
BEU SYSTEM PRACTICES

AT&TCo SPCS
SECTION 254-340-030

Issue 2, August 1982

m.

,n

..
$

.

.-
. ..

PROCESSOR/PROCESS MANAGEMENT

TASKS, EVENTS AND COMMUNICATION CONTROL,

SOFTWARE SUBSYSTEM DESCRIPTION

EXTENDED OPERATING SYSTEM, 3A PROCESSOR

CONTENTS

1. GENERAL

INTRODUCTION . . .

REFERENCES

PROCESSITASK PROGRAMS

2. SYSTEM CALLS

SYSTEM CALL OVERVIEW

3. PROCESS/TASK CREATION AND MANAGE-
MENT

.

.

.

.

.

.

PAGE

A. Process/Task Definition

B. Task Creation

c. Task Management

D. Task Termination

4. EVENTS AND EVENT MANAGEMENT . .

A. Event Purpose

B. Event State ,

c. System Events

D. Event Routines

E. Event Macros

2

2

2

2

3

3

3

3

4

5

5

5

5

6

6

7

7

CONTENTS

5. DISPATCHING

A. Task Dispatching (PIDENT DISPAT) .

B. Local Event Dispatcher (PIDENT EVTDIS)

.

6. INTERPROCESS COMMUNICATION . . .

A, lnterprocess/Task Overview . . .

B. Intertask Communication and Mkcella-
neous Administration

7. GLOSSARY

Figures

1. EOS Kernel Hierarchy

2. EOS Functional Structure

3. Task States .,..... . . .

4. Task Descriptor Layout

5. Event Flag and Mask Layout

6. EOS Call Structure

Tables

A. Abbreviations and Acronyms

B. Assembly Unit Identification

8

8

8

8

8

10

10

11

12

13

14

15

16

17

18

/-..
NOTICE

Not for use or disclosure outside the

Bell System except under written agreement

Printed in U.S.A. Page 1

SECTION 254-340-030

1. GENERAL

INTRODUCTION

1.01 Processor/process management consists of
severalfunctionssuch as the creation and ter-

mination of tasks, allocating the processor to tasks
which are ready to execute, coordinating task and

n

ertask communication (event management). This
tion describes the process/task creation, dispatch-

event management, intertask communication,
an; the supervisor call (SVC) structure as applied to
the 3A Central Control (3A CC) and the Extended
Operating System (EOS).

1.02 The specific reasons for reissuing this section
are:

●

●

●

●

●

Add text for state transitions of event flags

Add text to include use of event flags

Include the SWAP.EVENT macro

Change the event flag states and mask exam-
ple in Fig. 5

Add program name changes to text and Table
B.

Revision arrows are used to emphasize the more sig-
nificant changes. Equipment Test Lists are not af-
fected.

REFERENCES

1.03 The following Bell System Practices may aid
in understanding this section:

SECTION TITLE

254-300-120 3A Central Control, Theory of
Operation, Common Systems

254-340-001 Extended Operating System,
Overview, Software Subsystem
Description, Extended Operating
System, 3A Processor

254-340-014 Memory Protection and Organiza-
tion, Software Subsystem De-
scription, Extended Operating
System, 3A Processor

254-340-031 Processor/Process Management,
Interrupt Handling and Timer

SECTION TITLE

Management, Software Subsys-
tem Description, Extended Oper-
ating System, 3A Processor

----j

254-340-100 Introduction to 3A Language, 3A
Processor Common Systems

254-340-102 Basic and Extended 3A Processor
Instruction Set, 3A Processor
Common Systems

254-340-106 Extended Operating System
Macros and Glossary.

1.04 A list of abbreviations and acronyms used in
this section is provided in Table A. For a more

complete list of associated abbreviations and acro-
nyms for the Extended Operating System 3A Proces-
sor, refer to Section 254-340-106. Assembly Unit
Identification is provided in Table B.

PROCESS/TASK PROGRAMS

1.05 A system of programs and subprograms is
accessed to provide the mechanism for pro-

cess/task creation, event management, and interpro-
cess communications. The major programs accessed
to provide these functions are

(a) OThe Message Manager (MSGMGR PR-4C153)
program identification (PIDENT) forwards

messages and replies and provides miscellaneous
message administration. The MSGMGR PIDENT
also implements SVC 2 and SVC 3.

(b) The Miscellaneous Process Control (PROCON
PR-4C155) PIDENT provides miscellaneous

process/task control and implements SVC 5.

(c) The Operating System Process Dispatcher
(DISPAT PR-4C150) PIDENT returns control

to an interrupted system routine, process/task, or
to a new process/task, as appropriate. The
PIDENT is entered via a GOTO DISPAT instruc-
tion.

(d) The Process Event Dispatcher (EVTDIS PR-
4C151) PIDENT gives control to a specified

event routine.

