LOCAL TEST DESK (LTD) NO. 16

TESTS AND TROUBLE LOCATING PROCEDURES

1. GENERAL

1.01 This section describes the maintenance and tests to be performed on the No. 16 local test desk (LTD) to verify that it is functioning properly. This section also includes trouble locating information should the test verifications not be obtained.
1.02 This section affects the Equipment Test List.
1.03 The following tests are covered:

PAGE
A. LTD Meter Calibration: This test checks the battery voltages and operation of the desk position voltmeter for ac and de voltages and de current.
B. Primary and Secondary Test Circuits: This test checks the operation of the primary and secondary control and supervision keys.
C. Test Circuit Selection and Disconnect: This test checks the operation of the three control groups.

D. Outgoing Trunk Connection, Disconnect, and Group Busy

 Tests: This test checks the operation of the outgoing trunks keys.E. Incoming Trunk Test: This test checks the operation of the incoming test trunk keys.22
F. Talking Trunk Test: This test checks the operation of the talking trunk keys.
G. Visual Indicator Test: This test checks the operation of the visual indicator tube.

PAGE

H. Potentiometer Circuit: This test checks the operation of the three potentiometers.

I. Receiver Off-Hook Tone Test: This test checks the operation of the howler circuit.

J. Night Alarm Key Test: This test checks the function of the night alarm key.

$$
\begin{aligned}
& \text { K. Dial Speed Indicator or } \\
& \text { TOUCH-TONE Dialing Fre- } \\
& \text { quency Test: This test checks the op- } \\
& \text { eration of the desk keys and the dial } \\
& \text { testing circuit (SD-96335-01) or TOUCH- } \\
& \text { TONE dialing frequency test connector } \\
& \text { circuit. }
\end{aligned}
$$

L. Conductor Identification Circuit

Test: This test checks the conductor identification or sounder circuit operation.
M. Electronic Voltmeter Test (SD-95596-01): This test checks the calibration and operation of the electronic voltmeter when a desk position is so equipped.

N. Constant Current Source Test (SD-97763-01): This test checks the operation of the constant current source when the desk is so equipped.

O. Coin Station Tests: This test checks the operation of the test desk coin station control keys.
P. Insulation Breakdown Test (SD-95772-01): This test checks

NOTICE

Not for use or disclosure outside the Bell System except under written agreement
the operation of the insulation breakdown circuit.37
Q. Call Circuits Test: This test checks the operation of the call circuits used to communicate between desk positions.

R. Remote Test System-Enhanced (Option ZY) Test: This test

 checks the operation of the test desk keys associated with the Remote Test SystemEnhanced.1.04 Lettered Steps: A letter a, b, c, etc, added to a step number in Part 4 of this section indicates an action which may or may not be required depending on local conditions. The condition under which a lettered step or a series of lettered steps should be made is given in the ACTION column, and all steps governed by the same condition are designated by the same letter within a test. Where a condition does not apply, all steps designated by that letter should be omitted.
1.05 For troubles which are encountered while performing the tests of Part 4 of this section, CORRECTIVE ACTION suggestions are provided. These list the "checks" that should be made should the associated verification not be obtained. The "checks" are listed in the order in which they should be performed.
1.06 All tests are performed at the LTD. A headset or handset must be plugged into one or both
of the headset jacks before any test functions may be performed.
1.07 For some tests in Part 4, access to the tip and ring leads within the test desk position is required. The tip and ring may be accessed from the following or equivalent points on the back plane after removing the LTD back cover.

SD-1C379-01

	TERMINAL STRIP	
Tip	TS(E)	PUNCHING
Ring	TS(E)	17
		56

1.08 Tests C, I and M require the aid of an additional craft person. Test F requires the aid of two additional craft persons.

Danger: Certain terminals of relays and keys of the No. 16 LTD have battery voltages ranging from 20 volts to 200 volts. Exercise care when performing the prescribed tests.
1.09 This issue of the section is based on the following drawings. If this section is to be used with equipment or apparatus reflecting later issues of the drawings, reference should be made to the SD and CD to determine the extent of the changes and the manner in which the section may be affected.

CIRCUIT TITLE

SD-\&CD-1C379-01	SD-Issue 9B	Primary and secondary test circuits
SD-\&CD-1C380-01	SD-Issue 1	Common system telephone circuits-Talk trunks, loudspeaker trunks, and test circuits
SD-\&CD-1C381-01	SD-Issue 1	Trunk switching circuit
SD-\&CD-1C401-01	SD-Issue 1	60 and 120 IPM flashing circuit
SD-\&CD-95570-02	SD-Issue 11D	TOUCH-TONE dialing and MF circuit
SD-\&CD-95737-01	SD-Issue 19B	Incoming or outgoing test trunk circuits
SD-\&CD-95741-01	SD-Issue 6B	Secondary ringing circuit
SD-\&CD-95764-01	SD-Issue 2B	Test trunk circuit for detecting intermittent trouble
SD-\&CD-96472-01	SD-Issue 7B	MDF loudspeaker trunk circuit
SD-\&CD-99549-01	SD-Issue 7B	Fulse alarm circuit
SD-\&CD-97763-01	SD-Issue 1	Constant current source circuit.

2. APPARATUS

2.01 The type and quantity of apparatus required to perform each test is shown in Table A. Additional apparatus may be needed if trouble locating procedures must be used to correct deficiencies before completing the tests. The details of each item are covered in the paragraph indicated by the number in parentheses.
2.02 KS-20599, L4, Volt-Ohm-Milliameter (VOM) or equivalent.
2.03 A $12 \mathrm{~V}, 60 \mathrm{~Hz}$ source, such as a transformer or adjustable autotransformer, or equivalent.
2.04310 plug.
2.050 through 600 ohms, 25 watt rheostat.
2.06 48 Kohms, 1 percent, $1 / 2$ watt resistor.
2.07 $80 \mathrm{Kohms}, 1$ percent, $1 / 2$ watt resistor.
2.08 1 Kohms, 1 percent, $1 / 2$ watt resistor.
2.09 2 Kohms, 1 percent. $1 / 2$ watt resistor.
2.10 553A tool.
2.11363 tool.
2.12 Relay blocking tools as required. Apply as covered in Section 067-020-801.

