
BEU SYSTEM PRACTICES

AT&TCo SPCS
SECTION 254-340-082

Issue 2, March 1980

SYSTEM UTILITIES

SOFTWARE SUBSYSTEM DESCRIPTION

EXTENDED OPERATING SYSTEM

3A PROCESSOR
;

h CONTENTS PAGE

●

l. GENERAL . . . . . . . . .
,n

A. Utility Functional Overview .

B. Program Structure . . . .

2. COMMON UTILITY PROCESSING .

A. Common Utility TTY Subroutines

Set Match Message . . . .

Set Indirect Message . . .

Stop Utility Message . . .

Monitor Messages . . . .

Load Messages . . . . .

Dump Messages . . . . .

B. Utility Routine Entry Processing

Message Processing . . . .

Utility Request . . . . . .

Base-Level Processing . . .

Match Interrupt Processing .

C. Utility Routine Processing

Monitor Function . .

Load Function . . .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. . . .

. . . . .

. . . . .

2

3

3

.3

3

3

4

4

4

4

5

6

6

6

6

6

6

7

7

NOTICE

CONTENTS PAGE

Dump Function . . . . . . .

3. COMMON NONRESIDENT UTILITIES . .

A.

B.

c.

D.

E.

F.

General . . .

Overwrite Function

Message Processing

Overwrite Multiscan

. . . . . .

. . . . . . .

. . . . . .

. . . . . .

Function Controller

. . . . . . .

Input Overwrite Function . . . .

Message Processing . . . . . .

Input Overwrite Processing . . .

Input Overwrite Data

Message Processing

Input Data Processing

Function . .

. . . . . .

. . . . .

Load Overwrite Function . . . .

Message Processing . . . . . .

Load or Verify Resident Data . .

Load or Verify Nonresident Data .

Initialize, Output, or Update Overwrite

Not for use or disclosure outside the

Bell System except under written

Printed in U.S.A.

File . . . . . . . . . . . .

Message Processing . . . . . .

7

7

7

8

8

8

8

8

8

9

9

9

9

9u

9

10

10

10

agreement

Page 1



SECTION

G.

H.

1.

254-340-082

CONTENTS PAGE

Update Overwrite Function . . . 10

Output Overwrite Function . . . 10

Activate, Remove, or Cancel Overwrite

Function . . . . . . . . . . 11

Load Off-line Main Store Function

off-line Register Dump Function

Simulated 8ootstrap .

4. GLOSSARY . . . . .

Figures

1.

2.

3.

4.

5.

6.

7.

8.

MI

9.

lo.

11.

12.

13.

14.

15.

16.

Utility Functional Flow .

System Utility Structure .

Utility Common Processing

Monitor and Load Functions

Dump Function Processing

Nonresident Utility Overwrite

Multiscan Function Processing

Input Overwrite Function

. . .

. . .

11

11

12

12

. . . . . 13

. . . . . 13

. . . . . 14

. . . . 15

. . . . . 16

Function . 17

. . . . 18

. . . . . 19

Input Overwrite Data Function . . . 20

Load or Verify Overwrite Function . . 21

Initialize, Output, or Update Overwrite File

22. . . . . . . . . . . . . . .

Update Overwrite Function . . . . . 23

Output Overwrite Function . . . . . 24

Activate, Cancelr or Remove Overwrite . 25

Load Off-line Main Store . . . . . 26

Off-line Register Dump . . . . . . 27

Page 2

Table PAGE -

A. TTY Function Entry Points . . . . 28

1. GENERAL ~

1.01 This section provides a description of the
common utility functions used with the 3A .-

Central Control (3A CC). The utility programs are
both resident and nonresident and are used for

,.

loading, storing and/or monitoring various registers .

and memory locations, and performing various tape ,-*
operations and reload functions. Utility programs
are initiated by TTY messages. Output can be
either a return TTY message or a system status
panel display of data.

1.02 $This section has been reissued to reflect
changes and improvements to system utilities.

Revision arrows have been used to denote the
changes.4

1.03 The following sections contain the descriptions
of functions related to this section.

SECTION

254-340-001

254-340-040

254-340-080

254-340-084

254-340-086

254-340-088

TITLE

Extended Operating System
Overview, Software Subsystem
Description, 3A Processor

Data Administration, Software
Subsystem Description, Extended
Operating System, 3A Processor

Maintenance Overview, Software
Subsystem Description, Extended
Operating System, 3A Processor

Resident Maintenance, Software $

Subsystem Description, Extended
Operating System, 3A Processor

*

.

Initialization and Recovery,
Software Subsystem Description,
Extended Operating System,
3A Processor

‘-.,.

Processor and Memory
Diagnostics, Software Subsystem
Description, Extended Operating
System, 3A Processor



1SS 2, SECTION 254-340-082

SECTION TITLE

254-340-090 Peripheral Diagnostics, Software
Subsystem Description, Extended
Operating System, 3A Processor

254-340-104 Program Listing Organization
and Usage, Software Subsystem
Description, Extended Operating

1 System, 3A Processor.

*,
1.04 The following assembly units contain the

.
code relating to the functions described in

,P this section.

● Common System Utility Program
(CUTIL)-PR-4C622 –This program contains
the subroutines that are used for loading,
monitoring, or dumping functions on selected
memory locations or registers.

● Common Nonresident Utilities Program
(CNRUTL)-PR-4C623 -This program contains
the subroutines that are used to perform
the patching and overwrite functions.

● Common Base Level Monitor Program
(CBLM)-PR-4C617 –Provides monitor control
for the base level routines.