(e) The Lab Operating System Tables (LOSTAB
PR-4C147) PIDENT provides the various ap-

.---y

Page 2

1SS2, SECTION 254-340-030

?,

.

.
1

.
.

plication parameters which define the system
hardware and software con figuration.t

2. SYSTEM CALLS

SYS1’EM CALL OVERVIEW

2.01 System calls provide the means for EOS or
application tasks to request services from the

EOS kernel functions. System calls are analogous to
software interrupts in that the task making such a
request is, in effect, interrupting itself and relin-
quishing control of the processer to another task. At
the conclusion of the request, control mayor may not
be returned directly to the requesting task, depend-
ing on how many higher priority tasks have been
placed on the ready list. Supervisor calls are imple-
mented by use of EOS macros which expand into an
SVC instruction. The system service call functional
structure is described in this part; and the functional
processing for each type of service call is described in
the process management part to which it pertains, eg,
event control, intertask communication, etc.

2.o2 The EOS active system call macros provide
the means of implementing SVCS. System

macros are divided into ten major categories with
each category representing a major functional ele-
ment. The active system call macros include a super-
visor call instruction as part of the expansion. The
ten major categories of EOS macros are:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Timer control

Event control

Current process control

Interprocess communication

Storage control

External process control

Input/output (1/0) control

Maintenance

General purpose

(10) File system.

The supervisor instruction in the active system call
macros is in the form “SVC n“ where n is equal to a

number designating a specific index into a service
transfer vector which is located at memory locations
40 through 5F (Hex) in the write-protected first 4K
of store. Refer to Section 254-340-106 for the system
macro descriptions and to Section 254-340-014 for the
description of EOS memory organization.

2.03 The service transfer vectors as defined in
LOSTAB are comprised of a series of entries

each specifying a transfer vector entry number, a
PIDENT, and an entry point. The transfer vectors
(pertaining to this section) as described in LOSTAB
are structured as follows:

(a) $ Transfer Vector for SVC 2: The main
entry point for SVC 2 is SENDMGWG in

PIDENT MSGMGR. Logic at SENDMGWG pro-
vides interprocess communication by sending or
forwarding of messages and replies.

(b) Transfer Vector for SVC 3: The main
entry point for SVC 3 is MSGSVC3 in PIDENT

MSGMGR. The MSGSVC3 subroutine provides
interprocess communication by testing or retriev-
ing messages.

(c) Transfer Vector for SVC 4: The main
entry point for SVC 4 is MWAIT in PIDENT

PRSTAT. Process and event control is provided by
logic at MWAIT by placing a process in the WAIT
state until a set of specified events occurs.

(d) Transfer Vector for SVC 5: The main
entry point for SVC 5 is PRC in PIDENT

PROCON. Miscellaneous process control functions
are provided by logic at PRC.4

The functional descriptions of processing resulting
from a supervisor call are described in the following
paragraphs of this section.

3. PROCESS/TASK CREATION AND MANAGEMENT

A. Process/Task Definition

3.01 The basic operating structure of the EOS con-
sists of system or application defined pro-

cesses or tasks. A process is the execution of a series
of programs with the order of execution being speci-
fied by a file of commands. A task is a program or
execution module with all the necessary information
to provide asynchronous execution. Since EOS is a
task-oriented system, the term “task” will be used

Page 3

SECTION 254-340030

when referring to a process or task, and differentia-
tion between the two will be made only where neces-
sary.

3.02 The EOS manages the control and availability
of the system resources, the passing of control

between the application and system task, and the
flow of information between loosely coupled asyn-
chronous application tasks. The EOS management is
implemented by using two levels (or modules)—the
EOS process level and the EOS kernel level. The ker-
nel level consists of the following hierarchy (Fig. 1)
of main functions:

(a) Dispatcher

(b) Interrupt handler

(c) Timer

(d) Intertask communicator.

The functions have been structured such that calls
from one function to another can only be made in-
ward. A function may skip levels. For example, the
intertask communicator function can call on the dis-
patcher without calling on the timer, and without the
timer, in turn, calling on the interrupt handler. The
kernel also contains maintenance functions to con-
trol the rollback and restart of a task as well as ini-
tialization functions.

B. Task Creation

3.o3 Tasks are created in two ways

(1) During system initialization, tasks are created
from LOSTAB.

(2) During a task execution, the executing task
can create another task.

Both methods use the TASK macro to define and de-
scribe the task. The TASK macro identifies the task
to the system and establishes the entry point for the
task, its priority, the state the task is to be brought
up in, and whether it is to be suspended.

3.o4 The system process level (Fig. 2) tasks are con-
trolled and executed in the same manner as

application tasks. Currently the only function imple-
mented as a process is the EOS command interpreter.
All other functions run as tasks.

3.o5 The EOS manages resources by moving tasks
through various tasks states according to the

task priorities and position in the ready list. Only one
task may be in the RUNNING state at any given
time. When each task is in the READY state, it is en-
tered onto a ready list, which can be accessed through
the use of system macros.