3. MAINTENANCE

647-TYPE KEYS

3.01 To perform any maintenance on the 647-type key modules, the key must be removed from the panel assemblies. The left and right panel assemblies have an indent along the lower outside edge to provide a hand hold for raising the panel. The panels are hinged at the top and raised from the bottom to

TABLE A

APPARATUS	MAINTENANCE	test																
		A	B	c	D	E	F	G	H	1	J	K	M	N	0	P	Q	R
KS-20599 L4 VOM (2.02)		1							1				1	1	1	1		1
12 V 60 Hz Source (2.03)		1																
310 Plug (2.04)													1					
$0-600 \mathrm{ohm}, 25$ watt rheostat (2.05)		1																
$48 \mathrm{~K}, 1$ percent $1 / 2$ watt resistor (2.06)		1																
$80 \mathrm{k}, 1$ percent $1 / 2$ watt resistor (2.07)		1																
$1 \mathrm{~K}, 1$ percent, $1 / 2$ watt resistor (2.08)																1		
$2 \mathrm{~K}, 1$ percent, $1 / 2$ watt resistor (2.09)																1		
553A Tool (2.10)	1																	
363 Tool (2.11)	1																	
Relay Blocking Tools, as required (2.12)					\checkmark			\checkmark										

gain access to the keys. The ticket box in the left panel assembly must be removed before the panel is raised. The ticket box would strike the writing shelf if an attempt is made to raise the panel with the ticket box in place. The center panel assembly must be in the lowered position before raising or lowering the left or right panel assemblies.

Danger: Do not perform any work on a raised panel assembly unless the shelf support bars and latch are properly secured.
3.02 The replacement components of a 647-type key consists of:

- E5837 designation strip
- P-23F437 button
- P-23F427 (clear) cap
- P-23F428 (red) cap
- P-23F101 collar
- Lamp 51A.
3.03 Refer to Table B and Fig. 1 and 2 for the most common maintenance information on the 647type keys.
table B

KEY MAINTENANCE (647-TYPE)		
COMPONENTS	trouble	CIEARING Procedure
Buttons and Plunger	Binding or Squeaking	VERIFY COLLAR IS PROPERLY SEATED ON KEY. Clean bearing surfaces with water damp cloth. Do not lubricate. If excessive trouble, replace key.
	Fails to Remain in Locked Position	Check that P-28E773 locking pin is properly seated in plunger. If more than one button is affected, replace key.
Contacts	Contact Failure Due to Improper Making or Breaking	Gauge open contacts to a minimum separation of 0.010 inch. (Fig. 2 shows tools used for spring adjustment.) Avoid kinking spring.
		Separations between contact springs have minimum separation of $1 / 64 \mathrm{inch}$.
	Contact Failure Due to Foreign Matter on Contacts	Burnish contacts with 265 C tool equipped with burnishing blade.
Lamps	Improper Illumination	Remove dirt or film from lamps and illuminated area with water damp cloth. (Fig. 1 shows proper removal of lamps.)
		Position lamps properly.
		Clean and check tension on lamp mount ing contacts.

Fig. 1-Removing Lamp From 647-Type Key

647-type keys, the button cap may be removed without removing the key from the panel assembly. The cap is removed by gripping the cap between the thumb finger and pulling up with a slight rocking motion to free the cap from the button. Insert the designation tab, replace the cap on the button, and push down until the cap snaps into place.

Note: Tabs and opening on caps and buttons must align to properly lock cap to button just as the tabs on the inside of the button must align with the recess on the plunger assembly.
3.05 To remove 647-type keys from the panel assembly, the key and its mounting bracket are removed as one unit. Keys are removed from the panel assembly by removing the screw holding the bracket on the end which does not have an open slot, and loosening the screw at the open-slotted end of the key bracket until the key may be slid free. To electri-

Fig. 2 -Use of 363 Tool to Adjust Spring and Control Separation, 647-Type Key
cally disconnect the key, remove the plug retaining clip and disengage the plugs.
3.06 To replace a button lamp, the collar must be removed before the button may be removed to gain access to the lamp. Use a 553A tool to remove the lamp (Fig. 1).

LEVER-TYPE KEYS

3.07 Refer to Section 032-709-701 for requirements and adjusting information on the lever-type keys.

VOLTMILLIAMMETER

3.08 The meter in the test desk should be periodically checked for accuracy in accordance with Test A in Part 4. The specification on the S9A meter requires $\pm 1 \%$ accuracy.

SWITCHBOARD

3.09 The switchboard clock operates on 18 to 24 volts ac. The clock cover is held in place by magnets and is removed from the front by pressing against any of the upper corners. The clock cover must be removed to set the clock. A slotted screw is provided on the right side of the clock for setting the seconds and minutes numerals. To set the seconds and minutes numerals, place a screwdriver in the slot and press in before turning the screw counterclockwise. A push switch with normally closed contacts controls the power supply to the clock. Depress the switch to stop the clock. A knurled trunk wheel is provided for setting the hour numerals.

SPEAKERPHONE SYSTEM

Remove power from 55-type control unit before attempting any maintenance of speakerphone components.

3.10 If speakerphone system transmits but does not receive:

(1) Visually inspect for loose or broken SP1 and SP2 leads between loudspeaker and 55B control unit. Refer to SD-1C379-01.
(2) Replace 761A loudspeaker, if defective.
3.11 If speakerphone system receives but does not transmit:
(1) Check for loose or broken M1 and M2 leads between the transmitter and 55B control unit. Refer to SD-1C379-01.
(2) Replace 667B transmitter unit, if defective.
3.12 If volume control does not vary loudspeaker volume:
(1) Check for loose or broken P1 lead between the transmitter and the 55B control unit.
(2) Check for defective volume control.
(3) Verify control unit is operating properly. Refer to Section 512-620-100 for information on the 55 -type control unit.

3.13 If amplifier in receiver and/or transmitter unit(s) is poor:

- Replace defective 55B control unit.

3.14 If incoming speech is choppy:

(1) Room conditions may cause voice-switching or choppiness of incoming speech.
(2) Move SP2 loudspeaker lead from terminal 29 to terminal 30 on 55 B control unit to compensate for room conditions which cause choppiness in incoming speech.

