
,n

P’

BELL SYSTEM PRACTICES
AT&TCo SPCS

PROCESSOR/PROCESS MANAGEMENT

INTERRUPT HANDLING AND TIMER MANAGEMENT

SOFTWARE SUBSYSTEM DESCRIPTION

EXTENDED OPERATING SYSTEM, 3A PROCESSOR

CONTENTS PAGE

l. GENERAL

A. Overview of Interrupt Handling .

B. Overview of Timer Management .

2. FUNCTIONAL DESCRIPTION OF INTERRUPT
HANDLING

A. Interrupt Structure

B. Interrupt Hierarchy

C. Interrupt System Function

3. FUNCTIONAL DESCRIPTION OF INDIVIDUAL
INTERRUPTS

A. Panel Matcher Interrupt (3) . . .

B. Error Interrupt (5)

C. Other 3A CC Interrupt (7) . . .

D. The 10 ms Timer Interrupt (9) . .

E. The TTYC or TDC Interrupt (10 or 11)
.

F. Panel Manual Execute Interrupt (13)
.

G. Direct Memory Access Interrupt (14)
.

4. FUNCTIONAL DESCRIPTION OF TIMER
MANAGEMENT

2

2

3

3

3

4

5

5

5

5

6

6

7

7

7

7

SECTION 254-340-031
Issue 2, March 1980

CONTENTS PAGE

A. Timer Subroutine Definition Table . 7

B. System Timer Functions 8

5. GLOSSARY9

Figures

1. Interrupt Logic 10

2. Interrupt Processing, Interrupt No. 3, Panel
Matcher11

3. Interrupt Processing, Interrupt No. 5, Error
. 12

4. Interrupt Processing, Interrupt No. 7, Other
3A CC13

5. Interrupt Processing, Interrupt No. 9, Timer
. 14

B

6. Interrupt Processing,
11, TTY or TDC

Interrupt No. 10 or
. 15

r Interrupt No. 14,7. Interrupt Processing,
DMA16

Table

A. Timer Management Functions and
Program Unit Identification . . . 17

NOTICE
Not for use or disclosure outside the

Bell System except under written agreement

Printed in U.S.A. Page 1

SECTION 254-340-031

1. GENERAL

1.01 This section describes the interrupt assignments
and processing as implemented by the 3A

Processor Extended Operating System (EOS). A
functional description of the EOS timer facilities
and their management is also provided.

1.02 This section is being reissued to update
reference documents in paragraph 1.03 an

to modify Fig. 2, 3, 4, and 6. Revision arrows
have not been used to denote minor changes.
Equipment Test Lists are not affected.

1.03 The following sections contain descriptions
of the various EOS functions related to this

section.

SECTION

254-300-110

254-300-120

254-340-014

254-340-030

E 254-340-052

254-340-0!54

254-340-062

254-340-082

Page 2

TITLE

3A Central Control, Description,
Common Systems

3A Central Control, Theory of
Operation, Common Systems

Memory Protection and Organization,
Software Subsystem Description,
Extended Operating System, 3A
Processor

Processor/Process Management
Creation, Event and Communication
Control, Software Subsystem
Description, Extended Operating
System, 3A Processor

Device Handlers, Software
Subsystem Description, Extended
Operating System, 3A Processor

Terminal Administrator, Software
Subsystem Description, Extended
Operating System, 3A Processor

File System, Software Subsystem
Description, Extended Operating
System, 3A Processor

System Utilities, Software
Subsystem Description,3A Processor

254-340-084 Resident Maintenance, Software
Subsystem Description, Extended
Operating System, 3A Processor

254-340-106 Macros and Glossary, Software
Subsystem Description, Extended
Operating System, Common
Systems

1.04 The following assembly units contain the
code related to interrupt handling and timer

facilities management in EOS.

● The Common Utility program (CUTIL),
PR-4C622, performs the interrupt processing
for a panel matcher interrupt.

● The Common Initialization program (CINIT),
PR-4C618, performs the interrupt processing
caused by an error interrupt or a maintenance
channel interrupt.

● Control System Internal Timing program
(TIMEAU), PR-4C144, performs all control
system interval timing in the system.

● The Interrupt Service routine (INTSRV),
PR-4C113, processes peripheral device
interrupts.

● The Operating System Table (OSTABS),
PR-XXXX (specified by an application),
contains all interrupt transfer vectors and
system generation parameters.

1.05 The glossary contained in part 5 of this
section defines the terms, abbreviations,

and acronyms used in this section. Refer to Section
254-340-106, Extended Operating System Macros
and Glossary for a list of associated terms,
abbreviations, and acronyms.

A. Overview of Interrupt Handling

1.06 Interrupts provide a mechanism whereby
the EOS or application processes/tasks can

be notified when some specific action (normally
hardware) has occurred. There are a number of
ways the EOS or an application can respond to an
interrupt. A new process or task may be readied
for execution, a message may be sent to a process
or task, or an event flag may be set in a task as
the result of an interrupt. For example, depressing
a key on a teletypewriter causes a demand interrupt

.
-... .

.
-.

