E2A TELEMETRY

ALARM PROCESSING REMOTE (APR)

MAINTENANCE

This section is designed to maintain the operational status of the J1P029A E2A alarm processing remote (APR). Contained in this section are trouble diagnosis flowcharts (Flowcharts 1 and 2) for the APR (J1P029 with L5 generic) and the APR with polling serial ports (J1P029 with L11 generic), respectively. The trouble diagnosis floweharts are used to isolate failures to a specific area of the system. The five procedural charts, contained in this section, test the validity of the area in question. There are also various tables to assist the maintenance procedures.

Since this reissue is a general revision, arrows ordinarily used to indicate changes have been omitted.
Before performing any part of this section, the E2, SCOTS, TASC, or TCAS initial system should be checked for a failure. The initial system check should indicate whether or not the E2A APR is suspected of being defective. If the E2A is suspected of being defective, begin with Flowchart 1 or Flowchart 2 (for E2A APR with polling serial ports) of this section and proceed as directed to the appropriate chart.

Chart 1 is used independently to show the correct switch settings of the 202 T data set, Chart 2 is used independently for voltage tests, and Chart 3 is used for complete bay-operational testing. Once Chart 3 is entered, proceed directly through the chart until a point is reached at which a test fails. When this point is reached, refer back to Flowchart 1 or Flowchart 2 for recommended circuit pack replacement.

Flowchart 2 should be used if the E2A APR polling serial ports are suspected of being defective. Refer to Chart 4 to test the polling serial port failure bits and/or Chart 5 to test the polling serial port operations.

If a block is reached in Flowchart 1 or Flowchart 2, referring to an SD, the failure is not in a circuit pack. Visually inspect the wiring, connectors, and terminal blocks for physical damage. Read the circuit description (CD) and study the schematic drawing (SD). Using an oscilloscope, troubleshoot the circuits to find the wiring problem.

NOTICE

Not for use or disclosure outside the Bell System except under written agreement

CHART PAGE

1—202T Data Set Replacement . 3
2-Voltage Test . 4
3-Operational Test . 5
4-Polling Serial Port Failure Bit Test 16
5-Polling Serial Port Operational Test 19

CHART 1

202T DATA SET REPLACEMENT

The E2A remotes and associated centrals are connected via a 4 -wire private line multipoint data network using a 202T-type data set. There are options or features available on the data set which are required for E2A operation. These options are checked and/or set in this chart. The remainder of the data set options should be determined at the installation environment by local engineering. For actual data set switch settings, refer to Section 590-031-200.

APPARATUS:

Spare 202T Data Set Circuit Pack

STEP PROCEDURE

1 Remove the front cover from the 202T data set, and remove the data set circuit pack from its housing.

2 Verify the data set is set up with the following features or switch settings:

- Switch S3 set up for 4 -wire operation (factory furnished)
- Soft turnoff and squelch intervals (switch S2) set for Ø, Ø (see Section 592-031-299)
- Fast carrier detection set for "in" (factory furnished)
- Clear to send interval set for " 8 ms " (factory furnished)
- Clamp set for "in" (factory furnished)
- Carrier detection reset set for "in" (shorting plug)
- Second shorting plug set for "continuous carrier out" (factory furnished)
- Grounding option (switch S1) set for "signal ground not connected to frame ground."

3 Insert the new circuit pack into the data set housing, and replace the front cover.
4 Return to the flowchart.

CHART 2

VOLTAGE TEST

APPARATUS:

KS-14510, L1, Volt-Ohm-Milliammeter (VOM) or equivalent
Circuit Pack Card Extender
STEP PROCEDURE

1 Insert the card extender into CP location M1G on the APR common control unit (J92621R).
2 Check the following voltages on the card extender with the VOM:

Pin 15	$-9 \pm 0.3 \mathrm{Vdc}$
Pin 31	$+12+0.3 \mathrm{Vdc}$
Pin 34	$-12 \pm 0.3 \mathrm{Vdc}$
Pin 101	$+5 \div 0.3 \mathrm{Vdc}$
Pin 206	$+5 \pm 0.3 \mathrm{Vdc}$

3 Remove the card extender from the M1G location and insert it in the M1J location. Check the following voltages:

$$
\begin{array}{ll}
\text { Pin } 101 & +5+0.3 \mathrm{Vdc} \\
\text { Pin } 206 & +5 \pm 0.3 \mathrm{Vdc}
\end{array}
$$

4 Check the following voltages on the rear of the J92621R panel:

$$
\begin{array}{ll}
\text { TSA }(+15 \mathrm{~V}) & +15 \pm 0.3 \mathrm{Vdc} \\
\text { TSA }(-15 \mathrm{~V}) & -15 \pm 0.3 \mathrm{Vdc}
\end{array}
$$