EQUIPMENT MAINTENANCE

A. Incoming and Outgoing Test Trunks

3.15 If a test trunk cannot be seized by operating an incoming or outgoing key button, verify the start signal is received by the position control circuit as follows:
(1) Connect voltmeter to base of ST transistor (terminal 25 of CC terminal strip) on the trunk switching circuit of the J95005EA-1 position control unit.
(2) Meter should read zero voltage.
(3) Depress outgoing or incoming trunk button.
(4) Meter should read 4.5 Vdc. Relays LOA and BSA lock operated.
(a) If meter stays at 0 voltage or 4.5 Vdc , check wiring of chaining switches for the incoming and outgoing trunk selection keys.
(b) If meter reads approximately 48 Vdc , check the ST transistor.
3.16 If the test trunk cannot be seized by the control circuit, perform the following tests:
(1) Verify at least one headset is properly plugged into one of the headset jacks.
(2) Verify AP relay in position control circuit and CO and CO 1 relays of the control group test trunk lock operated when PRI button is operated.
(3) Depress SEC button associated with the same control group. Verify AS relay locks operated.

AP relay releases if test trunk was transferred from primary to secondary test circuit.
(4) Depress SO button associated with the same control group. Verify relay ASO locks operated. AS relay releases if test trunk was transferred from secondary test circuit.
(5) Perform Test B in Part 4 for a step-by-step check of control circuit relays.
(6) If test circuits cannot be seized after proper operation of all relays is verified, check to ensure that all control keys are properly connected. Check for loose or broken connections.
3.17 Adjustable relays in the secondary ringing circuit, test trunk circuits, and test and notest central office trunks should be checked periodically for proper operation. Malfunctions may develop and not be detected in normal use, especially in circuits which are infrequently used.
3.18 If busy (BY) indicator does not illuminate when PRI, SEC, or SO test circuit is seized, perform the following tests:

The BY indicator will not illuminate when the test circuits are connected to main distributing frame (MDF) test trunks, since MDF trunks bypass the test trunk circuit of the position control circuit.
(1) Depress incoming or outgoing test trunk button.
(2) Verify TA, TB, or TC relay operates, when seizing a test or no-test trunk. (Relays will not operate when MDF trunks are seized.)
(3) Block the TM0 relay, nonoperated, to bypass the control circuit.
(4) Manually operate the ST relay.
(5) Verify BA and BID relays operate when ST relay is operated.
(6) If BA and BID relays do not operate, check wiring of lockout control circuit. Verify ground is connected to punching 6 F of BA relays and 10 F of BID relay. Check for loose or broken
connections to the incoming or outgoing test trunk keys.

B. Visual Indicator Circuit

3.19 If no numeral is displayed in the visual

 indicator tube, when the VI button is depressed, make the following tests:(1) Block L relay operated.
(2) Measure 130 Vdc on terminal 1 of L relay.
(3) Connect one cord of a test receiver to -48 Vdc and observe the numerals which appear in the visual indicator while connecting the opposite cord of the test receiver to the following punchings:

(4) If correct numerals are made to appear on the visual indicator while proceeding through Step 3, check wiring of visual indicator lockout circuit.
(5) If numerals do not appear on the visual indicator when completing Step 3 , the visual indicator tube may be defective.

C. Group Busy Indicator

3.20 If the group ($G B$) indicator does not illuminate when all outgoing test trunks in a trunk group are seized or made busy, make the following tests:
(1) Measure -48 Vdc at L coil terminal of GB relay.
(2) Measure -48 Vdc on 10 M of last BY relay in the trunk group.
(3) Block last BY relay operated.
(4) Measure -48 Vdc on 10 M of next lower BY relay.
(5) Continue Steps 3 and 4 until -48 Vdc is measured at all BY relays in the trunk group.
(6) If the group busy indicator does not function properly after completing Step 5, verify that the outgoing trunks keys are properly wired and there are no loose or broken connections.

D. Dial Testing Circuit

3.21 If the dial test (DT) indicator does not illuminate when SET 10 or 18 key is operated, verify that the position relays $D T$ and DT1 are operated.
3.22 If the position meter cannot be adjusted to the 10 V or 18 V setting for making a dial test, perform the following checks:
(1) Verify C, P and P1 relays in the dial testing circuit operate.
(2) Verify G resistor in dial testing circuit has one side connected to ground.
(3) Verify G resistor is a 400 -ohm resistor.
3.23 If the subscriber does not receive dial tone when the dial test key is operated, verify that the DT relay in the dial testing circuit operates.
3.24 If there is no meter reading when dialing zero, perform the following checks:
(1) Verify that the P and P1 relays follow the dial pulses when dialing with the SET 10 or 18 key and dial test key operated.
(2) Check the C relay releases when the dial test key operated.
(3) Check C capacitor.
E. Conductor Identification Tone Circuit
3.25 If no conductor identification tone is heard when the sounder (S) key is oper-
ated:
(1) Verify TN1 relay operated.
(2) Verify ST relay associated with the conductor identification tone circuit operates.
3.26 A steady conductor identification tone indicates the tuned circuits are not oscillating.
Check for a short or open in the T1 transformer and L1 inductor.

F. Buzzer Circuit

3.27 If buzzer does not operate:

(1) Verify TN relay operates.
(2) Measure for 105 Vdc between the buzzer and 6 B of TN relay.
G. Line Insulation Breakdown Circuit
3.28 If no breakdown voltage is applied to circuit when BT1 or BT2 key is operat-
ed:
(1) Verify position relays $\mathrm{BD}, \mathrm{BD1}$, and BD 2 operate when BT 1 key is operated or BD and BD 2 relays operate when BT2 key is operated.
(2) Verify BY and G relays in the breakdown test circuit operate.
3.29 If selector for line insulation breakdown steps to terminal 2 and stops:

- Measure for 105 Vdc between terminal 1 B and 17 of SC relay.
3.30 If selector steps slowly (20 seconds) to complete the line insulation breakdown cycle:
- SC relay is not operating properly. SC relay should operate more rapidly after stepping off step 2 of the selector.
3.31 If maximum breakdown is not applied for a 3 second interval:
(1) Verify S and S1 relays in breakdown test circuit operate.
(2) Verify ground is present on wiper terminal of ARC 6.
3.32 If selector switch does not stop after two cycles:
- Check EC relay in breakdown test circuit operates.

4. METHOD

STEP
ACTION

A. LTD Meter Calibration

DC Voltmeter

1 Connect a KS-20599 L4 VOM to the (-) and 120V, 1.2 mA terminals of the LTD meter.

2
$3 \quad$ Operate the VM-REV key.

4
Compare the readings of the KS-20599, L4 VOM and the LTD meter.
Zero the pointer of the LTD meter if necessary.

6
Transfer the KS-20599, L4 VOM lead from the $120 \mathrm{~V}, 1.2 \mathrm{~mA}$ terminal of the LTD meter to the $60 \mathrm{~V}, 1.2 \mathrm{~mA}$ terminal.
6. Operate the 60 V key and compare the meter readings.