-

1SS 2, SECTION 254-340-031

which must be reported to the proper task(s) to
enable the input of a TTY message.

1.07 In order for application tasks to interface
with the EOS, certain items are required:

*
.,.-”

f-’

.

a
.

.

r-

. The interrupts must be equipped and the
appropriate interrupt masks must be specified
to the system.

● Identification ofappropriate interrupt routines
which process specific interrupts must be
established.

● Interrupt priorities must be established and
implemented.

B. Overview of Timer Management

1.08 The timing facilities provided by the EOS
include a 24-hour system clock, a system

calendar, and various active timers. There is a
timer facility which provides the capability for a
routine to be called periodically and to be placed
in the EOS system tables. This facility executes
a subroutine call to a specified subroutine at the
end of a specified time interval. These calls take
precedence over the timer kept in the EOS timer
list. The system calendar is kept as a nonnegative
displacement from March 1, 1972. The system
clock is maintained in increments of 10ms. The
EOS keeps a list of active timers, each of which
is a block which specifies to the operating system
that a process is to be informed when a particular
time has occurred or when an interval of time has
expired. A process is informed of these “active
timer occurrences” through messages or events.

1.09 All functions related to timing are initiated
by macro calls. The system macros pass

parameters to assembly unit TIMEAU through
service (or supervisor) calls (SVC 9). The six basic
functions related to timing are listed below, with
the name of the macro which invokes each function.

● Set the system time (SET.TIME)

● Read the system time (READ_TIME)

● Set the system date (SET_DATE)

● Activate a timer (ACT.TIMER)

● Deactivate a timer (DEACT_TIMER)

● Identify subroutines called by TIMEAU
(TIMER_SUBR)

1.10 The timer facilities provided by the EOS
can be used in many different ways. Some

of these ways are:

● To determine the execution time of a routine.
Note that a routine that activates higher-priority
routines will be placed in a suspended state
while the higher-priority routine executes.

● To activate a routine at a fixed time.

● To activate a routine upon the expiration
of a specified time interval.

● To determine the time of day.

1.11 The timing functions are designed to be
very flexible. They provide the user with

all possible timing facilities without the necessity
of managing the clock and are general enough to
meet present and future timing requirements.

2. FUNCTIONAL DESCRIPTION OF INTERRUPT
HANDLING

A. Interrupt Structure

2.01 The interrupt structure of the 3A Central
Control (CC) consists of 16 separate interrupt

levels specified by an interrupt set register (IS)
and a corresponding 16-bit interrupt mask register
(IM) which is used to inhibit or enable any of the
interrupts. When an interrupt occurs, the
corresponding bit in the IS is set. The IM prevents
an external interrupt from interrupting the process
unless it is specifically desired. A “l” set in the
IM inhibits the corresponding interrupt a “O”

enables the interrupt. This mechanism provides
the capability for the relative priority of the
interrupts to be effectively controlled during the
execution of an interrupt routine.

2.02 During certain processing, it is desirable to
block all interrupts, eg, system initialization.

This is accomplished by setting the block interrupts
bit (BIN) in the system status (SS) register. When
the BIN is set, all interrupts are blocked, regardless
of the IM. When BIN is reset, interrupts are
enabled according to the IM.

Page 3

SECTION 254-340-031

2.03 The current 3A CC interrupt assignment is:

Level O–Available for application usage*
Level l–Available for application usage*
Level 2–Available for application usage*
Level 3–Panel Matcher
Level 4– Available for application usage*
Level 5–Error Interrupt
Level 6–Available for application usage*
Level 7–Other 3A CC Interrupt
Level 8–Available for application usage*
Level 9–Timer Interrupt (10 ms)
Level 1O–TTY and TDC Controllers (even)
Level 11–TTY and TDC Controllers (odd)
Level 12–Available for application usage*
Level 13–Manual panel execute
Level 14– Assigned to Direct Memory Address
(DMA) (if DMA is present)
Level 15–Available for application usage.*

*This is true only for generic releases G2A and
later; on releases prior to G2A they cannot be
used.

Interrupts 10 and 11 are usually assigned to the
TTYCS and TDCS, with interrupt 10 assigned to
the even-numbered units and interrupt 11 to
odd-numbered units. The EOS does not specifically
require this assignment; however, there are many
stand-alone programs that do require it. When
devices are assigned to levels which are used by
file system devices, the following conventions are
followed:

(a) The device assigned to that level must be
supported by the file system.

(b) All devices assigned to a given level are on
the same hardware interface to the processor,

ie, all on a parallel channel (not necessarily the
same one) or all on a serial channel.

B. Interrupt Hierarchy

2.04 Interrupts are serviced in order of priority,
which is established by the structure of the

IS register where bit “O” represents the highest
priority and bit “15” represents the lowest.
However, relative priority of the interrupts may
be controlled by setting an interrupt mask during
the execution of interrupt routines. In this case
a routine may set an interrupt mask in which a
“O” will designate a priority for a specific interrupt
which will give it higher priority than the interrupt

Page 4

being serviced by
or lower priority
IM.

the
are

routine. Interrupts of equal
identified by bits set in the

2.05 The EOS requires specific priorities for the
interrupts which it controls and sets the

appropriate masks to control these priorities. The
interrupt hierarchy is defined in OSTABS by use
of the HIERARCHY macro. An application establishes
the hierarchy for interrupts associated with it in
exactly the same manner. The hierarchy as defined
by EOS is:

(a) Highest–Interrupts 3 and 13. When these
are executing, no other interrupts can be

processed.