● EOS Maintenance Task (MAINT)-PR-4C607—
Provides control for EOS maintenance
functions.

● Client to Data Administrator (EOSMSG)-
PR-4C229–Interfaces client input TTY
messages to the proper processing routines.

P’
● User TTY Data Program (TTYTBL)-PR-4C401 –

Contains message formats and processing
routine addresses.

A. Utility Functional Overview
a

.
1.05 System utilities are initiated via TTY messages

which are processed by independent subroutines
which set up the utility request buffer (UREQBUF)

*, for all valid messages. Pending utility requests
are recognized by MAINT during high level processing.
When a valid request is present, MAINT transfers
the message to the utility program CUTIL. Program
unit CUTILBAS in CUTIL validates the request
and establishes the conditions necessary to invoke
the requested utility. When MAINT next performs

high priority functions, the pending function which
has been requested will be performed. When the
request is for a nonresident utility, the TTY message
entered at medium priority level is passed directly
to the Multiscan Function Controller (MSFC) of
the CBLM, which also runs at medium priority
level. The request is accepted (if it has not been
inhibited) by MSFC and the requested utility is
identified. It will execute when all other requests
for higher priority multiscan functions have completed.
The EOS does not time slice functions under MSFC.
The primary utility functional flow is shown in
Fig. 1.

B. Program Structure

1.06 The system utilities consist of a set of
independent subroutines contained in two

assembly units: Common Utilities (CUTIL) and
Common Nonresident Utilities (CNRUTL). These
subroutines are selected in accordance with an
input TTY message. CNRUTL is first invoked as
a single multiscan function after which the common
processing determines which function (subroutine)
to initiate. The overall structure of the system
utilities is shown in Fig. 2.

1.07 +The entry point of each TTY function is
listed in Table A.4

2. COMMON UTILITY PROCESSING

A. Common Utility TTY Subroutines

2.01 There is a TTY input subroutine for each
utility function processed by CUTIL. All

input parameters are set up by the TTY program
(EOSMSG), and the subroutines contain the TTY
acknowledgment codes which they return in addition
to basic processing.

Set Match Message

2.o2 The SETMATCH utility message is entered
at entry point SETMATCH in CUTIL. This

message loads the Central Control registers which
control the panel address and data match circuits.
The ADRMAT and DATAMAT flags are set so that
other utility input routines can determine if matchers
were set, thus allowing ON CONDITION (ONC)
functions. This message does not enable the matcher
circuits however. The message format is

SET: MATCH: ADR(AA,MM),DATA( DD,NN)!

Page 3



AA–Address to which address matcher is
to be set
MM–Mask for address matcher
DD–Data to which data matcher is to be
set
NN–Mask for data matcher.

Set Indirect Message

2.03 The SET: INDIR utility message is entered
at entry point SETINDIR in CUTIL. It

initializes the utility control block with data which
is used by the indirect utility functions to generate
an indirect address. This is accomplished by
modifying the pointer address with the entered
data before a load or monitor function is performed.
The message format is

● SETINDIR MM,00!

MM–20-bit mask to be applied to the address
00–Decimal offset to be added to the
address.

Stop Utility Message

2.04 The STOP:UTIL message is entered at entry
point STPUTIL in CUTIL. It is used to

terminate any active utility function. This message
will disable the panel matchers, enable the automatic
display, and idle the utility request buffer
(UREQBUF). The update off-line main store
function is marked allowable. The message format
is:

STOP: UTIL!

Monitor Messages

2.05 The monitor input messages are entered at
several entry points in CUTIL depending on

the function requested. On a monitor store request,
the entry is at MONST. For a monitor register
request, the entry is at MONREG. For a monitor
indirect, the entry is at MONINDIR. All of these
entry points are in CUTIL. The monitor messages
are used to monitor eight 16-bit data words. These
words may be monitored once per loop, or only
when a match occurs, as specified via the SET: MATCH
message. For a MON:ST message, the default
case is once per base-level loop. For a MON:REG
or a MON:INDIR message, default execution is
when a match occurs. Results may be directed to
the TTY or display buffer with default being the

Page 4

TTY. When the result is directed to the TTY,
the eight words will be all printed out the first
time they are monitored. On subsequent cycles
they will be printed only when a change is detected
in one or more words. When the result goes to
the display buffer, the first word of the eight is

n

displayed each time the words are monitored.

2.06 Three forms of the monitor input message r
exist:

*

(1) The monitor store (MONST) message contains .
a store address. The eight words are the

contents of that location and the seven succeeding
locations. The message format is:

MON:ST AA; ONC,SGL,RDT LAMPS!

(2) The monitor register (MONREG) message
contains a general register number. The

eight words are the contents of that register
and the seven succeeding registers. When a
succeeding register does not exist, the selection
starts over from RO. The message format is:

MON:REG NN;ONC,SGL,RDT LAMPS!

(3) The monitor indirect (MON:INDIR) message
contains a register number which is interpreted

as the first of a pair of registers which will
contain a 20-bit address when the match occurs.
This address may be modified at execution time
via the SET: INDIR message. When this occurs,
the result is used as a store address. After
this, the monitor function is identical to (1)
MON:ST. The message format is:

MON:INDIR NN;ONC,SGL,RDT LAMPS!

(4) The following parameters are specified for
the monitor messages: ,

AA–Address of first of eight store words 4

NN–Register number (O through 31) .
ONC– Execute ON CONDITION, ie, on a
match
SGL–Execute a single time
RDT LAMPS–Results directed to the display ‘a”
buffer.