5 If any voltage is not within tolerance, obtain SD-2P022-01, determine faulty circuit pack, and replace it.

6 Return to the flowchart.

CHART 3
 OPERATIONAL TEST

APPARATUS:

KS-20937,L1 E-Telemetry Station Test Set
KS-20937,L4 General Purpose Plug-In
KS-20937,L6 E2A Test Cable
KS-14510,L1 Volt-Ohm-Milliammeter or equivalent
Spare Circuit Packs

STEP

PROCEDURE

Initial Setup

1 Disconnect P1 from the 202T data set, and connect the E2A test cable between P1 and the station test set.

2 Insert the general purpose plug-in into the station test set.
3
Record the station address and communication data rate.

CHART 3 (Contd)

Set the station test set switches as follows:

SWITCHES	POSITION
SYSTEM	E2A if data rate is 1200 bits/sec E2 if data rate is 600 bits/sec
PARITY	B
BIT RA'TE	Station data rate (600 or $1200 \mathrm{bits} / \mathrm{sec}$)
MODE	Once
ENABLE	Normal
DISPLAY WORD ERROR	OFF
DISPLAY WORD SELECT	1
RCU	OFF
MESSAGE LENGTH	1
* WORD ONE	000 Station Address 000000
WORD 2 through WORD 4	All Down
POWER	ON
MASTER CLEAR	Depress and Release

*See Table A for address switch setting.

Depress and release the RESTART switch on CP 100.

Alarm Poll Test

Depress and release the station test set START switch.
Requirement: RECEIVE INFORMATION indicators 1,2 , and 7 will light and all others will go off with the possible exception of indicator 13 .

Note: If indicator 13 is lighted, an error occurred. Record this fact and proceed.

CHART 3 (Contd)

STEP

PROCEDURE

Group Report Test

SWITCHES	POSITION
DISPLAY WORD SELECT	4
WORD ONE	011 Station Address 000000
WORD TWO	10000000100001000
MESSAGE LENGTH	2
RECEIVER CLEAR	Depress and Release

POSITION
Requirement: Record the RECEIVE INFORMATION indicators that light, and refer to Table B to determine the type of error.

Display Report Test

Make the following changes in the station test set switch positions:

11 Depress and release the station test set START switch.
Requirement: Indicator 1 will be the only RECEIVE INFORMATION indicator that will light.

CHART 3 (Contd)

STEP

PROCEDURE

Remote Switch Test

Choose a remote switch point that is unused and connect the VOM between the RS and RSR points. Set the VOM to read ohms, and set the range switch to X1.

Make the following changes in the station test set switch positions:

SWITCHES

POSITION

DISPLAY WORD SELECT
WORD ONE
WORD TWO
RECEIVER CLEAR

1
$011 \mid$ Station Address $\mid 00$ Group
$\left.{ }_{1}\right|_{\text {Point }} \mid$ S.G. $\left.\right|_{00001}\left|\begin{array}{l}\text { P/O.G. }\end{array}\right|_{000}$
Depress and Release

Note: Refer to Table C for group, point, and subgroup switch settings.
Depress and release the station test set START switch.
Requirement: The VOM needle will deflect, and the station test set RECEIVE INFORMATION indicators 1 and 12 will light. All other information indicators will go off (Table C).

Test is

Record the bay-equipped displays (displays 5 through 64).
Make the following changes in the station test set switch positions:
SWITCHES POSITION

MESSAGE LENGTII	3
WORD ONE	01001111111011111
WORD TWO	100 Station Address 001111
WORD THREE	11000111111111111
DISPLAY WORD SELECT \quad,	1
RECEIVER CLEAR	Depress and Release

Depress and release the station test set START switch.
Change the station test set MESSAGE LENGTH switch to 2.
Requirement: RECEIVE INFORMATION indicators 1 and 12 will light and all others will go off.

CHART 3 (Contd)

Refer to Table D and set the station test set switches for the appropriate display, then depress and release the START switch.

Requirement: All RECEIVE INFORMATION indicators light.
Set the station test set DISPLAY WORD SELECT switch to 2. Depress and release the station test set RECEIVER CLEAR switch, then depress and release the START switch.

Requirement: Same as Step 19.
Repeat Step 20 with the station test set DISPLAY WORD SELECT switch set to 3 , then 4.
Requirement: Same as Step 19.
Repeat Steps 19 through 21 for each display equipped.
Requirement: Same as Step 19.

Test Os

Make the following changes to the station test set switch position.

SWITCHES

MESSAGE LENGTH
WORD ONE
WORD TWO
WORD THREE
DISPLAY WORD SELECT
RECEIVER CLEAR

POSITION

3

01001111111011111
100 Station Address 001111
11000011111111111

1

Depress and Release

Depress and release the station test set START switch.
Requirement: RECEIVE INFORMATION indicators 1 and 12 will light and all others will go off.