(b) Medium–Interrupts 1,2,4,5,6,7 and 9. In
this group, priority is in normal numerical

order, ie, 5 is higher than 7, etc. Also, 3 and
13 are enabled. For example, if interrupt 7 is
being serviced 3, 13, and 5 could interrupt.

(c) Lowest–Interrupts 10 and 11. In this case
10 handles even numbered controllers and

11 the odd. During execution of these interrupts
the IM would provide the capacity for all higher
priority interrupts.

Interrupt 14 is assigned to the direct memory
access (DMA) on the systems equipped with DMA.
The priority assignment in this case is between 9
and 10. The application is constrained to priorities
below the medium level assigned to the 1,2,4...etc,
group. Using releases G2A and after, applications
may use interrupts 1,2,4, and 6 and may be of
any priority. Interrupts 8,12, and 15 are available
for application usage.

2.06 In addition to the basic hierarchy, the EOS
also defines three miscellaneous interrupt

masks:

(a) TASK–This label defines a mask which is
used for all task level programs. In this

mask all interrupts are enabled, except those
which are undefined to the HIERARCHY macro.

..
-“.

(b)

all

SVC–This label defines a mask which is
used for all SVC routines. This mask blocks

interrupts except 3 and 13.

1SS 2, SECTION 254-340-031

Q

.

●

(c) ALL–This label defines
used when all interrupts

except 3 and 13.

a mask which is
are to be blocked

Interrupts 3 and 13 are never blocked since they
are connected with manual operations of the status
panel. They will not occur during the normal
processing routines since specific manual requirements
must be fulfilled before the function, eg, manual
requests for system utilities or diagnostic functions.

C. Interrupt System Function

2.07 When an interrupt occurs, all unmasked bits
of the IS are ORed together and create a

signal which is used to jam-set the microaddress
register (MAR) to a fixed location in microspore
(Fig. 1), depending on the condition of the BIN.
When the BIN is set, all interrupts are blocked.
The microinstruction sequence tests the IS for the
highest level of interrupt and translates the bit
position into a data constant which points to a main
memory location containing a pointer to the
appropriate interrupt routine. In the EOS this
location is defined as the interrupt transfer vector.

2.08 The interrupt transfer vector is based on
location zero in the first 4K of write-protected

store. It is defined in OSTABS and consists of a
series of two word entries. Each entry consists
of a branch long instruction (BASI) to the subroutine
which services the interrupt.

3. FUNCTIONAL DESCRIPTION OF INDIVIDUAL
INTERRUPTS

A. Panel Matcher Interrupt (3) (Fig. 2)

3.01 The conditions for this interrupt are established
by a draftsperson entering a TTY message

enabling the panel matchers to cause an interrupt
when the exact match of a specific address or data
word is detected. When a match is detected,
interrupt 3 will occur. Entry from the transfer
vector is to the MATCHINT subroutine in the
Common Utilities program (CUTIL). MATCHINT
increments an interrupt counter and tests to insure
that the number of interrupts which have occurred
since the counter was cleared is within a prescribed
limit. When the limit is exceeded the interrupt is
disabled. When the number is within limits,
MATCHINT will cause the registers of the program
being interrupted to be saved and call the UTILPROC
subroutine in CUTIL to process the request. The

function may be to monitor or load certain store
locations or registers as requested by the original
messages. Details of the monitor and load message
functions are described in Section 254-340-082.

B. Error Interrupt (5) (Fig. 3)

3.02 An error interrupt is initiated when bit 14
or higher is set in the Error Register (ER).

This group of bits is ORed together and the resulting
signal sets bit 5 in the IS. The type of errors
that can cause interrupt 5 are:

(a) A My store write protect violation causes
an initialization in EOS-based systems and

causes an interrupt in other 3A Processor
applications (bit 11).

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

3.03

The Other store write protect error (bit 14)

The Other store error (bit 15)

The Other store fast time-out (bit 16)

The 1/0 multiple channel select (bit 17)

A program timer reset received by the on-line
3A CC (bit 18)

A switch received by the on-line 3A CC (bit
19)

An 1/0 channel error (Parity Low bit)

An 1/0 bad parity received (Parity High bit)

The ERR_INT subroutine in the common—
initialization program (CINIT) is the error

interrupt routine specified by the transfer vector.
ERR.INT causes the registers of the interrupted
program to be saved and clears the IS. All
information is collected from ER, and if there is
only one error, the error causing the interrupt is
identified. Once this is complete, the ER is cleared.
Based on the error, a branch is made to the
appropriate error correction routine. For all
memory errors an attempt is made to initialize
the off-line store. When this is successful, a
memory update is performed and, on successful
completion, an operational test is performed on
the off-line store to determine if it can be written
into and read from without error. Any failure is
reported by an error message on the TTY. An
attempt is made to clear 1/0 errors by clearing

Page 5

.