VERIFICATION

LTD meter set on zero.

CORRECTIVE ACTION

Replace LTD meter.
LTD meter indicates between 99 and 101 volts.

CORRECTIVE ACTION

Adjust or replace batteries or check test voltage power supply.

KS-20599, L4 VOM indicates within 1.0 volt of the LTD meter.

CORRECTIVE ACTION

Replace LTD meter.

The KS-20599, L4 VOM indicates between 49 and 51 volts.

CORRECTIVE ACTION

Adjust voltage of batteries or adjust power supply level.

Note: The 100 V level must be rechecked if adjustment to the power supply is made.

The LTD meter indicates within 0.6 volts of the KS-20599, L4 VOM.

ACTION
VERIFICATION

CORRECTIVE ACTION

Replace LTD meter.
7 Transfer the KS-20599, L4 VOM lead from the $60 \mathrm{~V}, 1.2 \mathrm{~mA}$ terminal to the $24 \mathrm{~V}, 1.2 \mathrm{~mA}$ terminal of the LTD meter.

8 Release the 60 V key and operate the 24 V key. Compare the meter readings.

9 Transfer the KS-20599, L4 VOM lead from the $24 \mathrm{~V}, 1.2 \mathrm{~mA}$ terminal to the $24 \mathrm{~V}, 24 \mathrm{~mA}$ terminal of the LTD meter.

10

Release the 24 V key and operate the 24 mA key. Compare the meter readings.

The KS-20599, L4 VOM meter indicates between 19 and 21 volts.

CORRECTIVE ACTION

Adjust voltage of batteries or adjust power supply level.

Note: The 100 V and 50 V levels must be rechecked if adjustment to the power supply is made.

The LTD meter indicates within 0.24 volts of the KS-20599, L4 VOM.

CORRECTIVE ACTION
Replace LTD meter.

VERIFICATION

11 Return all keys to normal position.
12 Disconnect the KS-20599 L4 VOM from the LTD meter terminals.

Milliammeter

13 Block operated the STA relay of the LTD.
14 Set the 0 to 600 ohms rheostat to its maximum resistance position.

15 Connect a KS-20599, L4 VOM in series with the LTD meter, the $0-600 \mathrm{ohm}$ rheostat, (set for 600 ohms) and 48 -volt battery as shown in Fig. 3. The lead to ground must be supplied for this test.

Fig. 3-Milliammeter Calibration Circuit-480mA Connection

16 Set the KS-20599, L4 VOM to the 100 mA DC scale.

Decrease the resistance of the rheostat until the KS-20599, L4 VOM indicates 80 mA .

Observe the reading of the LTD meter.
LTD meter indicates within 4.8 mA of the KS20599, L4 VOM.
CORRECTIVE ACTION
Replace LTD Meter.

Connect a KS-20599, L4 VOM to the LTD meter and resistor as shown in Fig. 4. Ground the 1.2 mA lead of the LTD meter.
Disconnect all test connections.

LTD Meter indicates within 14.4 mA of the KS20599, LA VOM.

CORRECTIVE ACTION

Replace LTD meter.
Repeat Steps 17 and 18 for a current of 480 mA . LTD meter indicates within 28.8 mA of the KS20599, L4 VOM.

CORRECTIVE ACTION

Replace LTD meter.

Fig. 4-Milliammeter Calibration Circuit - 1.0 mA Connection

Set the KS-20599, L4 VOM to the 1 mA DC scale.

Compare the reading of the LTD meter and the KS-20599, L4 VOM meter.

KS-20599, L4 VOM indicates approximately 0.6 mA .
LTD meter indicates within $\pm 0.006 \mathrm{~mA}$ of the KS-20599, L4 VOM.

Disconnect all test connections.
Release the STA relay.

AC Voltmeter

29 Connect $12 \mathrm{~V}, \pm 0.5 \mathrm{~V}, 60 \mathrm{~Hz}$ from a transformer or autotransformer between the ring lead of the test desk and ground.

30 Measure the voltage applied between the ring lead of the desk position and ground using the KS-20599, L4 VOM set to the 100 V ac scale.
$31 \quad$ Operate the AC and 24 V keys.

VERIFICATION

CORRECTIVE ACTION

Replace LTD meter.
KS-20599, L4 VOM indicates approximately 1.0 mA .
LTD meter indicates within $\pm 0.01 \mathrm{~mA}$ of the KS-20599, L4 VOM.

CORRECTIVE ACTION

Replace LTD meter.

LTD meter reads within ± 0.5 volts of the KS20599, L4 VOM reading.

CORRECTIVE ACTION

Strap resistors AC4-AC8 to obtain a reading between 11.5 and 12.5 volts.

LTD voltmeter indicates between 99 and 101 volts.

LTD voltmeter indicates zero volts.
LTD voltmeter indicates between 116 and 118 volts.

Release the -STA and VM REV keys.

B. Primary and Secondary Test Circuits

Primary Test Circuit

1 At LTD-
Depress an idle OG trunk key.

2
3 Operate the DIAL (PRI) or KP (PRI) key, depending upon the type of trunk seized.

4 Dial or keypulse the number of an incoming talk trunk terminated on an adjacent desk position.

Release the DIAL or KP key.
Ring the telephone with the $\pm T, \pm R$, or $+T,-T$, +T , or -R keys as required.

Operate T and RCCI (PRI) keys.
Verify the connection between the two desk positions.

VERIFICATION

CORRECTIVE ACTION

Replace batteries or check test voltage power supply.

LTD voltmeter indicates between 116 and 118 volts.

CORRECTIVE ACTION

Replace batteries or check test voltage power supply.

LTD volmeter indicates zero volts.

The depressed OG key lights.
CORRECTIVE ACTION
Check OG key contacts.
The PRI (A) button lights.
Relays DB, NP, DA, and D operate. S (sender) lamp lights.

PRI lamp lights when connection is established.
Adjacent desk position rings, indicated by a flashing lamp.

CORRECTIVE ACTION

Check contacts of ringing keys.

Talking connection established between the two desk position.

CORRECTIVE ACTION

Check T and RCCI (PRI) key contacts.

STEP

Secondary Test Circuit

Release the T and RCCI (PRI) keys and operate the M (PRI) key.

Release the $\mathrm{M}(\mathrm{PRI})$ key and operate the $\mathrm{T}(\mathrm{PRI})$ and SEC CO keys.