Load Messages

2.07 The load messages are basically the same
as the monitor messages. They also enter

—



1SS 2, SECTION 254-340-082

at various entry points depending on
requested. For a load store request,
LODST. For a load register request,

the function
the entry is
the entry is

at LODREG. For a load indirect, the entry is at
LODINDIR. All of these entry points are in
CUTIL. The three load messages exist on a
one-to-one basis with the monitor messages and in
each case the load function is identical to the
corresponding monitor function, except that the
first of the eight words is modified after the
monitor is performed. Only unprotected store
words and general registers may be modified.

2.08 Three forms of the load input message exist

(1) The load store (LOD:ST) message contains
a store address. The eight words are the

contents of that location and the seven succeeding
locations. The first word is modified by the
data specified in the message. The message
format i5

LOD:ST AA;ONC,SGL,RDT LAMPS: DD,MM!

(2) The load register (LOD:REG) message
contains a general register number and the

eight words monitored are the succeeding seven
registers. If a succeeding register does not exist,
the selection starts over from RO. The first
register is modified by the data and mask
information contained in the message after the
monitoring is complete. The message format is:

LODREG NN;ONC,SGL,RDT LAMPS: DD,MM!

(3) The load indirect (LOD:INDIR) message
contains a general register number which is

interpreted as the register address when a match
occurs. The action is then the same as a load
register function except that the register contained
in the address will be modified. The message
format is:

LOD:INDIR NN;ONC,SLG,RDT LAMPS:
DD,MM!

(4) The following parameters apply to the load
messages:

AA–Address of first of eight store words
to be located
NN–Register number (O through 15)
ONC–Execute ON CONDITION, ie, on a
match

SGL–Execute a single time
RDT LAMPS–Results directed to the display
buffer
DD–Data to be loaded
MM–Mask which modifies the data.

Dump Messages

2.09 The dump store messages enter at various
entry points depending on the function

requested. The dump store (DMP:ST) message
enters at DMPST. The dump off-line store
(DMP:OFLST) message enters at DMPOFLST. The
dump on initialization (DMP:INITQ) message enters
at DMPINITQ. These messages are used to print
out on the TTY the contents of a block of consecutive
store words. A dump can be initiated immediately
or when a match occurs, if the SETMATCH utility
message was used prior to the request. The
starting address and length of the block of store
to dump is specified in the message. The length
is always rounded off to the next multiple of eight
words. If the block length is omitted from the
message, the default block size is eight.

2.10

(1)

for
or
are
at

Three separate input messages are used to
initiate dump utility functions:

The dump store (DMP:ST) message is the
normally used dump routine. It is adequate
dumping small blocks (less than 16 words)
table large blocks. When 16 or fewer words
requested by DMP:ST, the words are buffered
the time the dump is initiated, thus are

consistent. When more than 16 words are
requested, the dump is directly from the memory
locations and the words could be changing even
as the printing is being done. This could result
in a printout of data which has never really
existed. Only very stable (slow to change) large
blocks should be dumped using this message.
The message format is:

DMP:ST AA,LENGTH NN;ONC!

(2) The dump off-line store (DMP:OFLST) message
is used when large blocks of guaranteed

consistency must be dumped. The message
takes the system out of the up-date mode thus
freezing off-line store. The entire off-line store
is then used as a buffer, from which the printout

Page 5

—



SECTION 254-340-082

routine can access
message format is:

large blocks of data. The

DMP:OFLST AA,LENGTH NN;ONC!

(3) The dump on initialization (DMP:INITQ)
message is functionally identical to the

DMP:OFLST message, except that the dump is
initiated only when an initialization occurs. The
message format is

DMP:INITQ AA,LENGTH NN;ONC!

(4) The following parameters apply to all dump
utility messages

AA– Address of first word in block to be
dumped
NN–Decimal length of block to be dumped
ONC– Execute ON CONDITION, ie, on a
match.

(Fig. 3). When the set match has been used and ?
the ONC option selected, entry is from a Central
Control Panel Matcher interrupt. When this option
was not selected, the immediate is in effect and
the utility is initiated by CBLM during the high
priority MAINT functions. The action in each case

-

is identical and most of the processing is accomplished
by routine UTILPROC.

.
Base-Level Processing

.

2.13 When MAINT calls CBLM (Fig. 3) to check .
for pending utility functions, CBLM enters

CUTIL at entry point CUTILBAS. When a utility
has been successfully requested and marked as
active, CUTILBAS processing consists of checking
to assure that the proper match conditions exist.
When there is a match request pending CUTILBAS
does no further processing. When the match option
is not active, CUTILBAS passes control to
UTILPROC. UTILPROC then initiates the requested
utility function.

B. Utility Routine Entry Processing

Match Interrupt Processing

Message Processing

2.11 Message entry processing (Fig. 3) begins at
the various entry points and consists of

locating the last monitored word (MONST and
LODST), verifying registers (LODREG and MONREG),
initializing masks and offsets (LODINDIR and
MONINDIR), and loading the proper function code
for an initialization or off-line dump (DMPINITQ
or DMPOFLST), or for a normal store dump
(DMPST). When these functions are completed, a
branch is made to one of the INMERGE entry
points in DMPST. Conditions are set based on
the message and its parameters. A bid is then
made for a utility function. The actual request is
initiated by the routine UREQ which performs a
series of checks to determine that the proper
conditions exist to support the requested utility
function. When these checks are complete, a return
is made to DMPST and appropriate action is taken
based on the response, ie, no good, retry later,
or in progress. The appropriate TTY response is
printed out and control then passes to the base
level monitor (CBLM).