*

SECTION 254-340-031

and reinitializing the channel. A sanity test is
run on the other 3A CC to determine its status
when the error causing the interrupt is the program
timer time-out or an erroneous switch. Failures
are reported by appropriate error messages.

C. Other 3A CC Interrupt (7) (Fig. 4)

3.04 The other 3A CC (off-line) can initiate one
of three different requests which will cause

interrupt 7. The three are: a stop request
(SWINIT) resulting from a stop and switch activity,
a switch-completed notification (SWCOMPL) given
when the other processor has started execution,
or a zero program timer request (ZEROPT).

3.05 The interrupt routine which processes
interrupt 7 is MCHINT in CINIT. Initial

processing is the same in each case and consists
of saving the registers of the interrupted program
and determining which of the three functions was
requested. When the function has been identified,
the proper routine is given control. The SWINIT
function is performed by a microsequence and
consists entirely of stopping the processor, SWCOMPL
is entered after the other processor has taken over
execution and is operating properly. The routine
performs general restoral activity on registers and
prepares the processor to respond if another stop
and switch is requested.

(overlap is the condition which results when another
interrupt occurs before processing is completed on
a previous interrupt). The MISTIME counter is
tested and incremented (MISTIME is the count of
the number of times the subroutine loop has been
started since the last return to the dispatcher).
The maximum number of times that this can occur
is defined by the constant MAX-MIST specified in
OSTABS. The current value of this constant is
5. The count (SYS.CNT) of the interrupt level is
decremented when timer interrupt overlap exists.
When the processing is complete, 10ms is added
to the time-of-day (TOD) count and the TOD timer
is updated as required.

3.08 The interrupt subroutine loop is composed
of three required EOS subroutines and as

many application subroutines as have been defined
(up to five). The loop is restarted at every
interrupt up to the value specified by MAX_MIST.
When MISTIME reaches or exceeds MAX.MIST,
control is passed to an application routine which
is defined in OSTABS as MAX.RTN. MAX_RTN
is defaulted to a routine in TIMINT which resets
MISTIME and the bit representing interrupt 9 in
the word PROCS_ACT_INT, marking interrupt 9
as no longer active. Control is then passed to
the dispatcher. The required EOS subroutines are:

(a) The activate timed activities subroutine
(TIMEAU)

D. The 10 ms Timer Interrupt (9) (Fig. 5)
(b) The maintenance time subroutine (MAI_TIME)

3.06 The timer interrupt (9) is a feature of the
EOS which provides the capability for calling

of up to 8 subroutines from the 10 millisecond
timer interrupt service routine. Three of the
subroutines are required for EOS; the other five
can be application-designated subroutines. The
user specifies an entry point and the time interval
between calls, in increments of the number of 10ms
intervals between calls, The various subroutines
and methods of establishing the timer subroutine
definition table are described in Part 4.

3.07 Timer interrupts are initiated from the 10ms
lead of the timing counter to bit 9 of the

IS. The transfer vector specifies the TIMEINT
subroutine of the timing control program (TIMEAU)
as the interrupt routine. TIMEINT sets up the
return by saving the current state and registers,
detects stuck interrupts, identifies whether an
interrupt or system call is being serviced, and sets
the appropriate IM. Overlap conditions are checked

Page 6

(c) The file system time subroutine (FIL_TIME).

3.09 These subroutines and any defined application
subroutines are specified in the operating

system tables and maintained in a time subroutine
table (TIM_SBR) in the system constant area
(INTCALL). Each table entry is four words long
and contains the time between calls in 10ms
intervals, the time remaining until the next call,
and the subroutine address.

3.10 The TIMEACT subroutine checks the entries
in TIM_SBR and when times are reached,

the appropriate replies are sent to the requesting
processes. The MAI_TIME subroutine controls
calling and adjusting priority of the periodic
maintenance task. The interval between calls to
the maintenance loop is specified by the application
by defining the number of 10ms intervals. The
FIL_TIME subroutine maintains a count of 10ms

I

.

1SS 2, SECTION 254-340-031

&

.

1

●

❆✍

intervals for file system timing. These subroutines
are described in part 4.

E. The TTYC or TDC Interrupt (10 or 11) (Fig. 6)

3.11 Interrupts 10 and 11 are used for the
teletypewriter and tape deck controller

interrupts. Interrupt 10 is used for even numbered
units while 11 is used for odd numbered units.
Each character entered will initiate an interrupt.
The interrupt transfer vector specifies the INTSRV
routine, and depending on the unit initiating the
interrupt, either program unit INTSRV1O or
INTSRV1l will perform the processing. The
processing consists of setting up a return to the
interrupted routine and identifying the interrupt
in the FIXED area reserved for EOS tables and
system constants. The only difference in processing
is the interrupt number which is written into the
FIXED area.