Repeat Steps 19 through 22 for each display equipped.
Requirement: Indicator 1 will be the only RECEIVE INFORMATION indicator that will light in each step.

Depress and release the RESTART switch on CP 100.

CHART 3 (Contd)

STEP
 PROCEDURE

Clearing Alarms

Refer to Table D and set the station test set switch positions for the NEW INDEX command. Transmit this command three times, first with the DISPLAY WORD SELECT switch set to 1 , then to 2 , then 3 , and then to 4 . Record all RECEIVE INFORMATION indicators, other than 1 , which light.

Refer to Table D for the display numbers associated with the lighted indicators (display WORD $1=$ displays 5 through 16 , display WORD $2=$ displays 17 through 32 , display WORD $3=$ displays 33 through 48 , and display WORD $4=$ displays 49 through 64).

For each indicated display, transmit the appropriate DISPLAY command. It is only necessary to transmit this command one time.

Repeat Steps 27 through 29 for the ANY INDEX.
Make the following changes to the station test set switch positions.

SWITCHES

MESSAGE LENGTH	1
WORD ONE	000 Station Address 000000
DISPLAY WORD SELECT	1
RECEIVER CLEAR	Depress and Release

POSITION

1
000 Station Address 000000

Depress and Release

Depress and release the station test set START switch.
Requirement: Indicator 1 (and possibly 7) will be the only RECEIVE INFORMATION indicator that lights.

Return to the flowchart.

TABLE A

Γ
\bigcirc

TABLE B

ERROR INDICATIONS

INDICATOR	ERROR
2	Parity Error
3	Tone Drop Out
4	No Sync Bit
5	No Clear to Send
6	Clear To Send Did Not Drop
7	Remote Error
8	Illegal Central Data Received
9	Illegal Carrier Detect Interrupt
$10-17$	Parity Error Count

TABLE C

REMOTE SWITCH COMMANDS

POINT OR SUBGROUP	SUBGROUP				POINT			
	6	7	13	14	2	3	4	5
1	0	0	0	0	0	0	0	0
2	1	0	0	0	1	0	0	0
3	0	1	0	0	0	1	0	0
4	1	1	0	0	1	1	0	0
5	0	0	1	0	0	0	1	0
6	1	0	1	0	1	0	1	0
7	0	1	1	0	0	1	1	0
8	1	1	1	0	1	1	1	0
9	0	0	0	1	0	0	0	1
10	1	0	0	1	1	0	0	1
11	0	1	0	1	0	1	0	1
12	1	1	0	1	1	1	0	1
13	0	0	1	1	0	0	1	1
14	1	0	1	1	1	0	1	1
15	0	1	1	1	0	1	1	1
16	1	1	1	1	1	1	1	1

table D
NEW INDEX COMMAND SWITCH SETTINGS

TABLE D

NEW INDEX COMMAND SWITCH SETTING (Contd)

CHART 4

POLLING SERIAL PORT FAILURE BIT TEST

APPARATUS:

KS-20937,L1 E-Telemetry Station Test Set
KS-20947,L4 General Purpose Plug-In
KS-20937,L6 E2A Test Cable

STEP PROCEDURE

1 Disconnect P1 from the 202T data set, and connect the E2A test cable between P1 and the station test set.

2 Insert the general purpose plug-in into the station test set.

For remotes controlled by a TCAS central, use Steps 7, 8, and 9. For TASC or SCOTS, use Seps 10, 11, and 12.

CHART 4 (Contd)

STEP

Set the station test switches as follows:

SWITCHES

SYSTEM

PARITY
BIT RATE

MODE
ENABLE
DISPLAY WORD ERROR
DISPLAY WORD SELECT
RCU
MESSAGE LENGTH
*WORD ONE
WORD 2 through WORD 4
POWER
MASTER CLEAR

POSITION

E2A if data rate is 1200 bits/sec
E 2 if data rate is 600 bits/sec

B
Station data rate (600 or $1200 \mathrm{bits} / \mathrm{sec}$)
Once
Normal
OFF
14
OFF
1
010 Station Address 000000
All Down
ON
Depress and Release

* See Table A for address switch setting.

8 Depress and release the station test set START switch.
9 Record the RECEIVE INFORMATION indicators that light.
Requirement: All indicators associated with equipped ports will be lighted. Refer to Table E.