Utility Request

2.12 There are two entries into the utility
processing routines depending on whether

or not the ONC and match option was specified

2.14 When the match option has been selected
and is active, an interrupt entry to MATCHINT

when the panel matchers detect an address or data
match. MATCHINT performs necessary interrupt
processing and determines that the number of
interrupts has not exceeded the allowed limit (three
interrupts since last base-level entry). When the
limit is exceeded the function is terminated, otherwise
a branch is made to UTILPROC to initiate the
function.

C. Utility Routine Processing

2.15 UTILPROC selects the correct utility
processing routine based on the function $

code present in the utility request buffer UREQBUF.
UTILPROC is divided into three major divisions 4

.
(a) Monitor and Load Functions: MONMERGE

and MONREGR

(b) Dump Functions: DMPLSTR and DMPSTR
P,

(c) Application Utility Functions: AUTI1

Initial processing relocates the contents of UREQBUF
to specified general registers and positions the

-

utility address for use by the major divisions.

Page 6



1SS 2, SECTION 254-340-082

Control is then passed to the appropriate major
division.

2.16 The monitor store (Fig. 4) is the basic
monitor/load function, all others are made

to resemble it and then merge with it at entry
point MONMERGE. MONMERGE retrieves registers
stored by the interrupt and establishes a scratch
area. The data in the scratch area is used to form
the store address of the monitor words. The
routine checks to assure that the address is to a
valid store location and that the highest address
to be monitored actually contains data. The first
word to be monitored, or loaded, is then fetched
and positioned for output. At this point, the
processing depends on the function requested (eg,
monitor, load, or dump) and what kind of location
(eg, store or register). In each case, determination
is made between the display buffer (SSP lamps)
or TTY.

Monitor Function

2.17 On all monitor functions, a check is performed
to determine that this is the first time the

words have been monitored. When it is the first
monitor, the print conditions are set to output all
eight words; when it is not, the words are output
only when a change is detected. The lamps option
is also checked and when it has been selected the
routine LOADDB is called to load the panel data
buffer with the first word. Once the words have
been printed out or displayed, the single monitor
option is checked and when selected the STPUTIL
routine will terminate the function. When single
was not selected, a return is made to CBLM and
the monitor function will continue until terminated
by the STPUTIL message.

Load Function

2.18 On a load request the data to be changed
is loaded into the first store word or register

location, thus the first monitor will be on the data
just fetched from that location and the changed
word will not be monitored until the next cycle.
Except for this function, the load functions are
identical to the monitor functions described in
paragraph 2.17.

Dump Function

2.19 The UTILPROC (Fig. 3) routine initiates
the proper function which is specified by

the function code in the utility request buffer.
At this point, the request may be for either a
DMP or DMPL.

2.2o Processing of dump functions (Fig. 5) is
divided into two parts:

(1) A header is printed out giving the address
of the location being dumped.

(2) Four lines of data (32 words).

These five lines are then repeated as often as
necessary to complete the requested output.

2.21 The primary difference between a dump
store and a dump off-line store is that for

an off-line store dump the entire off-line memory
is frozen and used as a buffer for the dump instead
of the DMPBUF area of on-line store.

2.22 The output of the header is controlled by
the DMP function code which causes entry

to be at entry point DMPSTR. Once the header
has been printed, the function code is changed to
DMPL. Changing the function code causes the
entry point to be shifted to DMPLSTR. DMPLSTR
processes the four lines of data, and when either
the last of the four lines has been printed or when
all required lines have been printed it resets the
function code from DMPL to DMP and the cycle
is repeated until all lines have been dumped.

3. COMMON NONRESIDENT UTILITIES

A. General

3.01 The common nonresident utilities provide
routines which allow overwrite procedures,

used to modify the generic program, and an off-line
register dump function which will display register
contents of the off-line central control. These
functions are stored off-line and called in only as
required. The routines are all independent except
they are performed as a single multiscan function
called OFLUCTL. Initiation is by TTY message.
OEach routine responds with an appropriate TTY
output message:

(a) NG–This message is illegal at this time.

(b) RL–A prior overwrite request is being
executed.

Page 7



SECTION 254-340-082

(c) PF–The execution of the request has begun.
A TTY printout will occur when it completes.

(d) OK–Request successfully performed.~

B. Overwrite Function

Message Processing

3.02 $The overwrite function (Fig. 6) is initiated
by the ALW:OW input message which serves

to initialize an overwrite control block for use by
the overwrite TTY messages. (ALW:OW must be
entered before any other overwrite TTY messages
are allowed to be entered.)t Entry is at a small
resident routine NRPRES which identifies the
requested function and causes the appropriate
monitors, TTY catalogs, etc, to be loaded from
magnetic tape into the resident paging buffer.

3.o3. When the paging buffer has been loaded, a
bid is made to MSFREQ in CBLM for a

multiscan function. When the multiscan function
is allowed, return is made to entry point NRUBGN.
If not allowed, the request is canceled.

3.04 NRUBGN identifies the requested function
as the overwrite request and passes control

to the overwrite multiscan function OWMSF which
monitors all overwrite functions. When NRUBGN
does not locate an active utility, it returns control
directly to UTILRTN which cancels the request.

Overwrite Muhisccm Function Controller

3.0s The overwrite multiscan function controller
OWMSF (Fig. 7) determines whether this

request is an abort, a first time entry, or ,a normal
return entry. When an abort is received, the
ALW OW INH message is printed and the routine
is terminated. For a first entry, the proper control
elements are established and the ALW OW COIVIPL
message is printed. On a normal return entry,
control is passed immediately to an execute progress
mark routine which keeps track of the progress
of the utility on each scan and will either return
control directly back to CBLM or branch to the
location retained by the progress mark to continue
processing.