3.12 The program unit INTSRV_BEGIN is common
to all interrupts. The processing consists

of identifying the appropriate channel, either parallel
or serial, polling the identified channel to locate
the device which initiated the interrupt, and
restoring interrupt capability once the device is
located. The designated device driver is identified
and control is passed to the driver. When the
device is a teletypewriter, the driver is TTYDRV
and entry is at TTYDRVI. When the device is
the TDC, the driver is TDCDRV and entry is made
at TCINTC. In each case the driver monitors and
controls the device states, selects the proper
operations whether read, write, etc. The driver
then establishes an interface with the file system
device task FILDEV.

F. Panel Manual Execute Interrupt (13)

3.13 The panel functions are executed by a
panel-halt loop of microcode. The loop is

initiated when the 3A CC is off-line and the
MANUAL switch on the panel is operated. Under
these conditions operating the EXECUTE switch
on the 3A CC control panel sets interrupt bit 13.

3.14 When interrupt bit 13 is set, the states of
the panel switches are interrogated by the

panel-halt loop sequence and the functions designated
by the switches are performed. After the requested
function is executed the panel HALTED lamp is
lit. The panel-halt loop sequence is then restarted
by operating the HALT switch. Interrupt 13 is

never blocked since there is no 3A CC code that
the interrupt causes to be executed, and under
normal processing conditions, the panel is disabled
by the MANUAL switch.

G. Direct Memory Access Interrupt (14) (Fig. 7)

3.15 When a system is equipped with DMA,
interrupt 14 is used. The interrupt is

initiated by any device utilizing the DMA. The
basic configuration of PROMATS utilizing DMA is
described in this part. Application users may
establish other configurations as required.

3.16 When an interrupt is invoked, the interrupt
system will access the interrupt transfer

vector for interrupt 14. The vector identifies the
assembly unit INTSRV as the processing routine.
Entry is at location INTSRV14. Processing at this
location consists of setting up for the return to
the interrupted program and identifying the interrupt
in the EOS data area FIXED. Control is then
transferred to the common interrupt processing
program unit INTSRV.BEGIN.

3.17 INTSRV_BEGIN processing is identical to
that described in paragraph 3.11. The control

is passed to the proper device driver, which in
this case, is the PROMATS DMA driver JHPROD,
with entry at program unit ITPHDL. Processing
consists of saving registers, accessing the proper
device control block (DVCB), checking for diagnostic
field interrupts, and identifying the proper channel
and subchannel addresses. On each sequence a
check is made to determine completion status.
When the operation is complete, a return is made
to the interrupted program via the EOS dispatcher.
Until completion, a recurring interface is maintained
with the EOS file system device task FILDEV to
attach the DVCB and to perform requested functions
such as read, write, etc. Details pertaining to
device drivers are in Section 254-340-052.

4. FUNCTIONAL DESCRIPTION OF TIMER MANAGEMENT

A. Timer Subroutine Definition Table

4.01 EOS has the feature of calling application
subroutines from the 10ms timer interrupt

service routine (TIMEINT) in TIMEAU. The
application subroutines are established in the EOS
table by the user, who specifies entry point
(including program name) and the time interval
between subroutine calls. The time interval is

Page 7

SECTION 254-340-031

specified in the number of 10 ms intervals between
calls. When the timer interrupt processing does
not finish before another timer interrupt occurs,
the timer interrupt service routine restarts with
the first subroutine in the table.

4.02 Each subroutine to be placed in the table
is specified by the user with the TIMER.SUBR

macro which is utilized at system generation time.
The parameters for this macro are a list of three
items with each item consisting of

(a) Interval between calls in 10ms units.

(b) Assembly unit name.

(c) Program unit address.

4.o3 Any number of TIMER.SUBR macros may
be used and any number of items specified

on one macro call. The present limit of application
subroutines is five.

4.04 The table is constructed such that an entry
of zeros following the last entry is necessary.

Currently there is a maximum of eight subroutines
which can be specified; three are required by EOS
(TIMEACT, MAI.TIME, and FIL.TIME), which
leaves five subroutines that can be specified by an
application.

4.o5 Each entry in the table (labeled TIM_SUBR)
is comprised of four words. The first word

is the interval between calls (TIM_BETWEEN_CALLS)
in increments of 10ms; the second word is the
time remaining between calls (REMAINING-TIME)
in increments of 10ms; and the third and fourth
words contain the twenty-bit subroutines address
(SUBROUTINE_ADDRESS) of the required subroutine
which is called when the time interval expires.

B. System Timer Functions

4.06 EOS timing functions are initiated at the
interrupt level by interrupt No. 9 as covered

in paragraphs 3.06 through 3.09 or by system calls
via the system macros.

4.o7 The timing system macros pass parameters
to TIMEAU through a SVC 9 system call.

Program Unit TIMEMSG in TIMEAU handles all
requests for timer functions other than interrupt
level.

4.08 The system timing functions may be related
directly to the macro which invokes the

function:

● Set the system timer (SET.TIME)

. Set the system date (SET_DATE)

. Activate a timer (ACT_TIMER)

● Deactivate a timer (DEACT_TIMER)

These functions may also be called by appropriate
TTY messages. In these cases the initial entry is
via interrupt 10 or 11 and processing is performed
as described for those interrupts in Part 3.