Release the T(PRI) and SEC CO keys and operate the $3 W 0$ (PRI) key.

Release the 3WO (PRI) key.
Operate the X key.

Release the X key.

Operate the DIS (A) button.

Depress an idle OG trunk key.
Depress the SEC(A) button.

Operate the DIAL (SEC) or KP(SEC) key, depending upon the type of trunk seized.

VERIFICATION

Talking at the terminating position can be heard at the originating desk positon but not vice versa.

CORRECTIVE ACTION

Check the M (PRI) key contacts.
Talking at the terminating desk position can be heard at the originating desk position but not vice versa.

CORRECTIVE ACTION

Check the SEC CO key contacts.
Primary lamp is extinguished

CORRECTIVE ACTION

Check the 3WO key contacts.
The primary lamp lights.
The primary lamp extinguishes and the secondary lamp lights.

CORRECTIVE ACTION

Check the X key contacts.
The secondary lamp extinguishes and the primary lamp lights.

All lamps extinguished.

The depressed OG key lights.
The SEC(A) button lights.
CORRECTIVE ACTION
Check the SEC(A) button contacts.
Relays DD, NS, DC, and D operate.

STEP

VERIFICATION

Dial or key pulse the number of the incoming talk trunk at an adjacent test position.

Release the DIAL or KP key.
The secondary lamp lights.
Ring the position with the appropriate secondary ringing key.

Go off-hook at the nearby test position.
Nearby test position rings, indicated by flashing light or buzzer, indicating an incoming call.

Lamps lights steady or buzzer silences indicating an off-hook condition.

Operate the T(SEC) key.
Verify the connection to the adjacent desk position by answering the incoming call.

Good connection established between the two positions. TR lamp lights indicating tip ringing.

CORRECTIVE ACTION

Check the T(SEC) key contacts.
Talking at the terminating position can be heard at the originating desk position but not vice versa.

CORRECTIVE ACTION

Check the M(SEC) key.
Release the M(SEC) key.
Operate the SEC/CO key.

Release the SE4CO key.
Talking at the terminating position can be heard at the originating desk poition but not vice-versa.

CORRECTIVE ACTION

Check the SEC/CO key.
All lamps extinguished.
C. Test Circuit Selection and Disconnect

Note: This test requires the aid of a second craft person stationed at the relay test rack.

At LTD, depress desk position PRI(A) key.

Momentarily operate the relays indicated in the steps of Table C.

Lamps PRI(A) amd BY(A) light. Relays AP, CO, and CO1 lock operated.

Relay specified in Table C operates or a specified relay operates or releases.

CORRECTIVE ACTION

If the relay not specified operates or a specified relay does not operate or release, clear this trouble before proceeding.

If the test circuit still cannot be selected, check the wiring of the desk position control keys.

TABLE C

ACTION

VERIFICATION

D. Outgoing Trunk Connection, Disconnect, and Group Busy Tests

Note: This test requires a second craft person stationed at the trunk switch bay J95005F for Steps 1 through 8, and at the trunk switch bay, J95005D for Steps 9 through 14. Set up talking circuits between the test desk position and the trunk switch and trunks bays.

Seizure

1 At LTD, insert an operator headset into the desk position telephone jacks.

Depress a second OG key.

Depress a third OG key.

The depressed OG key and lamp ON(A) light. Relays TA, LOA, and BSA lock operated.
At the trunk switch bay, the first hold magnet associated with the test desk position operates.

CORRECTIVE ACTION

If the relay TA does not operate, block nonoperated the TMO relay.
Manually operate the ST relay and verify BA and BID relays operate.
Release TMO relay.
(a) If these relays do not operate, check wiring of lockout control circuit and verify ground at 6 of BA relays and 10 of BID relays.
(b) If these relays do operate, check wiring of OG selection keys.

The depressed OG key and OG key and lamp ON(B) light.
Relays TB, LOB, and BSB lock operated.
At the trunk switch bay, the second hold magnet associated with this test desk position operates.

CORRECTIVE ACTION

If relay TB does not operate, perform the corrective action of Step 2.

The depressed OG key and lamp ON(C) light. Relays TC and LOC lock operated.
At the trunk switch bay, the third hold magnet associated with this test desk position operates.

CORRECTIVE ACTION

If relay TC does not operate, perform the corrective action of Step 2.

STEP

5

Disconnect

6 Depress desk position key DIS(A).

7 Depress desk position key DIS(B).

8
Depress desk position key DIS(C).

Group Busy

9 Depress an assigned OG key.

10 At the trunk bay, block operated the remaining BY relays in the same trunk group.

Note: Instead of blocking operated the BY relays, the same OG key at other positions may be operated to operate the BY relays. After a group busy indication, operate DISC key at the positions to release BY relays.

11 Depress the same OG key depressed in Step 9.
popa aco

STEP

ACTION

Operate $\operatorname{IDS}(\mathrm{A})$ key.
Repeat Steps 9 through 12 for each assigned OG key in the test desk position.

E. Incoming Trunk Test

Seizure

1 At a nearby telephone, dial the number associated with an incoming test trunk of the desk position.

2 Depress the desk position IC key.

3 Depress the desk position $\operatorname{PRI}(\mathrm{C})$ key.

Hold

4
Depress the HOLD key.

5
Depress the IC key again.

Disconnect

6 Depress the desk position $\operatorname{DIS}(\mathrm{C})$ key.
$7 \quad$ Hang up the phone used to seize the incoming trunk. trunk.

At LTD, the BSY lamp corresponding to the seized incoming trunk flashes at 60 IPM at all desk positions.
Relays IC and LOC operate.
Lamps $O N(C)$ and the IN lamp associated with the seized trunk light.

The PRI(C) lamp lights at that desk position and the BSY lamps at all desk posistions light steadily.

The desk position IC and $\mathrm{ON}(\mathrm{C})$ lamps extinguish.
Relay IC and LOC release.

CORRECTIVE ACTION

Check HOLD key contacts.
Incoming trunk is reseized. Lamps IC and ON(C) light. Relays IC and LOC operate.

The IC, ON(C), and BSY lamps at the desk position extinguish.
Relays IC and LOC release.
The BSY lamps at all other desk positions extinguish.
F. Talking Trunk Test

Note: This test requires two nearby test telephones, to which test calls can be made, and a craft person to answer each telephone.

STEP

ACTION

VERIFICATION

Seizure

1 Insert an operator headset into the desk position telephone jacks.

2 Depress an assigned talk trunk key TK.

3 Dial the number assigned to the test telephone.
4 Have the craft person answer the telephone.
$5 \quad$ Verify that a good talking connection exists between the desk position and the test telephone.