3.06 Once the ALW OW COMPL message has
been received, the overwrite function is

active and will accept additional overwrite function
input messages. These messages are expected in

a specific order and are used to control the complete
overwrite procedure. The messages will be accepted
and processed as long as the overwrite multiscan
function controller is active.

C. Input Overwrite Function

Message Processing

.
3.07 The input overwrite function (Fig. 8) is

initiated by either the INOW N;TTY, or .
the IN:OW N;TAPE input message, where “N” is .
an overwrite number. The TTY option starts a
new overwrite entry which allows data to be input
via the IN: OWDATA entry. The tape option causes
the overwrite number “N” to be transferred from
the overwrite file on tape into the overwrite buffer
(OWBUF). These operations assume that the
generic and issue identifiers have been previously
loaded into the generic issue buffer (GENISS) via
the INGENID and INISSID TTY input messages.

3.08 The input messages are processed by INOW
which checks the status of the function,

performs necessary conversions and outputs the
appropriate TTY messages. When all checks are
complete, control is returned to the multiscan
function controller (MSFC).

Input Overwrite Processing

3.o9 The next entry to the function is started
by OWMSF as described in paragraphs 3.05

and 3.06. The controlling progress mark identifies
starting location INOW. INOW first calls OPENTCB
to open the patch file and start tape unit operations.
INOW then determines whether the request is for
the TTY or TAPE option. When it is TTY, the
generic and issue identification is verified and
control is passed to SEARCH. When the option
is TAPE, control is passed directly to SEARCH.

3.10 The SEARCH function scans the patch file
on tape for overwrite number “N”. The

overwrite number should be preset when the TAPE
option is active and not present for the TTY option.
When TAPE is specified and “N” is found
INOWFAIL will stop the function and cause the
appropriate TTY message, INOW DATA INH, to
be printed.

3.11 When correct conditions are established,
control passes to RDOWRCRD for tape

operations or FMT OWBUFFER for TTY. On a

i

4

+’

Page 8



1SS 2, SECTION 254-340-082

.

m

.

f-

,n

tape operation, RDOWRCRD copies the tape record
containing the specified overwrite number into the
overwrite buffer OWBUFFER. On a TTY operation,
FMT OWBUFFER formats the OWBUFFER header.
The header consists of the header length, the
overwrite number, and the current time of day.
The tape and TTY operations then merge to
INOWPASS which closes the patch file. REQPASS
will then cause a completion message to be output
and returns control to CBLM. When the TTY
option was selected to establish a new overwrite,
the new data is entered via the input overwrite
data function.

D. Input Overwrite Data Function

Message Processing

3.12 Overwrite data (Fig. 9) is entered after the
ALW:OW is successfully completed. The

input overwrite data function is initiated by input
message INOWDATA with parameters which specify
the segment number, address, old data, and new
data. An overwrite may consist of any number
of these messages.

3.13 Entry is at INOWDATA where the OWBUFFER
is set up and validity checks are performed.

The data is organized in OWBUFFER in blocks
according to ascending segment numbers and
addresses. The segment number and address thus
become the first element in each block.

Input Data Processing

3.14 A location must be established for each
block to determine if it is to be added to

the end of the blocks already in the buffer or
inserted between existing blocks. These functions
are performed by TESTEOB. When the block is
to be added, control passes to INSERTDATA.
INSERTDATA determines overflow conditions and
if the new data will cause an overflow it causes
the INOWDATA INH message to be output and
stops the function. When the data is to be inserted,
the function CONTSRCH will find the proper
location and pass the information to INSERTDATA.
INSERTDATA tests for overflow as described
previously. In both cases, INSERTDATA calls
MONST to perform the proper word adjustments
in OWBUFFER. After this is accomplished,
INSERTDATA compares and stores each block into
the proper location in OWBUFFER. When all
blocks have been stored, the overwrite data is

ready for loading into the proper store locations
and verified. The actual loading is accomplished
by the load overwrite function.

E. Load Overwrite Function

Message Processing

3.15 The purpose of this function (Fig. 10) is to
load or verify overwrite data. The function

is initiated by either LOD:OW or VFY:OW input
message. Either old or new data can be selected
as an option. Processing is almost identical in
each case. Each location specified in OWBUFFER
is accessed. When the location contains resident
data, the on-line store location is accessed. For
nonresident data locations, the nonresident program
file on tape is accessed. During a verify operation,
the data in accessed locations is compared to the
data for that location recorded in OWBUFFER.
OWBUFFER contains both old and new data words
and the message option determines which data
words will be compared. A load request causes
the appropriate words to be written from the
OWBUFFER into the specified store locations.

Load or Verify Resident Data

3.16 The function is entered at entry point
LODOW. The processing is accomplished

by two loop operations. The first or outer loop
cycles through and determines if the data words
contained in the ORGBLKS are resident or nonresident
and tests for the end of OWBUFFER. When
modified data is found, it is written on to the
appropriate tape block overwriting the old data
after which a completion message OW COMPL is
output. When the data is resident, the ORGBLKS
are processed in sequence by the second loop (load
or verify) starting at entry point VFYRESLP. Each
ORGBLK is checked to determine load or verify
status and the load or verify is accomplished as
required. During a verify operation, the first
noncompare will cause the output message ALW
OW INH to be printed out and the function will
be terminated. When all the words in an ORGBLK
have been processed, a return is made to the
outerloop to check the next ORGBLK which will
be processed in the same manner until the end of
OWBUFFER is reached.