4.09 To set the system time, a program executes
a SET_TIME macro with the desired time

as a parameter of the macro call. The desired
time must be specified in hours, minutes, and
seconds.

4.10 Tcr set the system date, a program executes
a SET.DATE macro with the desired date

as a parameter to the macro call. The date is
stated in month, day, and year.

4.11 When a program desires to “activate a
timer”, it executes the ACT_TIMER macro.

A timer can be set to expire after an interval of
time less than 24 hours from the current time, at
the first occurrence of a particular time on the
24-hour clock, or at a given interval past the hour.
These timers can be repetitive in that once they
expire, they can be reset and placed back in the
timer list or they can expire and not be reset.
The interval or time at which to expire is a
parameter of the ACT_TIMER macro. The event
or message which will be sent when the timer
expires is also a parameter of ACT_TIMER. This
macro is used to awaken specified processes/tasks
when a time interval expires, and can be accomplished
by any process/task. This demand scheduling is
invoked by using the repetitive and interval
parameters of the macro.

4.12 The capability to deactivate a timer is
provided by the DEACT_TIMER macro.

Either an event number is specified which causes
all timers of the specified process with that event
number to be removed from the timer list, or a
tag is specified, in which case all timers of that
process with that tag are removed from the timer

.

. .

Page 8

1SS 2, SECTION 254-340-031

list. Table A contains the timer management
functions program unit identifications.

Execution Module–Programsj subroutines, and
all data and peripheral resources required to execute
a task.

5. GLOSSARY Exit–A location at which a program unit terminates
and passes control to another location.

5.01 The following terms and acronyms are
contained in this section. FILllEV-The general software interface between

the file system and the device handlers.
Alphanumeric–The letters of the alphabet and
the digits O through 9. Fixed–The primary data structure from which

other data structures are linked.
Application–A set of functional system programs
which use the services of the EOS. IiW-Interrupt Mask Register.

Assembly Unit–A collection of code that is
assembled or compiled as one entity. The assembly
unit is the highest level of a modular program
structure and may or may not contain functionally
related subunits.

Interrupt–A special condition in which the current
task of the processor may be suspended and another
task (the interrupt service routine) initiated. The
suspended task is resumed after the interrupt
service routine is performed and if no further
interrupts occur.

131JV-Block Interrupt Bit (disables all interrupts).
Interrupt Hierarchy—A structure which defines
the priority order in which interrupts will be
recognized and serviced.

13TC-Block Timer Check.

Control Block–A group of words in memory
which contain information relating to a piece of
equipment.

WO-Input/Output.

lS—Interrupt Set Register.
CSECT–Pseudo-operation used to specify the
beginning of a sequence of relocatable instructions. Location–The field in an address statement which

specifies symbolic address.
DA TASECT—A block of relocatable data, ie, a
data CSECT. Macro–A short preceded routine which is assigned

a name by which it is labeled. On each call, the
name is then replaced (expanded) into the sequentially
coded lines of the routine.

Device Driver—A software unit which interfaces
directly with a peripheral device hardware controller
and interacts to control device functions.

MAINT—The maintenance task which supervises
duplex operation.

,-%, DMA–Direct Memory Access.

Entry–A labeled location at which a CSECT or
any logical block of code may be entered.

MAR—Memory Address Register.

Microinstruction–A low level instruction which
is used to form microinstruction sequences that are
permanently stored in a read-only memory. The
microinstruction sequences are used to implement
the 3A Central Control instruction set and basic
control functions.

EOS– Extended Operating System.

EPL–ESS Programing Language.

Equipped— A predefine interrupt assigned a
specific bit in the IS.

ER–Error Register. Mnemonic—A combination of alphanumeric
characters used in place of the binary code for an
instruction which conveys the essential function of

n’
ESS–Electronic Switching System.

Page 9

that instruction in a concise format, eg, ZCF Zero
the condition flip-flop.

Module–A small block of instructions within a
CSECT which perform an identifiable subfunction.

Operation–A code which directs the action of
the machine or other software, usually in a specific
field of an instruction. It may be an opcode,
pseudo-operation, macro, or EPL statement.

OSTABS–Operating system tables used by the
application to define system resources, configuration,
parameters, etc.

Parity High (Plf)-A bit generated for odd
parity for bits 15 through 8 in a word.

Parity Low (PL)–A bit generated for odd
parity for bits 7 through O in a word.

Process–The execution of a series of programs
whose order of execution is specified by a file of
commands.

Process (EOS)–Dynamic execution of a command
file, where each command implements a complete
execution module.

PR-Number–A unique number assigned to an
assembly unit listing which identifies the system
to which the listing pertains.

Program Unit—A collection of code within an
assembly unit which performs a well defined
function.

PROMA TS–Programmable Magnetic Tape System.

Pseudo-Operation–An operation which may be
used in an assembly statement to control assembler
activities but does not result in executable machine
code.

PT—Program Timer.

SS–System Status Register.

SSP–System Status Panel.

Subroutines–A sequence of instructions called
within another section of instructions to perform a
specific function.

Symbol—A series of predefine characters or
mnemonics which represent a binary value.