6
$7 \quad$ Operate the REL key in the keystrip.
8 Repeat Steps 2 though 7 for the remaining assigned TK keys in the keystrip.

Bridging

Establish a connection to a test telephone (phone A) by performing Steps 2 through 5 .

Depress the red HOLD key in the keystrip.

A good talking path is established between the desk position and phone A.

Phone A is placed on hold.
TK key used to call phone A flashes at 120 IPM.

CORRECTIVE ACTION

(a) Check that CT, S, and S 1 relays in the telephone circuit release.
(b) On the trunk bay, check that the A relay releases and the H relay operates.
(c) If the S and S 1 relays do not release, check wiring of the HOLD key.

G. Visual Indicator Test

1 At the LTD, depress the desk position OG key that has the greatest number of trunks in the group three times.

2
Establish a connection to a second test telephone (phone B) by performing Steps 2 through 5.

Hold down the TK key used to call phone B and depress the TK key that is on hold.

Verify that a good talking connection exists between the two test telephones and the desk position.

Have the craft persons place the test telephones on-hook.

Depress the REL key in keystrip.
Repeat Steps 2 through 15 for all other assigned TK keys in the remaining keystrips.

Observe the visual indicator as the following keys are operated:

KEYS
VI(A)
VI(B)
VI(C)

Note: The visual indicator can be verified only for the maximum quantity of trunks in a group, for example:

2 trunks 0,1
7 trunks 0 through 6

VERIFICATION

A good talking path is established between the desk position and phone B.

The craft persons at the two test telephones can talk to each other and the test desk position operator.

CORRECTIVE ACTION

Check the TK key contacts.

The visual indicator lights as indicated.

\curvearrowleft

3 At the trunk bay, J95005D, lock operated BY. relays.

4 At the desk position, depress the DIS (A, B, C) keys and again depress the same OG key of Step 1 three times.

5
Observe the visual indicator as the following keys are operated.

Repeat Steps 3 through 5 for trunks 6, 7, 8, and 9 of the same trunk group, if provided.

ACTION

H. Potentiometer Circuit

Connect one lead of the KS-20599, L4 VOM, set to measure resistance, to punching 48 of $\mathrm{TS}(\mathrm{A})$ and the other lead to the $(-)$ terminal of the desk position meter.

Set potentiometers SW1, SW2, and R to each position shown in Table D and observe KS20599, L4 VOM for each setting.

Note: SW1 is 0 through 2 Kohms, SW2 is 0 through 1 Kohms, R is 0 through 100 ohms.

KS-20599, L4 VOM indicates zero resistance.

KS-20599, L4 VOM readings are within $\pm 10 \%$ of that indicated in Table D.

CORRECTIVE ACTION

Replace faulty switches or resistors.

Disconnect the KS-20599, L4 VOM and return all switches to normal.

TABLE D

	SWITCH POSITIONS		
SWI	SW2	R	RESISTANCE IN OHMS
0	0	0	0
1 K	0	0	1000
2 K	0	0	2000
2 K	100	0	2100
2 K	200	0	2200
2 K	300	0	2300
2 K	400	0	2400
2 K	500	0	2500
2 K	600	0	2600
2 K	700	0	2700
2 K	800	0	2800
2 K	900	0	2900
2 K	1 K	0	3000
2 K	1 K	50	3050
2 K	1 K	Fully clockwise	3100

I. Receiver OFF-Hook Tone Test

Note: This test requires a second craft person at a second position.
1 At that position under testDepress an idle OG trunk key.

2 Depress the SEC(a) button.
3 Operate the DIAL(SEC) or $\operatorname{KP}(\mathrm{SEC})$ key, depending upon the type of trunk seized.

4

5
6 Test the connection by operating the T(SEC) key.
Dial or key pulse the number of an incoming trunk at an adjacent test position.

Release the DIAL(SEC) or KP(SEC) key.

7 Danger: When listening for howler tone, hold the headset away from the ear.
$7 \quad$ Release the $\mathrm{T}(\mathrm{SEC})$ key and operate the H key. Wait approximately 1 minute for the howler circuit to cycle to completion.

8 Depress the DIS(A) button.
9 Return all keys to the normal position.

J. Night Alarm Key Test

1

2

At LTD, operate the NA key.

Connect a ground to punching 27 of $\mathrm{TS}(\mathrm{F})$.

The depressed OG key lights.

The SEC(A) button lights.

A good talking connection is established in both directions.

CORRECTIVE ACTION

Check the T(SEC) key contacts.

The desk position H lamp flashes at 60 IPM. The howler tone is heard at the second desk position.

CORRECTIVE ACTION

Check for operation of the H and H 1 relays.

The NA key lights.

CORRECTIVE ACTION

Check NA key contacts.
A beep tone is heard at the desk position.

STEP

K. Dial Speed Indicator or TOUCH-TONE Frequency Test

Operate the DIAL TEST key.

VERIFICATION

The NA key light is extinguished and the beep tone is silenced.

CORRECTIVE ACTION

Check NA key contacts.

The depressed OG key lights.
The PRI(A) button lights.

A good connection is established between the two positions.

The DT lamp on the desk position under test flashes at 60 IPM , and the DT lamps at the other three associated positions light steadily.

CORRECTIVE ACTION

Check for operation of relays DT and DT1.

Desk voltmeter indicates 10 V on the 24 V scale.

CORRECTIVE ACTION

Check the operation of the C, P, and P1 relays in the dial testing circuit (SD-96335-01).

Dial tone is heard at the second desk position.

CORRECTIVE ACTION

Check the operation of the DT relay.

10a At the second desk position-
Dial zero.

11a At the position under testObserve the desk position voltmeter.

VERIFICATION

The desk voltmeter needle assumes a new position about which it vibrates momentarily and then falls to zero.

The indication just prior to the needle falling to zero indicates the dial speed in pulses per second and should, in this case, be 10 on the 24 scale.

CORRECTIVE ACTION

At the dial testing circuit (SD-96335-01):
(a) Verify that the P and $P 1$ relays follow the dial pulses and that relay C releases.
(b) Check the C capacitor.

Dial tone is heard at the test telephone.
The desk voltmeter needle final indication (before dropping to zero) is less than 10 on the 24 scale.

Dial tone is heard at the test telephone.