3.06 When a task is in the RUNNING state (exe-
cuting) and an interrupt occurs, control of the

processor is passed to the interrupt handler which
determines which interrupt service routine will have
control of the processor. When an interrupt occurs,
the currently executing task is interrupted temporar-
ily and placed in the INTERRUPTED state (Fig. 3)
while the interrupt handler is executed. Upon com-
pletion of the interrupt processing, the interrupted
task may be returned to either the RUNNING state
or to the READY state. If the interrupt service rou-
tine readied a task of higher priority than the inter-
rupted task, the interrupted task that was placed in
the INTERRUPTED state will be moved to the
READY state and the higher-priority task will be
moved to the RUNNING state. The state of the inter-
rupted task will he saved in the save area of the task
descriptor (Fig. 4) memory location so that it may
resume execution at the point where the interrupt
occurred. However, if the interrupted task has the
higher priority, the interrupted task will be returned
to the RUNNING state to continue executing, and the
newly readied task will be placed on the ready list.

3.o7 When a running task makes a system call, the
service request administrator services the

system call and then passes control to the dispatcher.
The dispatcher checks the ready list and takes action
similar to that for the interrupt.

3.08 When an initialization occurs, the operating
system processes a series of tasks defined to

it by the TASK macros in LOSTAB. When the task
is to be brought up in the READY state, the operat-
ing system will insert the task on the ready list or-
dered by priority level. From the ready list, the task
will be dispatched and moved to the RUNNING state.
Tasks created in the WAIT state may be made ready
through satisfaction of the wait by a particular event
or intertask communication. Tasks brought up in the
SUSPENDED state can be made ready through the
use of the RESUME macro.

3.o9 A task may also be created by use of the TASK
macro in an application program. A task cre-

ated by executing a TASK macro in an application
program is considered to be the “child” of the task

‘----

.

---- .

*--%,

Page 4

—

1SS2, SECTION 254-340-030

that activates it. The activating task is referred to as
the “parent” task. The task is then activated by the
ACTIVATE macro. The task may be brought up in
either the READY or WAIT state. If brought up in
the READY state, it will be added to the ready list.
If brought up in the WAIT state, it will not be added
to the ready list. When brought up in the WAIT state,

6 it can be made ready through satisfaction of the wait
8 conditions by an event or intertask communication.

b

3.10 Tasks brought up in either the WAIT or SUS-
PENDED state are resumed or awakened

based on their system identification (ID). The ID is
/n the mechanism for keeping track of tasks that are not

on the ready list.

C. Task Management

3.11 Task management consists of several func-
tions. These functions include the creation and

termination of tasks, the allocation of the processor
to tasks that are ready to execute, synchronization of
tasks, and intertask communication.

3.12 Tasks created at system initialization may be
activated either at system initialization or

activated at some later time by an executing task.
Tasks defined as asynchronous operations are capa-
ble of concurrent processing. However, only one task
can be executing on the processor at a time. The pro-
cessor management function of the operating system
has mechanisms to determine which task is to be ac-
tive (in the RUNNING state). All other tasks in the
system are in one of several task states. Figure 3 il-
lustrates these states graphically. The task states

f-x

●

/“-%

are:

(a)

(b)

INACTIVE: A pseudo-state representing
the condition of a nonexecuting task.

HOLD: Intended to be the state into which a
task will go upon activation until the needed

resources are allocated to it. Currently, resource
allocation is not done in this manner, and any task
activated with the users specification of READY
will go immediately to the READY state.

(c) READY: A task is ready when all conditions
necessary for its execution have been satisfied

but the processor is not available.

(d) RUNNING: The state into which a task
progresses from the READY or INTER-

RUPTED state. When a task has been allocated
processor time, it is in the RUNNING state.

(e) SUSPENDED: A task may be put into the
SUSPENDED state when it is brought up dur-

ing system initialization, or it may be suspended
by itself or by another task. The task is essentially
put to sleep (stopped) at the point of suspension
and will be restarted at this point on execution of
the RESUME macro.

(f) WAIT: A task is in the WAIT state when it
cannot continue further processing until some

other asynchronous event has completed process-
ing.

(g) ~N~ERRuPTED: When an interrupt oc-
curs, the currently executing task is suspended

temporarily and placed in the INTERRUPTED
state while the interrupt handler is executed.
Upon completion of interrupt-level processing, the
interrupted task may either return to the RUN-
NING state or to the READY state. If the inter-
rupted processing readied a task of higher priority
than the interrupted task, the task in the INTER-
RUPTED state will move to the READY state and
the higher-priority task will move to the RUN-
NING state. If the interrupted task has a higher
priority than the interrupting task, the inter-
rupted task will be returned to the RUNNING
state.

(h) COMPLETED: The state into which a task
is placed when it has completed processing

(running) and while the operating system is per-
forming table cleanup operations. From the COM-
PLETED state, the task is moved to the
INACTIVE state by the cleanup operations.

