
AT&T PRACTICES

Standard

SECTION 254-341-120

Issue 3, December 1986

INTERFACE AND INTEGRITY FACILITY

DMERT/UNIX@ RTR OPERATING SYSTEM

AT&T 3B20D COMPUTER

PA
CONTENTS PAGE

1. GENERAL . .
P

2. SYSTEM INTEGRITY

.

.

MONITOR (DMERT GE-SYSTEM INTEGRITY

NERIC 1)

A.

B.

c.

D.

E.

F.

G.

DMERT Interfaces

Application Interfaces

Integrity Instructions

Corrective Actions

Sanity Timers

Creation of Integrity Processes . . .

Error Reporting and Logging . , .

UNIX Le:el Automatic Restart Process

.

AUDITS (DMERT GENERIC 1)

A. Audit Manager

SYSTEM INTEGRITY MONITOR (DMERT GE-

NERIC 2 and UNIX RTR RELEASE 1) . . .

A. Bootstrap Initialization

B. Sanity Timers

Hardware Sanity Timer

Application Sanity Timer

c. UNIX Level Automatic Restart Process

(DMERT Generic 2)

3

4

4

6

7

7

7

8

8

8

9

11

11

12

12

13

13

14

14

CONTENTS PAGE

D. UNIX Level Automatic Restart Process

(UNIX RTR Release 1) . . .

AUDITS (DMERT GENERIC 2 AND UNIX

RELEASE)........ .

Audit Control and Scheduling .

Audit Library Functions . . .

OVERLOAD MONITOR

Overload Detection and Reporting

Real Time Overload Monitors .

. . 15

RTR

. . 16

. . 17

. . 18

. . 19

19

. . 20

E. Message Buffer Overload Recovery . 20

3. PLANT MEASUREMENTS 21

A. Plant Measurement Structure . . . 21

Measurements Database 21

Plant Daemon 22

Operating System Interfaces . . . 22

Application Interface 23

B. Measurements 23

System Initializations 23

Alarms 24

Audits24

Processor Error Interrupts 25

Data Links25

AT&T TECHNOLOGIES, INC. - PROPRIETARY

Printwl in U.S.A. Page 1

SECTION 254-341-120

CONTENTS PAGE

Data Link Groups 25

Equipment Information 25

Set Identifier

4. CRAFT INTERFACE

HARDWARE . .

A. Maintenance

. . . .

. 26

. 27

. 27

TTY Peripheral Controller

MTTYPC/EAl Communications .

MTTYPC/Maintenance Terminal

munications

MTTYPC Errors and Alarms . .

B. Emergency Action Interface . .

c. Power Switch

D. Maintenance Terminal . . .

Maintenance Printer

SOFTWARE

A.

B.

c.

D.

E.

F.

. . 27

. . 27

Com-

. . 28

. . 28

. . 28

. . 29

. . 29

. . 29

. . 29

Emergency Action Interface Firmware

.

EAI Commands

MTTYPC Handler

Program Documentation Standarsk

Shell (DMERT Generic 1 and 2) . .

Craft Shell (UNIX RTR Release 1 Only)

.

Output Spooler (DMERT Generic 1) .

User Process Interface

Output Spooler Structure

Output Spooler (DMERT Generic 2 and

UNIX RTR Release 1)

29

29

32

32

35

39

40

4.0

42

CONTENTS PAGE

Output Class Definition 42
n,

User Process Interface 44

G. Display Administration Process . . 45 n.

H. Real Time Status Report 48

+
Power Switch Monitor 49

.-,

5. CENTRAL OUTPUT MECHANISM FEATURE . 49 9

A.

B.

c.

E.

F.

G.

H.

1.

J.

K.

L.

M.

Output Message Database 50

OMDB Structure on Disk 51

OMDB Structure in Memory . . . 53

OMDB Generation Tools 54

Output Message Definition Files . . 54

OMDB Key Assignment Administration

.

CSOP and SOP

Formatting

Change Capability

RC/V Capabilities . . -. . . .

Disk Independent Operations . .

Format-and-Spool Interface Functions

.

Change Capability Input Commands

.

OMDB Field Update Procedure .

Input Message Acknowledgements

The Acknowledgement Database .

Acknowledgement Format Files .

56

58 .-

60

61

61

61

61

62

63 4

63

Acknowledgement Database Building

Tools64

Page 2

1SS 3, SECTION 254-341-120

CONTENTS PAGE

New libCFT and libminCFT Functions

. 64

Craft Shell and Dialogue Changes . 65

Performance 65

ACKDB Field Update Procedures . . 65

6. GLOSSARY OF TERMS AND ACRONYMS . 66

GLOSSARY OF TERMS 66

ACRONYMS/ABBREVIATIONS 66

Figures

1. Craft Maintenance Interface Configuration

. 5

2. Emergency Action Page 10

3. Spooler Interface and Utilities (DMERT Ge-

neric)......41

4. Spooler Interface and Utilities (DMERT Ge-

neric)......46

5. Spooler Interface and Utilities (UNIX RTR

Release l)47

6. OMDB as Created on Disk 51

7. Layout of Output Buffer Section . . . 52

8. lncore OMDB 53

9. Layout of .ofmt File 54

10. UNIX RTR OMDB Key Assignment . . 56

,$
11. Application OMDB Key Assignment . . 58

*

4 12. CSOP High Level Design with OMDB . . 59

Tables

A. Measurements Database Access Primitives

. 22

B. MTTYPC Channels 27

CONTENTS PAGE

c. OMDB Key File Layout 57

1. GENERAL

1.01 This section provides general functional de-

scriptions and information related to the vari-
ous interface and integrity facilities provided by the
duplex multienvironment real-time (DMERT) oper-
ating system or UNIX RTR operating system used in
the 3B20D computer. Also included in this section is
a description of the plant measurements system
(PMS).