CORRECTIVE ACTION

Check the DIAL TEST key contacts.
The desk voltmeter needle final indication (before dropping to zero) is greater than 10 on the 24 scale.

The DT lamps at the desk position under test and associated desks extinguish.

The DT lamp on the desk position under test flashes at 60 IPM and the DT lamps at the three other associated desk positions light steadily.

CORRECTIVE ACTION

Check the SET 18 key contacts.
The desk voltmeter indicates 18 V on the 24 V scale.

CORRECTIVE ACTION

Check the operation of the C, P, and P 1 relays in the dial testing circuit (SD-96335-01).

Operate the DIAL TEST key.

At the second desk position Dial zero.

At the position under testObserve the desk position voltmeter.

Release the DIAL TEST and SET 18 keys.

At the desk position under testIf TOUCH-TONE dialing testing is required, operate the desk TT key.

At second desk position-
Dial a preliminary digit, if required, followed with the operation of all TT dial buttons in order; left to right and top to bottom.
10-button dial-No preliminary digit
12-button dial-preliminary digit 4
16 -button dial-Preliminary digit 5 .

Dial tone is heard at the test telephone.

CORRECTIVE ACTION

Check the DIAL TEST key contacts.

The final meter indication is less than 18 V (approximately 10 V) on the 24 V scale.

The DT lamp at the desk position under test and at the associated desk extinguishes.

Dial tone signal heard at test position and second desk position headset.
(A busy signal heard at the test desk position only indicates that all TOUCH-TONE dialing frequency test circuits are busy.)

CORRECTIVE ACTION

Troubleshoot TOUCH-TONE dialing frequency test connector circuit or TOUCH-TONE dialing frequency test circuit.

Tone signals are heard with the following indications:
(a) Two bursts of high tone, indicating dial is operating properly.
(b) One burst of high tone, indicating failure of one of the following conditions:
Incorrect level of a digit
Incorrect frequency of a digit
Incorrect sequence of digits
Incomplete sequence of digits.
Sequence not complete within an approximate 15 -second interval.

CORRECTIVE ACTION
Troubleshoot TOUCH-TONE dialing frequency test circuit.

The SEC(A) and OG trunk key lights extinguish.

L. Conductor Identification Circuit Test

$9 \quad$ Release the BG key.
Operate the BG key.

Go on-hook at second test position.

Depress the DIS(A) key and return all keys to the normal position.

The depressed OG key lights.
The SEC(A) button lights.

CORRECTIVE ACTION

Check the SEC(A) button contacts.
Relays DD, NS, DC, and D operate.

Good connection established between the two positions.

CORRECTIVE ACTION

Check trunk circuit used to establish the talking connection.

A $500-\mathrm{Hz}$ warbled tone is heard at the second position headset after a 5 - to 10 -second delay. A buzzer in the desk position also operates.

CORRECTIVE ACTION

To change the volume of the tone heard at the test telephone, at the conductor identification tone circuit, (SD-95689-01), block operated the ST relay.
Adjust potentiometer P1 so that a voltmeter connected to the units TS, punching 1 and 3 , indicated +6 dBm .

The buzzer at the desk position is silenced.

CORRECTIVE ACTION

Check the BG key contacts.
The buzzer is heard.
The buzzer at the desk position is silenced.
The SEC(A) and the OG trunk button lights extinguished.
M. Electronic Voltmeter Test (SD-95596-01)

Note: This test requires the aid of a second craft person at the electronic voltmeter circuit location and a means of communication between that location and the desk position under test.

Insert No. 310 plug into the electronic voltmeter TST jack.

Set the KS-20599, L4 VOM to the 100V scale.
Connect the KS-20599, L4 VOM between terminal 5 of the electronic voltmeter electron tube and ground.

Disconnect the KS-20599, L4 VOM.
Change the scale of the KS-20599, L4 VOM to the 10 mA DC scale.

Connect the + and - leads of the KS-20599, L4 VOM to tip and ting, respectively, of the 310 plug.
Wait at least 1-1/2 minutes before making reading.

Disconnect the KS-20599, L4 VOM and remove the 310 plug.

Insert an operator's headset into the jacks at the desk position.

Operate the EL-VM key.
At the electronic voltmeter circuitSet both ADJ-1 and ADJ-2 potentiometers at midrange.

Operate the ADJ-100 key.
Adjust potentiometer ADJ-2 until LTD voltmeter indicates 100 V .

KS-20599, L4 VOM indiates 20 volts.

CORRECTIVE ACTION

Adjust voltage as close to 20 V as possible by means of straps on resistances E through H .

KS-20599, L4 VOM indicates at least 4.5 mA .

CORRECTIVE ACTION

Replace electronic voltmeter electron tube.

LTD voltmeter indicates 100 V .

CORRECTIVE ACTION

Check ADJ-100 key contacts. Replace ADJ-2 potentiometer.

Restore the ADJ-100 key to normal operate the HDJ-80 key.

Adjust potentiometer ADJ-1 until LTD voltmeter indicated 80 V .

Restore the ADJ-80 key to normal.
Repeat Steps 11 through 15 until the voltmeter readings remain stable.

At the test desk-
Operate the G (PRI) key.
Depress the S/C key (botton type) located on the upper right portion of the center panel of the desk position.

Release the G (PRI) key.
Release the S/C key.
Operate the FEMF keys.
Apply 24 V or 48 V CO battery to the ring of the primary test circuit.

Release FEMF key.
Remove the CO battery from the primary test cord ring.

Operate the MET-VM key.
Depress the S/C key.

LTD voltmeter indicates 80 V .

CORRECTIVE ACTION

Check ADJ-80 key contacts. Replace ADJ-1 potentiometer.

LTD voltmeter indicates approximately 100 V .

CORRECTIVE ACTION

Check G key contacts.
The LTD voltmeter indicates zero.

LTD voltmeter indicates approximately the voltage applied to the ring side of the primary test circuit.

CORRECTIVE ACTION

Check FEMF key contacts.
Voltmeter indicates zero.

LTD voltmeter indicates approximately 100 volts.

CORRECTIVE ACTION
Check MET-VM key contacts.

ACTION

Release the EL-VM and MET-VM keys.
Release the S/C key.
At the electronic voltmeter circuitBlock electronic voltmeter circuit relays B and C normal.

At the test desk positionOperate the EL-VM key.

Use the KS-20599 L4 VOM to check for ground on both the tip and ring of the primary test circuit.

At the electronic voltmeter circuitRemove the block from electronic voltmeter circuit relay B.