D. Task Termination

3.13 A task is terminated by execution of the END_
PROGRAM macro. A task may either termi-

nate itself or terminate another task. END_PRO-
GRAM places the terminated task in the
COMPLETED state and disables any events for this
task. If the terminated task has a “parent” task, the
“parent” task is notified that the “child” task was
terminated.

4. EVENTS AND EVENT MANAGEMENT

A. Event Purpose

4.o1 An event is a signal to a process or task that
a previously specified state change has oc-

Page 5

SECTION 254-340-030

curred. Each process and task has a unique set of 32
event flags, with 32 associated event mask bits and
the ability to link a subroutine, called an event rou-
tine, to

●

●

●

●

●

Events

each event. Events are used to signal the:

Completion of another process or task

Completion of an 1/0 operation

Completion of a specified time interval

Receipt of an interprocess message

Occurrence of certain maintenance actions.

provide the application program with the
means to schedule the execution o~ a n~mber of tasks,
to overlap 1/0 operations with the execution of other
statements in the task that initiate the operations,
and to simulate the occurrence of a specified state
change by setting its own events.

B. Event State

4.02 The state of an event flag is determined by its
value held in a pair of 32-bit registers called

STATE1 and STATE2. The state of an event flag (see
Fig. 5) is represented by the corresponding pair
(STATE1 and STATE2) of bits that represent the
state of the flag settings. OUsing (0,0) to represent
(STATE1 and STATE2), the following state transi-
tions are allowed for the event flags:

(0,0) changes to (0,1)–Message retrieved or
event set by SET_FLAG

(0,1) changes to (0,0)–WAIT is satisfied

(0,1) changes to (1,1)–Event routine entered

(1,1) changes to (0,0)–WAIT satisfied fol-
lowing execution of event routine

(1,1) changes to (0,1)–Another message re-
ceived or a SET_FLAG occurred while the
event routine was executing.

4.o3 Upon the occurrence of an event, its state is
changed from (0,0) to (0,1). If no event routine

is associated with the selected flag (or if the event
routine is disabled), the next WAIT satisfied by the
selected event flag will change its state back to (0,0).

4.o4 lf an event routine is present and enabled, the
state of the selected event flag will change to

(1,1) when control is passed to the event routine by , -%,

the local dispatcher. After the event routine com-
pletes execution, the next WAIT satisfied by the se-
lected event flag will change its state back to the (0,0)
state. If another event occurs while the event routine .--.,
is being executed or before the next WAIT is satis-
fied, the state of the selected event flag is changed
from (1,1) to (0,1).q

t

4

C. System Events

4.05 Twelve of the 32 event flags are reserved for
system use, thereby leaving each process or

task 20 event flags. The event flags reserved for sys- -

tern use are:

FLAG [BIT) SYSTEM USE

o Maintenance

1 Maintenance

2 Maintenance

3 Maintenance

4 File system

5 Reply received

6 Request received

7or8 Unassigned

9 1/0 error

10 or 11 Unassigned.

4.06 @Maintenance flags are used primarily during
system and process initialization phases.

Flags O, 1, and 2 are used to perform initialization of
all system 1/0 devices. Event flag 4 is used by the file
system to provide an interface between the process-
level and event-level portions of the various device
handlers.

4.o7 Event flags 5 and 6 are used exclusively for
interprocess communication via messages.

Before sending a message to another process, various
parameters must be set with the MESSAGE macro.
These include the REQUEST event to be set in the
receiving process (defaults to event flag 6), whether
a reply is expected, the REPLY event to be set upon

.

Page 6

receiving the reply (defaults to event flag 5), and
whether to wait for the reply. The message is sent to
a handler that attaches the message to the receiving
process’ REQUEST list and sets the receiver’s RE-
QUEST event. If the receiving process wishes to reply
to the message, the REPLY option must have been
specified by the MESSAGE macro. The reply is sent
with the SEND_REPLY macro. This results in the
message handler attaching the reply message to the
original sending process’ REQUEST list and setting
that process’ REPLY event.

4.08 Event flag 9 is used to signal the occurrence of
an 1/0 error. Tasks that use any of the 1/0

macros must be designed to respond to the setting of
event flag 9. Associated with all 1/0 requests to the
EOS file system is a COMPLETION event (defaults
to event 5), which is set by the file system when the
requested 1/0 operation has successfully completed.
If the requested 1/0 operation fails, a message is sent
from the file system to the process that requested the
1/0. Event 9 is the REQUEST event and is set by the
receiving process’ REQUEST list. The receiving pro-
cess must retrieve this message using either the
RETRIEVE or the TEST.MSG macros.t

D. Event Routines

4.o9 Once a task relinquishes control of the proces-
sor, it can be rescheduled for execution only as

a result of the occurrence of an event (the only excep-
tion is if the process was preempted by time slicing).
When an event occurs, its associated task is readied
for execution. At this point, the application program
must decide if it needs to be notified by the operating
system that an event has occurred or if it wishes to
schedule its own detection of events.