CHART 4 (Contd)

```
STEP
PROCEDURE
```


SWITCHES

SYSTEM

PARITY
BIT RATE

MODE
ENABLE
DISPLAY WORD ERROR
DISPLAY WORD SELECT
RCU
MESSAGE LENGTH
WORD 1 through WORD 4
POWER
MASTER CLEAR

POSITION

E2A if data rate is 1200
bits/sec
E2 if data rate is 600
bits/sec
B
Station data rate (600 or $1200 \mathrm{bits} / \mathrm{sec}$)
Once
Normal
OFF
4
OFF
2
All Down
ON
Depress and Release
*See Table A for address switch setting.

Repeat Steps 11 and 12 for each equipped serial display.

14

 display (37 through 64) according to Table D.Depress and release the station test set START switch.
Requirement: Indicators 1 and 17 will light.

Return to Flowchart 2.

Set the station test set WORD 1 and WORD 2 switches for the first equipped serial

TABLE E

PORT INDICATOR ASSOCIATIONS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	Port 1	Port 2	Port 3	Port 4	$\begin{aligned} & \text { Port } \\ & 5 \end{aligned}$	$\begin{gathered} \text { Port } \\ 6 \end{gathered}$	Port 7	$\begin{gathered} \text { Port } \\ 8 \end{gathered}$	0	0	0	0	0	0	0	0

CHART 5
POLLING SERIAL PORT OPERATIONAL TEST

APPARATUS:

KS-20937,L1 E-Telemetry Station Test Set
KS-20937,L4 GENERAL PURPOSE PLUG-IN
KS-20937,L6 E2A Test Cable

Abstract

STEP PROCEDURE

1 Disconnect P1 from the 202T data set, and connect the E2A test cable between P1 and the station test set.

2 Insert the general purpose plug-in into the station test set.
3 Record the station address and communication data rate.
4 Depress and release the restart switch or CP 100.
$5 \quad$ Jumper the first equipped serial port as shown in Fig. 1.

CHART 5 (Contd)

\square

Set the station test set switches as follows:

SWITCHES	POSITION			
SYSTEM	$\begin{array}{c}\text { E2A if data rate is } 1200 \\ \text { bits/sec }\end{array}$			
E2 if data rate is 600				
bits/sec		$]$ B	PARITY	Station data rate (600 or
:---	:---			
BIT RATE	Once			
MODE	Normal			
ENABLE	OFF			
DISPLAY WORD ERROR	2			
DISPLAY WORD SELECT	OFF			
RCU	2			
MESSAGE LENGTH	All Down			
WORD 1 through WORD 4	ON			
POWER	Depress and Release			

7 Set the station test set for the first equipped display for the port under test according to Table D.

Depress and release the station test set START switch.
Requirement: Refer to Table F.
Repeat Steps 7 and 8 for each equipped display for the port.

Repeat Steps 5 through 9 for each port.
Return to Flowchart 2.

Fig. 1-Cable Connector With Lead Connections

TABLE F
SERIAL DISPLAY RESPONSES (NOTE)

DISPLAY NUMBER FOR SERIAL PORT	bit number																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1st	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
2nd	1	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	1
3 rd	1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	1
4th	1	0	0	0	1	1	0	1	0	0	0	0	1	1	0	1	1
5 th	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	1
6th	1	0	0	1	0	1	0	1	0	0	0	1	0	1	0	1	1
7th	1	0	0	1	1	0	0	1	0	0	0	1	1	0	0	1	1
8th	1	0	0	1	1	1	0	1	0	0	0	1	1	1	0	1	1

Note: Each and every port must start with display 1 of this table.
Example: If port 1 has started display number 37 and is equipped for 3 displays (37 through 39), the following responses will occur:

- Display 37 response should look like the first display number for serial port.
- Display 38 response should look like the second display number for serial port.
- Display 39 response should look like the third display number for serial port.

Flowchart 1-Trouble Diagnosis (Sheet 1 of 4)

Note:
Before removing or inserting any circuit packs or bay equipment, remove power from the bay by removing the 48 V and/or 24 V fuses.

Flowchart 1-Trouble Diagnosis (Sheet 2 of 4)

Note:
Before removing or inserting any circuit packs or bay equipment, remove power from the bay by removing the 48 V and/or 24 V fuses.

Flowchart 1-Trouble Diagnosis (Sheet 4 of 4)

Flowchart 2-Polling Serial Port Trouble Diagnosis (Sheet 1 of 5)

Flowchart 2—Polling Serial Port Trouble Diagnosis (Sheet 2 of 5)

Flowchart 2-Polling Serial Port Trouble Diagnosis (Sheet 3 of 5)

Flowchart 2 -Polling Serial Port Trouble Diagnosis (Sheet 4 of 5)

Note:
Before removing or inserting any circuit packs or other bay equipment, remove power from the bay by removing the 48 V and/or 24 V fuses.

Flowchart 2-Polling Serial Port Trouble Diagnosis (Sheet 5 of 5)

