3 in parallel
(1)	B						3(PC) 3(PD)								conn to KS2
								7明	c/bATl	184	0	16			PS2 RS3 in parallel
ES3	1	1	1	1			2(RC) 1(AC)	1碞	G/BAT	184	0	10	. 008	. 020	RS2 \& RS3 in parallel
(2)	B	B	B	B			$3(\mathrm{PC}) 3$ (PD)								conn to KS2
											NO	6			
								1814	G/BAN	184	0	20			FS2 A PS3 in narallel
RS3	1	1	1	1			2(RC) 1 (A)	184	G/BAT	184	0	8	.008	. 020	RS2 \& RS3 in farallel
(3)	B	B	B	B			$3(P C) 3$ (PD)								conn to RS2
								184	G/BAT	184	0	16			FS2\&ES 3 in narallel
	1	1	B	t			$1(A 2) 2(41)$	2\%2	C/BAT	182	0	20	.008	020	
(1,3)	B	B	B	B			3 (D) (Ev)				NO	12			
RT1	1	1	1	1			$1(\mathrm{~A})$ 2(A)	142	G/BAT		0	15	. 008	. 020	
(2)	B	B	B	B			3(D)				NO	9			
							1,2,3 (RD)								
E12	1	1	1	1			(A1) 7 (A2)	124	C/BAT	124	0	10	. 008	. 020	Any RT-relay individu
thru	B	B	B	B			(D) 1.(A1)				NO	6			Any RT-relay pair in
RT13							1,2,3 (RD)				0	20			parallel. Break paral
											NO	12			connection between Ril
															ET3, KTS4, etica
$\frac{\mathrm{sc}}{(1,3)}$	A	$\frac{3}{\text { A }}$					$2(\mathrm{RC})$	122	G/BAT	182	0		. 002	. 020	

CIRCUIT REQUIREMENTS - REMOTE UNIT															
norer							Alock ${ }^{\circ}$		$\begin{gathered} \substack{\text { sent } \\ \text { pomp } \\ \hline} \\ \hline \end{gathered}$	Tom	${ }_{\text {rout }}$	ma	$\begin{aligned} & \text { Rovel } \\ & \text { Rock } \\ & \text { Docheo } \end{aligned}$	$\begin{gathered} \text { Min. } \\ \substack{\text { Armo. } \\ \text { Aravol } \\ \text { Inctron }} \end{gathered}$Imentos	Romathe
	Cri	Cr_{3}	cr	cra	\| ${ }^{\text {rem }}$	cr									
A	A^{3}	A	$\begin{aligned} & 2 \\ & 2 \\ & A \end{aligned}$	$\frac{1}{A}$				184	NGB	184	0	42	. 004	$.016$	Slow release (4 times slower)
ABS	2	2						124	NCB	184	0	6	. 004	. 016	
	B	B													
D															
	2	2	1				1. (PIRT)	182	NGB	1ヵ2	,	72	. 004	. 024	Slow release (2 times
	B	B	B				$2(\mathrm{~A})$				NO	68			slower)
F1	3	7		7			1 (F -	184	NGB	184	0	8	. 008	. 020	284 break before 1
thru	B	B		B			Remove	124	NGB	184	NO	4.4			makes,
P6							MC4 Plug	182	NGB	182	0	58			Aftor 1 makes
$F 7$	3	7	4	7			IF7)	$1{ }^{124}$	NGB	184	0	8	. 008	. 020	2,3,4 break before ?
	B	B	B	B			Remove	184	NGB	184	NO	4.4			makes
							MC4 Plue	122	NGB	182	0	53			After 1 makes
$\underline{1}$	7	2	7				Remors MC4	184	NGB	184	0	33	. 004	. 020	33ma will open PD2
thru	B	A	B				Plug				0	50			contacts
6															
	7	2	7	4			Remove MC4	184	NGB	184	0	33	. 004	. 020	
	B	A.	B	B			Plug								
G8															
	7	$\begin{aligned} & 2 \\ & A \end{aligned}$	$\begin{aligned} & 7 \\ & B \end{aligned}$				$\begin{gathered} \text { Remove MC4 } \\ \text { Plug } \end{gathered}$	184	NGB	184	0	33	. 004	. 020	
PIRS	1							182	NGB	182	0	19	. 008	. 016	
	B										NO	15			
											A	14			
PIET	3	2	1					14.21	NGB.	142	0	17	. 004	016	
	B	B	B								NO	10			
								384	NGB	$3{ }^{4} 4$	H	8			
RA	3	3	3	3				MC1	MET	124	0	656	. 006	. 024	See 2,002
	B	B	B	耳							R	$40 \varnothing$			(See Note 1)
RB		3						MC2	MET	124	0	658	. 008	. 024	See 2,002
	B	B									R	408			(See Note I)
- RC	3	3	1					MC3	MET	184	$\begin{aligned} & 0 \\ & R \end{aligned}$	$\begin{gathered} 656 \\ 408 \end{gathered}$. 008	. 024	Seo 2.002 (See Note 1)
		B	B								R	408			Seen Note 1)

Note $1: \phi$ Current values given are measured at the central office unit.

Central office units equipped with $1000-\mathrm{hm} R A$ thru $R F$ relays have operate and release
requirements as follows: RA and RD , operate 28 ma., release 15 ma . $\mathrm{RB}, \mathrm{RC}, \mathrm{FE}, \mathrm{FF}$ operate 26 ma., release 15 ma .

CIRCUIT REQUIREMENTS - FEMOTE UNIT															
Melor							1 Hestiom			${ }_{\text {rom }}$	${ }^{500}$	ma	Rowd.		Romento
	m	cr_{2}	cr	cra	Crs	cti									
ED	3	3	3	3				MC1	MET	184	0	$65 \varnothing$. 006	. 024	See 2.002
	B	B	B	B							R	402			(See Note 1)
Fe	3	3						MC2	MET	124	0	656	. 008	. 024	See 2.002
	B	B									R	40%			(Soe Note 1)
RF	3	(3)						MC3	MET	124	0	650	. 008	. 224	See 2.002
	B	(B)									R	406			(See Note 1)
RS1	1	1	1	1			2(PIRT)	182	NGB	182	0	15	. 004	. 016	
(1,3)	A	A	A	A							H	8			
RS1	1	1	1	1			2(PIRT)	182	NGB	142	0	15	. 004	. 016	
(2)	B	B	B	B.							H	8			
RS2	1	1	1	1			2 (PIRP)	184	NGB	124	0	7	. 004	. 016	
(1,3)	A	A	A	A							H	3			
	1	1	1	1			2 (PIRT)	1814	NGB	184	0	7	. 004	. 016	
(2)	B	B	B	B							H	3			
	3.	3	1				2 (PIRP)	142	NGB	122	0	15	. 004	. 016	
(1)	A	A	A								H	8			
							2 (PIRT)	184	NCB	181	0	15	. 004	. 016	
(2)	B	3	B	B	B						H	8			
								-	-						
BS_{3}	3	3	1	1	1	1	$2(\underline{1} \times 1 \times 2)$	181	TMCR	184	0	15	,004	0.016	
(3)	1	,	A	A	A	A					H	8			
RTI	3	1	1	1			$1(\mathrm{SCH})$	$1 \% 2$	NGB	1\&2	0	15	. 002	. 016	
(1,3)	A	A	A	A							H	8			
	3		1	1			1(SCH)	184	NGB	124	0	15	. 002	. 016	
(2)	B	B	B	B							H	8			