4.10 The operating system notifies a task that an
event has occurred via the use of event rou-

tines. Event routines are subroutines that are linked
to event flags. When a readied task is dispatched by
the operating system, the local dispatcher is given
control if event flags are set.

4.11 Each task also has a 32-bit mask register
which permits enabling and disabling of asso-

ciated event routines. A mask bit of zero means the
corresponding event routine is disabled, and a mask
bit of one means the corresponding event routine is
enabled (Fig. 5). Disabling an event does not prevent
its event flag from being set. It only inhibits the exe-
cution of the event routine. Enabled event routines

1SS2, SECTION 254-340-030

are processed in order of priority from the highest
(event flag O) to the lowest (event flag 31).

E. Event Macros

4.12 Several macros are provided to enable a task
to manipulate the event flags. The macros and

their functions are:

●

●

●

●

●

●

●

●

●

●

●

DISABLE–Inhibits all event routines with-
out altering the event mask.

ENABLE–Reestablishes event routines sub-
ject to the current event mask.

EVENTS –Assembles a block of data for use
with the SET_FLAG and SET_MASK
macros, ie, declares an event mask.

EVENT_TV–Declares an event transfer
vector.

EXIT_TO—Directs the exit from an event
routine. EXIT_TO serves as a GOTO provid-
ing a direct exit from an event routine rather
than a return.

GET_FLAG–Gets the current event flags
and loads the event mask in a specified loca-
tion.

GET_MASK–Loads the current contents of
the event mask into a specified location.

SET_EVNT_ADR_– Specifies the event rou-
tine or transfer vector for use in event pro-
cessing. The execution of this macro
overrides any previous executions. Issuing
this macro without operands removes any
event routine specification.

SET_FLAG–Sets or resets the specified
event flags.

SET_MASK–Enables (set) or disables (re-
set) specified events, ie, sets a new event
mask.

9SWAP_EVENT–Enables or disables the
setting of an event flag in the current process
(or task) whenever the process is placed in
the READY state because a higher priority
process was readied or the time slice ended
for the current process.t

Page 7

SECTION 254-340-030

A list of EOS macros is provided in Section 254-340-
106.

5. DISPATCHING

A. Task Dispatching (PIDENT DISPAT)

s.01 The task state change handled by the dis-
patcher is the movement of a task from the

READY state to the RUNNING state (Fig. 3). Previ-
ous paragraphs (3.05, 3.08, and 3.12) explain the vari-
ous states a task can assume in the operating system
and some of the movements between these states.

5.02 Each time control leaves a task because of an
interrupt or SVC, the dispatcher is called

after interrupt or SVC processing (Fig. 6). When an-
other task has been made ready because of an inter-
rupt or SVC processing, the dispatcher must
determine if the interrupting task is of higher prior-
ity than the previously executing (running) task.
When it is not, the previously executing task is re-
stored to the RUNNING state and resumes executing
at the point where the task was interrupted.

s.03 When a higher priority task has been readied,
the dispatcher must save the state of the pre-

viously running (executing) task and return it to the
ready list. The newly readied (higher priority) task
is then moved from the READY state to the RUN-
NING state and is allocated the processor.

B. local Event Dispatcher (PIDENT EVTDIS)

s.04 The local dispatcher receives control from the
system dispatcher when the task having the

highest priority on the ready list has at least one
event flag enabled and is in the “message received”
state (Fig. 5). The local event dispatcher functions as
the prologue and epilogue for all event routines by
examining the event flag register (located in the task
or descriptor table). If an event flag is enabled and
in the “message received” state, then the local event
dispatcher performs the following

(a) Stores the contents of the processor task pro-
gram counter in the event routine save area

(b) Sets up the return address

The task program counter is restored from the event
routine save area before the event dispatcher pro-
cesses the rest of the event flags. When all event flags
have been processed, the event dispatcher transfers
control to the task via the address in the task pro-
gram counter located in the task descriptor table (see
Fig. 6). Accordingly, each event routine functions as
a normal subprogram with the local event dispatcher
providing the necessary linkage.

5.o5 Since tasks and event routines may be time-
sliced (it did not complete execution during

the time allocated by the processor and must wait for
another time-slice to complete its execution), the
local dispatcher may dispatch a higher priority task
(event routine) before the execution of the inter-
rupted task is again resumed. When a task is time-
sliced, the task is returned to the ready list in the
READY state. By saving the contents of the task and
program counter upon exit and restoring it upon en-
try, tasks and routines may be interrupted as neces-
sary. If the task has the highest priority of all tasks
on the ready list, the local dispatcher returns control
to the task and it resumes execution where it left offl
or if an event has occurred for which an event routine
exists, execution may start at the event routine. The
local dispatcher checks the status of the event flag
and if the event routine has the higher priority, the
event routine is executed.