At the test desk position-
Check for ground on the tip of the primary test circuit using the KS-20599, L4 VOM.

Measure between the ring of the primary test circuit and ground using the KS-20599, L4 VOM set on the 100 V dc scale.

Release the EL-VM key.
At the electronic voltmeter circuitUnblock the C relay.

N. Constant Current Source Test (SD-97763-01)

1 Connect the (-) lead of the KS-20599 L4 VOM to the constant current source $\mathrm{TS}(\mathrm{A})$, punching 11.

Measure voltages with the KS-20599, L4 VOM as indicated in Table E.

VERIFICATION

Voltmeter indicates zero.

Ground indicated on the tip and ring of the primary test circuit.

Electronic voltmeter relay B operates.

Ground indicated on the tip of the primary test circuit.

KS-20599, L4 VOM indicates between 25 and 35 volts.

Voltages present is indicated in Table E.
CORRECTIVE ACTION
Check test voltage power supply.
tABLE E

CONSTANT CURRENT SOURCE TS(A) PUNCHING NO.	VOLTAGE READING VDC
15	+163
13	-136
17	-48

Connect a series combination of a 1 Kohms resistor and the KS-20599, L4 VOM between the position tip lead and ground.

Set the KS-20599, L4 VOM to the 100 mA scale.

Operate the CC and CR keys.

Operate the CN-NOP key and then the CC and CR keys.

Release the CN-NOP key.
Replace the 1 Kohms resistor of Step 3 with a 2 Kohms resistor.

Operate the CC and CR keys.

Operate the CN-NOP and then the CC and CR keys.

The position meter and KS-20599 L4 VOM indicate $41 \pm 1 \mathrm{~mA}$.

CORRECTIVE ACTION

Check constant current source or position meter circuit.

The desk position meter and the KS-20599 L4 VOM indicate $28 \pm 1 \mathrm{~mA}$.

CORRECTIVE ACTION

Check constant current source or position meter circuit.

The desk position meter and KS-20599, L4 VOM indicate $41 \pm 1 \mathrm{~mA}$.

CORRECTIVE ACTION

Check constant current source or position meter circuit.

The desk position meter and KS-20599, L4 VOM indicate $28.0 \pm 1 \mathrm{~mA}$.

CORRECTIVE ACTION

Check constant current source or position meter circuit.

The desk position meter and KS-20599, L4 VOM indicate $18.0 \pm 1 \mathrm{~mA}$.

CORRECTIVE ACTION

Check constant current source or keying circuit.

The desk position meter and KS-20599, L4 VOM indicate $11.5 \pm 1 \mathrm{~mA}$.

CORRECTIVE ACTION

Check constant current source or keying circuit.

Coin disposal voltages appear on the tip only and are within local office limits.

CORRECTIVE ACTION

(a) Check option ZP wiring.
(b) Check coin batteries or power supply and adjust or repair.

STEP
ACTION
VERIFICATION

TABLE F

OPERATE KEYS	test for
G and CC G and CR	Coin Collect Voltage Coin Return Voltage

4b If not equipped with dial tone first feature, option ZP -separately test the ring and tip leads for the voltage specified in Table G.

Coin disposal voltages appear on both the tip and the ring leads.
Coin voltages are within local office limits.
CORRECTIVE ACTION
Check coin batteries and power supply and adjust or repair.

TABLE G

OPERATE KEYS	tEST FOR
CC	Coin Collect Voltage
CR	Coin Return Voltage
CC and DO	Coin Collect and Booster Battery Voltages
CR and DO	Coin Return and Booster Battery Voltages

5 Restore all keys to normal.
6 Disconnect the KS-20599, L4 VOM.
P. Insulation Breakdown Test (SD-95772-01)

1 Connect one side of the KS-20599 L4 VOM to the desk position ground.

2 Depress the $\operatorname{PRI}(\mathrm{A})$ button.
3 Set the KS-20599 L4 VOM to the 1 KV DC scale.
Danger: This test requires the measurement of high voltages.

Operate the BT1 key.

Measure the 200 V on the tip and ring conductors of the trunk being used.

VERIFICATION

Lamp BT at the test position flashes while the BT lamp at the associated positions lights steadily.

CORRECTIVE ACTION

Check the BT1 key contacts.
200 V present on the ring conductor only:

CORRECTIVE ACTION

(a) Check operation of the BD, BD1, and BD2 rlays.
(b) Check the breakdown test circuit per SD-95772-01.

All BT lamps extinguish when the test is completed.

Lamp BT at the test position flashed when the BT lamp at the associated positions lights steadily.

CORRECTIVE ACTION

Check the BT2 key contacts.
200 V present on both the tip and ring leads.

CORRECTIVE ACTION

(a) Check operation of the BD and BD 2 relays. (b) Check the breakdown test circuit per SD-96772-01.

All BT lamps extinguish when the test is completed.

Q. Call Circuits Test

Note: This test requires the aid of another test desk operator.

At LTD, depress one of the assigned call circuit (CC) keys.

The CC lamp at the called position flashes at 60 IPM.

VERIFICATION

CORRECTIVE ACTION

Check the CC button contacts.

Talking over the position headset can be accomplished between the two desk positions. The CC lamps at both positions flash until the call circuits are released.

The CC lamps at each position extinguish.
R. Remote Test System-Enhanced (Option ZY) Test

1 Connect KS-20599, L4 VOM, set to the 10 Kohm resistance scale, between ground and the pins on plug PAF or PAA as given in Table H.

Note: It will be necessary to disconnect plug PAF and PAA for this test.

TABLE H

CONNECT KS-20599 L4 VOM TO:		
PLUG	PIN	OPERATE AND RELEASE TEST DESK KEY
PAF	20	DIAL TEST
PAF	45	NOISE MET
PAF	21	NOISE LONG
PAF	46	BAL
PAF	22	FLT - V1/1 - TRK
PAA	12	FLT - V2/1 - TRK
PAF	47	FLT - V1/2 - TRK
PAF	23	FLT - V2/2 - TRK
PAF	48	TONE MET
PAF	24	TONE LONG
PAF	49	TRK ACC
PAF	25	CN - NOP
PAF	30	TOT

Operate and release the associated test desk key as given in Table H.

Ground is indicated on the pin each time the associated test desk key is operated.
(KS-20599, L4 VOM indicates zero ohms.)

CORRECTIVE ACTION

Check key contacts and associated wiring.

3 Disconnect KS-20599, L4 VOM
4 Connect plug PAA and PAF.