Page 9



SECTION 254-340-082

Load or Verify Nonresident Data

3.17 When the data is nonresident, the tape
must be searched. The tape is formatted

into physical blocks which do not correspond to
the ORGBLKS. Processing is started by the common
tape handler program (CTAPH) which opens the
tape operations. By furnishing the segment number
specified in each ORGBLK, the appropriate tape
record can be located and read into the input-output
buffer (1.OBUF). The processing is then similar
to that performed on resident data. The outer
loop loops through I_OBUF and checks each address
specified in the ORGBLK against those in I_OBUF.
When an affected address is found, the inner loop
performs either a load or compare as specified.
The first noncompare will return the ALW OW
INH message as before. The loop continues until
all words in and ORGBLK are completed or until
the end of I_OBUF is reached. The outer loop is
then entered and either sets up the next ORGBLK
or reads in the next tape block. During this
processing any modified data is overwritten into
the proper tape block. The loops are repeated
until the end of OWBUFFER is reached at which
time the completion message is outputted and the
function terminated.

F. Initialize, Output, or Update Overwrite File

Message Processing

3.18 The purpose of this function (Fig. 11) is to
initialize, update, or output the patch file.

The function is initiated by any of the following
messages: OP:OWFILE, INIT:OWFILE, or
UPD:OWFILE. Processing is similar in each case.

3.19 Initiate overwrite function must be entered
before any other overwrite actions can be

taken. On initiation the tape functions of CTAPH
locate the patch file. A header is then formatted
and written onto the tape, and any overwrite
already in the file wiped out. When this is
complete, OPOWFILEPASS closes the patch file
and generates a completion message. Any failure
will be processed at OPOWFILEFAIL where the
patch file is closed and an error message is
generated. The function is then terminated. The
updata overwrite function is identical except that
existing overwrites in the file are not wiped out.

3.20 The output function OPOWFIL starts with
the tape actions by CTAPH, which locates

the patch file. A census is then taken of the file.
This consists of a header line, two lines for the
generic and issue identifiers and a line for each
overwrite in the patch file. Successful completion
causes a branch OPOWFILECOMPL which outputs
the final link after this OPOWFILEPASS closes
the patch file and generates the completion message.
A failure results in a call to OPOWFILEFAIL
where error processing is performed.

Update Overwrite Function

3.21 The purpose of the update overwrite function
(Fig. 12) is to update the checksum file on

tape to reflect the overwrite currently residing in
OWBUFFER. On planned changes, the affective
checksum words must be changed on tape and in
resident store. The checksums are calculated over
each 4K block of resident store.

3.22 After locating the file on tape, the size of
the OWBUFFER and the length of the

ORGBLKS it contains are determined. CHKRSEG
then locates the appropriate 4K block and sets up
for the checksum. Two loops are then set up.
The outer loop checks for the completion of the
OWBUFFER and/or store segment. The inner loop
starts at CSADRLP which keeps tract of the 4K
boundaries. CSORGLD sets up the length of the
ORGBLK. Checksums are calculated for each
ORGBLK in each 4K segment. The checksums are
calculated by exclusive ORing the data word and
its checksum word. The results are then written
back onto tape into the appropriate checksum word.

Output Overwrite Function

3.23 This function (Fig. 13) will either print the
contents of OWBUFFER on the TTY, or

append the overwrite in OWBUFFER to the end
of the patch file on tape. The two messages which
can initiate this function are: OP:OW;TTY or
OP:OW;TAPE.

3.24 The tape option will cause the patch file to
be opened and then searched for an overwrite

of the same number as the one currently in
OWBUFFER. When the number is found,
OPOWFAIL will fail the function. When the
number is not found, the tape is positioned to the
end of the patch file and WRTOWRCRD adds the
record from OWBUFFER to the end of the file.

*

*

Page 10



1SS 2, SECTION 254-340-082

●

✎

‘P

*

●

3.25 The TTY option requires location of the
proper overwrite number in OWBUFFER.

The overwrite data is then printed on the TTY as
a linked message with a loop which cycles all
ORGBLKS (see INOWDATA for ORGBLK explanation).
When all the data has been printed out, the function
is terminated.

Activate, Remove, or Cancel Overwrite Function

3.26 The purpose of this function (Fig. 14) is to
change the status of an overwrite. It can

be activated, ACT:OW; canceled, CNLOW; or
removed, RMV:OW. The status of the action is
recorded in the overwrite record header.

3.27 The tape is activated and the path file is
searched by SEARCH for the current overwrite

number. When it is not found, the request is
failed by CHGOWFAIL. When the tape record is
read into the I_OBUF; the status is checked for
cancel, remove, or activate already in affect. When
the old status is the same as the requested status,
no further action is taken. When the status is
different, the new status is inserted and the modified
block is written back onto the overwrite file on
tape.

G. Load OH-line Main Store Function

3.28 The purpose of this function (Fig. 15) is to
load a new generic and/or translation file

into the off-line main store. It is initiated by the
LOD:OMAS input message and the generic identification
and whether or not a translation file is to be loaded
is specified in the message parameters. A patch
file will not be loaded and the system must be in
the manual state.

3.29 Input message processing is accomplished
by LODOMAS, which identifies the request

and sets up the control buffer with the parameters
specified by the message. When message processing
is complete, an in-progress message is printed on
the TTY.

3.30 The load function is started by a multiscan
function entry from MSFC. Multiscan entry

processing is identical to that previously described
(paragraphs 3.02 through 3.04) with COPYGENMON
selected as the monitor function. COPYGENMON
controls processing by sequentially advancing through
a number of routines which initiate various functions

(eg, tape unit control delay times, error checks,
etc).