6. INTERPROCESS COMMUNICATION

A. lnterprocess/Task Overview

6.01 Two general intertask communication facili-
ties are supported by EOS: messages and

events. Most of the EOS functions are implemented
as a set of tasks. Included in this set are the task cre-
ator, file system manager, and terminal administra-
tor. The system services are obtained by using the
appropriate system macro which, at execution time,
causes a message to be sent to its associated system
task. Most application program functions are also
implemented as a set of tasks. The only way these
tasks communicate with each other is via messages
and/or events.

6.02 Events are used for intertask communication

(c) Transfers control to the specified event rou- when no message text is required to be trans-

tine. ferred between tasks. As long as tasks know the
meaning associated with each event, it is sufficient

Upon completion of the event routine, control is re- fer one task to set an event flag for use by another
turned to the local dispatcher via the return address. task. The receiving task must correctly interpret the

‘-Y

‘

,-,
.

Page 8

1SS2, SECTION 254-340-030

setting of the event flag. The use of event flags for
intertask communications requires much less use of
system resources than the use of message text. Mes-
sage text is used only when text must be communi-
cated between tasks. (Event management is

-. described in Part 4.)

6.03 The following system macros are used by EOS
and application programs for intertask com-

munication:
,

●

F--.,
●

●

●

●

●

●

●

,f’- ●

MESSAGE–Sets up a message header and
declares a message buffer

NBR_MSG—Returns the number of mes-
sages received and not retrieved, and returns
the number of outstanding messages

RETRIEVE–Copies the message number
into a specified buffer location

SEND_MSG–Sends a message in a specified
buffer to a specified task

SEND_REPLY–Sends a reply in a specified
buffer to the originating task

TEST_MSG– Searches the list of messages
for a message to the current task and if a
message exists it is retrieved

FORWARD–Takes the message originally
retrieved in the buffer and forwards it to the
specified task

END_MESSAGE–Delimits the end of mes-
sage buffer declared by the MESSAGE
macro

MSG_STATUS–Determines message sta-
tus.

\ 6.04 Before messages can be sent or retrieved, a
message buffer must be established in writ-

able user address space (ie, in a DATASECT). The
J message buffer must have a 5-word message header.

The MESSAGE macro is used to set up the message
header and to declare the length (number of words)
of the message buffer. The buffer end (delimiter) is
delcared by the END.MESSAGE macro. The mes-
sage text follows the message header.

e 6.05 Once a message buffer has been declared by
the MESSAGE macro, the message can be

sent to another task using the SEND_MSG macro or
retrieved from another task using the RETRIEVE or
TEST_MSG macros. The parameters for the SEND_
MSG macro specify the address of the message buffer
and the system ID of the receiving task. The system
ID is preassigned at system initialization using the
system operating tables in LOSTAB. In order to send
a message to a task, the task must have been defined
during system initialization.

6.06 The RETRIEVE and TEST_MSG macros are
used to copy specified message from system

dynamic memory into the specified message buffer.
The MESSAGE macro must have previously declared
the message buffer before a message can be copied
into the buffer. The MESSAGE macro sets up the
message header and specifies the number of words
(length) of the message buffer. This provides the
means whereby the RETRIEVE and TEST_MSG
macros may perform range checking. (The number of
words in the retrieved message cannot exceed the
number of words’ declared for the message buffer.) A
message will not be copied if it is larger than the mes-
sage buffer. RETRIEVE will copy the first, last, or
nth message from the current task message list. The
TEST_MSG macro will search the list of messages to
the current task for one from another task or one on
an event and will return its ordinal position in the
message list. If the MSG parameter (address of
buffer declared by the MESSAGE macro) is speci-
fied, the TEST_MSG macro will copy the message
from system dynamic memory into the addressed
message buffer.

6.07 The SEND_MSG macro results in an SVC 2 to
the kernel. After the receiving task is located,

the message is copied from the sending task address
space into a message block in system dynamic memo-
ry. The message block is then placed on the bottom
of the receiver message list (ie, it is queued on the
REQUEST list of the receiver task descriptor block).
The send event (specified by the sender MESSAGE
macro) is set causing the receiving task to be readied
for execution.

6,08 The system ID must be known before a mes-
sage can be retrieved from a given task. A

common form of intertask communication is to send
a message designating the receiver task. SEND_MSG
will result in the event flag being set in the receiver
task and the receiver task being readied for execu-
tion. After receiving control as a result of the event
flag being set, the receiver task can then retrieve all

Page 9

—

SECTION 254-340-030

messages that are associated with that event associ-
ated with the task.