TO MAR

o

BIM

I I

● mm

I
f \

I
m I Is

1

● O*

GATINGBLIS

INTERRUPTS

Pig. 1—Interrupt logic

Poge 10

-) ”)..

FUNCTION: INTERRUPT 3 (PANEL
THE CONDITIONS FOR

f4ATCHER) PROCESSING
THIS INTERRUPT ARE SET

VIA A TTY MESSAGEENABLING THE IIATCHERS. AN
EXACT HATCH OF SPECIFIEO OATAOR AODRESS
WILL CAUSE INTERRUPT 3.

ASSEMBLY UNIT ASSEHBLY UNIT PROGRAMUNIT PROGRAMUNIT
MAJORFUNCTION FUNCTIONS

CUTIL COMONUTILITY llATCHINT ●CONTROLINTERRUPT
(PR 4C622) FUNCTIONS, LOAO COUNTER

OR HONITOR STORE
LOCATIONSOR
REGISTERS

●SET UP RETURN

●ALLOWOR OIS-
ALLOWINTERRUPT

●CALL PROCESSING
ROUTINE

UTILPROC ● INITIATE REQUESTEO
LOAOOR MONITOR
FUNCTION

Fig. 2—interrupt Processing, Interrupt No. 3, Panel Matcher

‘). .

OATA OR INTERRUPT
AOORESS SYSTEM
MATCH HAROWARE

I

TOSTABS
INTERRUPT
TRANSFER
VECTOR

F
CUTIL
RATCHINT

CUTIL i
UTILPROC

REQUESTEO
FUNCTION

SEC
TIO

N
254-340-031

U
-iK

H
—

—
—

—
lrr—

—
—

—
—

1
-n
a

fnzk’cK
m

cfno
U

U
z+

+
b

-
).-*U

C
J

rn
zau

~
E

01-l
t->

z
a

H
a

v
w

●
●

u
i-

-’l

Pa
g

e
12

FUNCTION: INTERRUPT 7 (OTHER 3A CC)

ASSEflBLY UNIT PROGRAMUNIT PROGRAMUNIT

D

OTHER 3A
MAJORFUNCTIONS cc

CINIT HCH_INT ●SET UP RETURN
(PR 4C618) ● IOENTIFY FUNCTION

SWINIT

●SET UP PROCESSOR
STANO-BY f100E

●ZERO THE PROGRAM

●STOP THE PROCESSOR
SWCOFIPL

●RESTORE REGISTERS
ZEROPT

o

INTERRUPT

FOR
SYSTEM
HAROWARE

TIMER

+t ,rOSTABS
INTERRUPT
TRANSFER
VECTOR

I 1

f

CINIT
MCH NT

)- .

E

Fig. 4—interrupt Processing, Interrupt No. 7, Other 3A CC

CINIT

7

SWINIT

CINIT

-’r
SWCOMPL

CINIT

-El

ZEROPT

d

w

v
&
fD

FUNCTION: INTERRUPT 9 (1OMS TIMER INTERRUPT)

ASSEMBLY UNIT PROGRAMUNIT PROGRAM UNIT
MAJOR FUNCTIONS

TINEAU TIHEINT ●SET UP FOR RETURN
(PR 4C144)

●DETECT STUCK INTERRUPT

● IDENTIFY IF INTERRUPT
OR SYSTEM CALL

●DETECT OVERLAY

●INCREMENT HISTIME
COUNTERINITIATE
SUBROUTINE LOOP

TIFIEACT ●CHECKTIHER TABLE ANO
REPLY TO REQUESTING TASKS

FIAI_TIFIE ●CALL ANOAOJUST PRIORITY
OF HAINT TASK AT SPECIFIED
TIME INTERVALS

FIL_TIME ●MAINTAIN TIME COUNT FOR
FILE SYSTEM ACTIVITIES

uTIMING
COUNTER

rINTERRUPT
SYSTEM
HARDWARE

! TIMEAU

KOSTABS
INTERRUPT
TRANSFER
VECTOR

TIMEACT

TIMEAU TIMEAU
TIMEINT ,MAI TIME

>

L
TIMEAU

T

FIL TIME

))
... -)

Fig. 5—interrupt Processing, Interrupt No. 9, Timer

)))

d

z’
to
CD

d

UI

. .

FUNCTION: INTERRUPT 14 OHAINTERFACE

ASSEMBLY UNIT PROGRAIIUNIT PROGRAM UNIT
MAJOR FUNCTIONS

INTSRV INTSRV14 ●SET UP RETURNS FROM THE
(PR 4C113) INTERRUPT

INTSRV_BEGIN ●COMMON PROCESSING FOR ALL
INTERRUPTS

● IOENTIFY CHANNEL (PCH OR
SCH)

●POLL OEVICES TO LOCATE
INTERRUPTING DEVICE

●REflI)vE MASK To RESTORE

INTERRUPT CAPABILITY

● IDENTIFY AND CALL PROPER
OEVICE ORIVER

ITPHDL ●SAVE REGISTERS ANO
ACCESS DVCB

●CHECK DIAGNOSTIC
INTERRUPTS AND IOENTIFY
CHANNEL ANO SUBCHANNEL

●CHECK FOR COMPLETION

JHPROO
(4R 4C209)