3.31 Initial processing determines whether or not
a translation file load is desired. When it

is requested, tape activities are started to locate
the proper file location. The generic file on tape
is opened and INITOST is invoked to disable the
write-protect controls. Another substate of
COPYGENMON then clears the off-line store and
sets up the tape unit for a read activity.

3.32 DMPMON initiates the read which reads
the generic a block at a time from the tape

into the input/output (1/0) buffer. When the tape
completes the data read into the buffer, the buffer
is unpacked to format the words into the proper
length for the move to the main store.

3.33 COPYGENMON then sets up to copy the
data from the 1/0 buffer to the proper

store locations. A maximum of 297 words is moved
at one time and the loop continues until all words
have been copied. As each block is copied, it is
read back and compared. Any noncompare will
stop the function and print the LOD OMAS ERR
message. This activity continues a block at a
time until the file is complete. When the file is
complete tape activities are halted, the LOD OMAS
COMPL message is printed and the function is
terminated.

H. OH-line Register Dump Function

3.34 The purpose of the off-line register dump
function (Fig. 16) is to dump the register

contents of the off-line processor and print them
out on the TTY. The function is initiated by the
DMP:REGOFL input message. Input message
processing is identical with that described for the
overwrite entry functions (paragraphs 3.02 through
3.04) except that the register dump monitor
ENTRDPRG is selected.

3.35 ENTRDPRG checks for any aborts and when
appropriate the DMP REG OFL INH message

is printed and the function terminated. The scan
status is checked on each entry. On first scan,
the off-line processor is placed in the maintenance
stop state and conditions are set up to gate the
registers to the maintenance channel. GTNXT 16
then gates the contents of all 16-bit registers onto
the maintenance channel and they are transmitted
to the REGBUF scratch area of the on-line processor.

Page 11



GTNXT 20 will then perform the same function
on the 20-bit registers. The TTY header message
DMP REG OFL is then formatted and printed out.

3.36 On subsequent scans, the REGBUF scratch
area is accessed via a loop and the register

contents stored there are output as a linked message
to the TTY. When the last link is printed, control
is returned to MSFC.

1. $Simulated Bootstrap

3.37 A method is available to load off-line data
via a simulated bootstrap. This is accomplished

on the off-line 3A CC by the input command:

LOD:OMAS;BOO~FULL]!

In addition to loading the generic and translation
files, the patch file is also loaded. This method
has the additional feature of verifying that the
bootstrap was successful for the cartridge tape
specified. A reload based on checksums or a
complete reload (FULL specified in the input
command) of memory is possible depending upon
the input command. The bootstrapping process
will attempt to use both tapes for the loading
process just as it does during an on-line bootstrap,
and to load only from the off-line tape, the on-line
tape must be removed from the cartridge tape
transport.q

4. GLOSSARY

4.o1 The following terms and acronyms are
contained in this section.

Assembly Unit—A collection of code that is
assembled or compiled as one entity. The assembly
unit is the highest level of a modular program
structure and may or may not contain functionally
related subunits. -.

Base Level Loop—A major ESS software loop
which normally includes all functions not performed
at interrupt level.

●

C13Llf<ommon base level monitor.
.

Checksum—An error checking code wherein a
series of check digits are computed based on the
modulo (no carries) summing of the data digits.
The value of the check digits are computed so that
the modulo sum of the data digits plus the check
digit is equal to zero.

Entry Point—A labeled location at which a
CSECT or any logical block of code may be entered.

lZOS-Extended Operating System.

ESS—Electronic Switching System.

I/O—Input/output.

iWS1’C-Multiscan Function Controller.

3A CC-3A Central Control.

--m

,

.

Page 12



1SS 2, SECTION 254-340-082

c’

.

/--

EOS SET UP
UTILITY

e
MAINTENANCE

3
REQUESTED

REQUEST TASK FUNCTION
(hiAINT) AS ACTIVE

RESIDENT

EOS MULTISCAN COMMON
MAINTENANCE

e
FUNCTION

TASK >
UTILITY

CONTROL FUNCTIONS
( INTERMEDIATE) (MSFC) (CUTIL)

I

NONRESIDENT

rl

REQUESTED
FUNCTION

Fig. l—Utility Functional Flow

=1-i=l
I J

RESIDENT NONRESIDENT

cCOMMONUTILITY #
(CUTIL)
Part 2

J
COMMONNONRESIDENT
UTILITIES (CNRUTL)
Part 3

ENTRYPROCESSING

,!-

W v
MONITORFUNCTIONS* DUMPFUNCTIONS OVERWRITE(OW) LOADFUNCTIONS

Fig. 2—System Utility Structure

Page 13



CUTIL CIJTIL DMPST

-

I

N

‘#
CUTIL UREQ

4
CUTIL DMPST

m
Et’rt

●

Fig. 3—Utihty Common Processing

T,

*

Page 14



1SS 2, SECTION 254-340-082

.

FROM:

5

A UTILPROC

CUTIL MONREGR

‘b
I

CUTIL MONMERGE

L

*

7!3TTY MESSAGE

7!3SSP LAMPS

CUTILCHKONESH~

+

\* CBLM CUTILRTN

ElCUTIL STPUTIL

Fig. 4—Monitor and Load Functions

Page 15



SECTION 254-340-082

CUTIL DMPSTR
(Header)

c(JTIL DMPLSIX
(Body)

FROM:
UTILPROC

F
CUTIL BMPSTR

f
4

CIJTILDMPLSTR

I 1

Fig. 5—Dump Function Processing

E
CBLM CUTILRTN

c

cmIL STPUT’IL

.