B. Intertask Communication and Miscellaneous Admin-
istration

6.09 Miscellaneous administration of intertask
communication is accomplished by applica-

tion and EOS routines making the appropriate macro
calls. Four macros are available to perform this ser-
vice: RETRIEVE, TEST.MSG, NBR.MSG, and
MSG_STATUS. All of these macros expand into an
SVC 3 which sets a modifier. $The SVC 3 transfer
vector in the LOSTAB causes a transfer to the
MSGMGR program at entry point MSGSVC3. The
MSGMGR saves the system–state and error checks
for any incorrect modifiers.~ When an incorrect mod-
ifier is detected, a return is made to the dispatcher.
The modifier is decoded and this value causes control
to be transferred to one of four intertask communica-
tion administrative programs.

I

7. GLOSSARY

7.01 The following terms and definitions are used
in this section to describe the creation of

tasks, events and event management, and intertask
communications.

Address—A combination of bits that identi-
fies a location in a storage device or equipment
unit.

Application—A set of functional system pro-
grams which use the services of the Extended
Operating System.

Assembly Unit—A collection of codes that is
assembled or compiled as one entity. The as-
sembly unit is the highest level of a modular
program structure and may or may not con-
tain functionally related subunits.

Bit—The binary unit of information which is
represented by one of two possible conditions;
such as the digits O and 1 or on and off.

CSECT—Pseudo-operation used to specify
the beginning of a sequence of instructions.

DA TASECT—A block of relocatable data, ie,
a data CSECT.

Disable—Inhibits the event routine without
altering the mask.

Enable—Establishes event routines subject
to the current mask.

Entry–A labeled location at which a CSECT
or any logical block of code may be entered.

,--%,

Epilog—A function of the local event dis-
patcher in restoring the program counter from
the event routine save area after an event flag
has been processed.

Event—A signal to a task that a previously
specified state change has occurred.

Flag—A ~et of bits used to signify the state of ..--%.

an event.

Initialize tion—An action taken to provide
the system with a known good operating con-
figuration.

Interrupt—A hardware generated signal
that causes the task currently executing to be
preempted and a higher priority task to be
performed immediately.

LOSTAB-Operating system tables used by
the application programs to define system re-

“-’%
sources, configuration, parameters, etc.

MACRO—A sequence of operations labeled
with abbreviated notation. A macro may gen-
erate different sequences of code depending on
the parameters supplied in the macro call.

Mask (Event)—A 32-bit register which is
ANDed with the current event flags.

PIDENT—Program identifier is the name by
which an assembly unit is identified.

Process—The execution of a series of pro- -,
grams with the order of execution specified by
a file of commands.

Program Unit—A collection of codes within ‘
an assembly unit which performs a well de-
fined function.

Prolog—A function of the local event dis-
patcher in storing the program counter in the ‘T,
event routine save area prior to servicing an
event flag.

Routine—A sequence of instructions called
from within another section of instructions to -

perform a specific function.

Page 10

1SS2, SKTION 254-340-030

f-.

.

,4-

Symbol—A group of characters which repre- Transfer Vector—A series of data words
sent a fixed value or address or structure. collected in an intermediate location which are

pointers to destination locations.
Task—A related group of programs and rou-
tines which perform a defined function and
are run asynchronously based on a priority
system. The task defines all resources required 4K Block+096 consecutive memory words
to accomplish the specific function. (1K=1024).

Fig. 1—EOS Kernel Hierarchy

Page 11

SECTION 254-340-030

SYSTEM
PROCESS

LEVEL

@@@@@@@

——

Page 12

--%
‘.

Fig. 2—EOS Functional Structure

‘7

n.

1SS2, SECTION 254-340-030

.-

>

‘)

Fig. 3—Task States

?-’+.

‘ Page 13

w
4
(s

HEADER 01 TYPE OF BLOCK
z

I

II LENGTH OF LAST BLOCK

23 I STATE1 IEVENTS

24 I sTATE1 I— -.

25 I STATE2 12’ LENGTH OF THIS BLOCK I

3’ PREVIOUS POINTER i

4, NEXT POINTER I

-.

26! STATE2 i

27! MASK
I
1

I 1
SYSTEM NAME 51 UNIQUE NUMBER [SYSTEM ID I

I
28, MASK

i
I

I # J
61 PROCESSOR NUMBER I

I 4
29 [WAIT EVENTS

1
2A I WAIT EVENTS 1PROCESS NAf4E71 ASCII 1 I ASCII 2 I

I J

2B[SWAP EVNT; COMPLETE :INHIBITt ROUTINE iAOORESSl

2C 1 AODRESS I

BI ASCII 3 I ASCII 4 I

9[ASCII 5 I ASCII 6

A!
,

ASCII 7 I ASCII B I 20 I EVENT CONTROL BLOCK HEAO i
PARAMETERS B!

,
ALLOCATION I 2E [EVENT CONTROL BLOCK TAIL I

2F I REr2UESTLIST HEAOc! TIME LIMIT i REQUEST LIST

STATE

301 REQUEST LIST TAIL 10“ PARENT SYSTEM NAME
,

I
El TIME SLICE

I
i PRIORITY I

.———

31 ! LENGTH OF REQUEST LIST i
I 1 I

FI PROCESS STATE I 32! NUMBER OF MESSAGES SENT i
t

SAVE AREA IOi GENERAL REGISTER O (RO) i 33 ‘ NUMBER OF MESSAGES RECEIVED
i

I
34 I NUMBER OF REPLIES SENT I111 GENERAL REGISTER 1 (Rl) I.