FILDEV OPRFNSH c INTERFACES BETWEEN
(PR 4C206) ANO PROCESS LEVEL

INTERRUPT

IASSIGNED
DEVICE

INTERRUPT
SYSTEM
HARDWARE I-’lrlOSTABS

INTERRUPT
TRANSFER
VECTOR

0
INTSRV
INTSRV14

D
FILDEV

PRFNSH

Fig. 6—interrupt Processing, Interrupt No. 10 or 11, TTY or TDC

FUNCTION: INTERRUPT 10 OR 11 (TELETYPE OR TAPE OECK CONTROLLER)

ASSEMBLY UNIT PROGRAM UNIT PROGRAM UNIT
MAJOR FUNCTIONS

TTYDRV
(PR 4C219)

TDCINT
(PR 4C215)

INTSRV INTSRVIO OR ●SET UP RETURNS FROM THE
(PR 4C113) INSRV11 INTERRUPT

INTSRV_BEGIN ●CDflMON PROCESSING FOR ALL
INTERRUPTS

● IOENTIFY CHANNEL (PCH OR
SCH)

●POOL OEVICES TO LOCATE
INTERRUPTING DEVICE

●REMOVE MASK TD RESTORE
INTERRUPT CAPABILITY

● IDENTIFY AND CALL PROPER
DEVICE DRIVER

TTYDRVI ●MONITDR AND CONTROL DEVICES,
SELECT OPERATIONS, IE, READ,
WRITE, ETC.

● INTERFACE WITH FILE SYSTEM
DEVICE TASK

TCINTC ●MONITOR AND CONTROL DEVICE,
SELECT OPERATIONS, IE, READ,
WRITE, ETC

● INTERFACES WITH FILE SYSTEM
DEVICE TASK

OPRFNSH ●EVENT ROUTINE WITH INTERFACES
BETWEEN INTERRUPT AND PRDCESS
LEVEL

COMPLET ●PROCESS COMPLETION OF OPER-
ATIONS ANO PASS CONTROL
TO THE TERMINAL ADMINISTRATOR
TASK

TTY OR INTERRUPT
TAPE HARDWARE
CONTROLLER SYSTEM +

FILDEV
(PR 4C206)

FILOEV
COMPLET

)
. <

))

Fig. 7—interrupt Processing, Interrupt No. 14, DMA

)

uOSTABS
INTERRUPT
TRANSFER
VECTOR

aINTSRV
INTSRV1O 11

+

INTSRV
INSTRV BEGIN

TTYDRV

7

FILDEV TOCINT
OPRFNSH 1 TCINTC

e v

)

e-

/’-

L

.

1SS 2, SECTION 254-340-031

TABLE A

TIMER MANAGEMENT FUNCTIONS
AND

PROGRAM UNIT IDENTIFICATION

ASSEMBLYUNIT PROGRAM UNIT FUNCTIONS

OSTABS TMSBRTBL This table specifies the subroutines which are
called by TIMEAU. The table consists of
three EOS subroutines and up to five application
subroutines.

TIMEAU TIMEINT Contains the code which assumes control on
each timer interrupt. This routine sets up for the
interrupt return and then passes control to
the TIMEACT subroutine or to any application
specified subroutine which executes at interrupt
level. Once the routines are finished processing,
TIMEINT gives control to the dispatcher.

TIMEACT This routine examines the first entry in the timer
subroutine table to find the status of
timer requests and what action is specified.

TIMEMSG This unit processes all timer messages except
those initiated by the ACT_TIMER macro.
This unit also contains the entry point
for kernel routines which call service programs as
subroutines. It also contains the entry point for the
routine called from a process via a SVC 9 call.

DEACT This unit deactivates all timer entries of a
given process which utilizes a specified
event flag or tag.

SETDATE This unit sets a date into the system clock.

MAI_TIME This unit is called at each 10ms interrupt
to determine when it is time to change
the priority of the periodic maintenance
task MAINT.

SETTIME This unit inserts a time value into the system
clock and the timing list entries to maintain
proper intervals.

Page 17

,’!

SECTION 254-340-031

TABLE A (Contd)

TIMER MANAGEMENT FUNCTIONS

AND
PROGRAM UNIT IDENTIFICATION

ASSRMSIY UNJT PROGRAM UNIT FUNCTIONS

READTIMEC This unit reads a system date and time into a
message parameter list.

ADDINRTNC This unit adds an entry to the interrupt
routine execute table or changes the timing
of a current entry.

DEUNRTNC This unit removes an entry from the interrupt
routine execute table.

EXTODISP This unit executes an exit to the dispatcher with the
system state stored in the system area.

FIL.TIME This unit keeps a count of the 10ms interrupts
for use in timing the file system. At each
interrupt the top entry in the timeout queue is
checked and when the count is less than equal to
the current count, an event flag is set in the
file system task FILDEV.

Page 18

18 Page’s

.--.<

4

	General
	Functional Description of Interrupt Handling
	Functional Description of Individual Interrupts
	Functional Description of Timer Management
	Glossary
	Table A
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