Page 16



1SS 2, SECTION 254-340-082

N

mCNRUTL NRIJWN

I
i

I

CNRUTL OWMSF

I

w
CBLM UTILRTN

*

Fig. 6—Nonresident Utility Overwrite Function

Page 17



SECTION 254-340-082

I CNRUTL OWMSF

G-i
“p’”-1-

CNRUTLEXCRTBPM
N

CBLM MSFC

s

oTTY MESSAGE

ALWOWCOMPL

Page 18

mCBLM MSFC

Fig. 7—Muhiscan Function

hCNRUTL
(PMLOCATIONS)

Processing



1SS 2, SECTION 254-340-082

,n

.

,/-

f’-

El--’lc””1“”
IN:OW N; TTY I

IN: O~N; TAPE

~

TTY MESSAGE

mCNRUTL SEARCH

H

-B

4

-,,=,

IT
CTAPH OPENTCB

mCNRUTL INOW

Function

CBLM MSFC

Page 19



SECTION 254-340-082

F--lIN: OWDATA

CNRUTLINOWDATA

I I
I
+

CNRUTLINOWDATA CNRUTL INWDATA -

TESTEOB 9 CONTSRCH
J

I
1 I

Fig. 9—input Overwrite

vCSYSUB MONST

rCNRUTL INOWDATA

INSERTDATA

r==
Data Function

.



I
+ .

NONRE~IDEFW I VERIFY

NONRESIDENT

?

A

CTAPH REQR

mCNRUTL LODOW
Vm)w

TSTNXTBLK

nII
ADRFND

CNRUTL LODOW
VFYow

EOBFND

CNRUTL LODOW +
VFYow CTAPH REQR

VFYOWFAIL

*
CNRUTL LODOW

VFYOW

TSTNXTBLK

D
CNRUTL LODOW

VFYOW

TSTNXTORGBLK

1

L

TTY MESS

ALWOW
INH

to

Fig. 10—Load or Verify Overwrite Function



SECTION 254-340-082

INIT:OWFILE
UPD:OWFILE
OP:OWFILE

Page 22

—

CNRUTL INITOWFL
UPDOWFIL
OPOWFIL

~~==e ,4 CNRUTL INITOWFL
UPDOWFIL

OPOWFILEPASS

7==%=7
CNRUTL OPOWFIL

OPOWFILECOMPL

I I
I

*
CNRUTL OPOWFIL

OPOWFILEPASS

I I

Fig. 11—initialize, Output, or

~~

Update Overwrite File



1SS 2, SECTION 254-340-082

m-r
UPD:OW I

.

-dCNRUTL UPDOW
I

CHKRSEG

CNRUTL uPDow

UPDOWPASS +Gzl

I CSADRLP I

CNRUTL uPDow

CSORGLD

QCNRUTL UPDOW

CHKRSEG

QCNRUTL uPDow

UPDOWCSPASS

Fig. 12—Update Overwrite Function

+

?-—..,.

Page 23



SECTION 254-340-082

m
oP:ow;l-rY
OP:OW;TAPE

CNRUTL OPOW
J

D CTAPH OPEIVTCB

““a

CNRUTL SEARCH

CNRUTL OPOW

vPR1lWORGBLK

IITTYMESSAGEOverwrite
Data

Fig. 13—Output Overwrite Function

B

1
CNRUTL OPOW

WRTOWRCRD

,’->

‘+

.

Page 24



1SS2, SECTION 254-340-082

CTAPH OPENTCB CNRUTL SEARCH

+

d

F
ACT:OW
CNL:Ow
Rhw:ow

n-+CNRUTL ACTOW
CNLOW
wow

CNRU1’L ACTOW
CHGOWFAIL

~

CNRUTL CNLOW
(Cancel )

QCNRUTL RMVOW
(Remove)

i’
CNRUTL ACTOW

(Activate)

Fig. 14—Activate, Cancel, or Remove Overwrite

Page 25

——.



SECTION 254-340-082

CNRUTL LODOMAS

+

LOD:OMAS

ElTTY MESSAGE
lTY_IP

uCBLhl MSFC

4’
CNRUTL NRUBGN

i
CNRUTL TAPUMON

i
CNRUTL
COPYGENMON

I
*

CTAPH OPENTCB

rl-CSYSUB INITOST

+
CTAPH REQR

CNRUTL DMPMON

DCNRUTLCOPYGEFMN

n!E7
w

Fig. 15—Load OH-Line Main Store

Page 26



I

CNRUTL NRPRES I CBLM MSFREQ

N

0CNRUTL NRUBGN

CNRUTL ENTRDPRG

I
*

CBLM UTILRTN
Y

4

r

Y
..

/===7

CNRUTL GTNXT 16
GTNXT20

wTTY MESSAGE

Register
Contents

rCBLM MSFC —

Fig. 16—Off-line Register Dump

to
u



SECTION 254-340-082

TABLE A

TTY FUNCTION ENTRY POINTS

TTY FUNCTION ENTRY POINT

LOD: ST LODST

MON:ST MONST

LOD:REG LODREG

MON: REG MONREG

LOD:INDIR LODINDIR

MON:INDIR MONINDIR

DMP:ST DMPST

DMP:OFLST DMPOFLST

DMP:INITQ DMPINITQ

SET: MATCH SETMATCH

SET: INDIR SETINDIR

STOP: UTIL STPUTIL

Page 28

28 Pages

+


	General
	Common Utility Processing
	Common Nonresident Utilities
	Glossary
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Table A