I I
:1 I
IFt GENERAL REGISTER 15 (R15)

20 ~ CF. PROGRAM AOORESS (UPPER 4 BITS) 1

1
..-..—— -.

J
35 I NUMBER OF REPLIES RECEIVED

J
36 I MAXIMUM LENGTH OF REQUEST LIST 1

37 i TIME PROCESS CREATEO i
38 I TIME PROCESS LAST DISPATCHED 1

39 I CUMULATIVE RUN TIME21 ;
1

PROGRAM AODRESS 1 --- .-—..-

3A t LOCAL FILE TABLE LIST HEAO 122\ INTERRUPTMASK
I

LOCAL FILE
TABLE

3B ~ LOCALFILE TABLE LIST TAIL I

3C ! ASCII 1 I ASCII 2 1COMMANO FILE

OIRECTORY
NAME

3D‘ ASCII 3 I ASCII 4
i

3E ‘
1

ASCII 5 I ASCII 6
J

3F i ASCII 7 I ASCII 8 I

Fig. 4-Task Descriptor Layout

))))

1SS2, SECTION 254-340-030

-. ---- .-

.

,/’-

EVENT
FLAGS

STATE1

STATE2

EVENT
FLAGS

EVENT
MASK

31 16 15 10

.

1

31 17 16 15 210

0 ““” 1 0 1 . . . 1 0 0

1 . . . 0 0 1 . . . 0 1 0

EACH OF THE 32 EVENT
FOLLOWING STATES:

STATEI STATE2

o 0

0 1

1 1

FLAGS MAY HAVE ONE OF THE THREE

EVENT
FLAG EXAMPLE STATE— .—

0,16 NOTHING HAPPENEO

1,31 EVENT OCCURREO

15 EVENT ROUTINE
ENTEREO

LOW EVENT PRIORITY HIGH

31 16 15 10

.

31 16 15 10

II

EXAMPLE:

EVENT MASK EVENT EVENT ROUTINES
SETTING ROUTINES ARE:

ALL O S 0-31 DISABLEO

ALL 1 S 0-31 ENABLEO

Fig. 5—$Event Flag and Mask Layout4

Page 15

SECTION 254-340-030

1 I

I I
1

I 1

INTERRUPTS SYSTEM CALLS

I I

Fig. 6—EOS Call Structure

,/-%<,

Page 16

1SS2, SECTION 254-340-030

/-’+.

e-,

)

.

#’-

TABLE A

ABBREVIATIONS AND ACRONYMS

ABBREVIATION/ACRONYM TERM

cc Ce&ral Control

EOS Extended Operating System

1/0 Input/Output

ID Identification

K One Thousand (Actually 1024 Memory Locations)

PIDENT Program Identification

PR Program Listing

Svc Supervisor Call

Page 17

—

SKTION 254-340-030

NAME

AUDIT

CONVTD

DEVATT

DISPAT

EVTDIS

,EVTMGR

INTRPT

INTSRV

~LOSTAB

,MAICCI

MSGMGR

PCRTRM

PROCON

~PRSTAT

ISYSMM

~TCONAU

~TIMEAU

TABLE B

ASSEMBLY UNIT IDENTIFICATION

TITLE

KERNAL AUDIT

OPERATING SYSTEM DATA CONVERSION ROUTINES

INITIALIZE PERIPHERY CREATE DEVICE TABLES

OPERATING SYSTEM PROCESS DISPATCHER

PROCESS EVENT DISPATCHER

EVENT MANAGER

INTERRUPT HANDLING PROGRAM

INTERRUPT SERVICE ROUTINE

LAB OPERATING SYSTEM TABLES

EOS INITIALIZATION PROGRAM

MESSAGE MANAGER

PROCESS CREATOR AND TERMINATOR

MISCELLANEOUS PROCESS CONTROL

PROCESS STATE TRANSITION MANAGER

SYSTEM MEMORY MANAGEMENT

CONVERT BINARY TIMETOCHARACTER

CONTROL SYSTEM INTERVAL TIMING INTHE SYSTEM

PR NUMBER

PR-4C157

PR-4C149

PR-4C104

PR-4C150

PR-4C151

PR-4C152

PR-4C148

PR-4C113

PR-4C147

PR-4C605

PR-4C153

PR-4C154

PR-4C155

PR-4C156

PR-4C141

PR-4C142

PR-4C144

Page 18
18 Pages

	General
	System Calls
	Process/Task Creation and Management
	Events and Event Management
	Dispatching
	Interprocess Communication
	Glossary
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table A
	Table B