1.02 This document is reissued to include interface
and integrity facility changes brought about

by the introduction of the Central Output Mechanism
Feature (NI.043) for UNIX RTR Release 1 that pro-
vides the capability to put UNIX RTR output mes-
sages in a central database. This feature has the dual
aim of centralizing output messages to facilitate con-
verting their English text to other natural languages
for applications with non-English-speaking custom-
ers and to allow the manipulation of the alarm level
and message class associated with the output mes-
sage. The Central Acknowledgement Mechanism
Feature (NI.043C), an add-on to the Central Output
Mechanism feature, provides the centralizing of
input message acknowledgements. Revision arrows

are used to emphasize the significant changes. The
Equipment Test List is not affected. The specific rea-
sons for reissue are listed below:

(a) Change Part 5 to provide a description of the
Central Output Mechanism Feature (NI.043),

UNIX RTR Release 1 and the add-on Central Out-
put Mechanism Feature (NI.043C)

(b) Add Figures 6, 7, and 8 to provide a pictorial
representation of the central output message

data base (OMDB) on disk

(c) Add Figure 9 to show the layout of a .ofmt file
in the OMDB

(d) Add Figures 10 and 11 to show the UNIX RTR
OMDB key assignments and application key

assignments, respectively

Page 3

SECTION 254-341-120

(e) Add Figure 12toshow thecoordinator of the
Spooler Output Process (CSOP) high level de-

sign with the OMDB

(f) Add Table C to show the OMDB key file layout

(g) Change the original Part 5 to Part 6.

This document app}ies to DMERT generic 1 and 2 and
IJNIX RTR Release 1 (formerly DMERT generic 3).
This document also has the UNIX RTR craft consis-
tency feature.

1.03 The operating system software integrity sub-
system is flexible enough to handle all aspects

of software integrity (ie, audits, defensive check er-
rors, and overload conditions). In DMERT generic 1,
the system integrity monitor (SIM) is responsible for
overload conditions, the audit manager (AUDMGR)
is responsible for audit control, and defensive check
errors are left to the discretion of the associated pro-
cesses. Effective with DMERT generic 2 and UNIX
RTR Release 1, the SIM is responsible for scheduling
and dispatching all audits and for handling overload
conditions that could affect system integrity. All es-
sential software integrity data is stored in the equip-
ment configuration database (ECD).

1.04 The craft interface subsystem is composed of

a number of hardware, firmware, and soft-
ware entities that provide a maintenance person with

communication and/or control over the computer.
Communication is in the form of terminal messages
and/or virtual panel displays (and other types of dis-
plays).

1.05 The following hardware components support

the craft interface subsystem:

●

●

●

●

●

Maintenance teletypewriter peripheral con-
troller (MTTYPC)

Emergency action interface (EAI)

Power switch

Maintenance terminal

Maintenance printer (receive-only printer)

Optional additional TTY peripheral control-
lers (TTYPC) and attached craft interface
terminals.

Figure 1 shows the configuration of the craft mainte-
nance interface hardware.

1.06 The craft interface subsystem is composed of
the following major software entities:

●

●

●

●

●

●

●

●

EAI firmware-Provides communication to/ ~,
from the computer, executes EAI commands,
and performs audits and self-tests

Craft Interface Handler (a portion of the in-
%

put/output processor)—Controls the infor-
mation flow between the MTTYPC, any other .
TTYPCS with craft interface terminals, and
the rest of the operating system (except for
EAI in DMERT generics 1 and 2)

Program L>ocurnentation Standards (PDS)

Sheil–Parses input TTY messages and in-
vokes the appropriate processes to handle the
requests

Man Machine Language (MML) shell for
DMERT generic 2 and [JNIX RTR Release
l—Parses input TTY messages and invokes

the appropriate processes to handle the re-
quests

?>

Output Spooler –-Routes output messages to
the appropriate [errninals, printers, and/or
log files

Display Administration Process (DAP)-
Generates virtual panel or graphic displays
for the maintenance terminal

Real-Time Status Reporting Process– Moni-
tors system status and reports the current
status to the maintenance terminal

Power Switch Administration-Includes the
power switch monitor and scan administra-
tor; provides monitoring and control over
requests related to the power switches.

4,

*
2. SYSTEM INTEGRITY 4

SYSTEM INTEGRITY MONITOR (DMERT GENERIC 1)
‘T

2.o1 The SIM is responsible for the software integ-
rity of DMERT operating system. The applica-

tion integrity monitor (AIM) is responsible for the

‘?

1SS 3, SECTION 254-341-120

I MCH I MCH IL

3B200 CC

EAI

OMA
1’

I
IOP I HTTYPC

Scc

I 3B200 CC

I EAI

OMA

I
I

MTTYPC I IOP

— Scc

MAINTENANCE
TERMINAL IIPd PORT l;

Q!iiiii=
SWITCH 1 1

H
(SEE NOTE)

@

JL
tIIAINTENANCE
PRINTER

LEGENO:
cc -

OHA -
EAI -
IOP -
MCH-

MTTYPC-
Scc -

NOTE: THEREARE TWOOISTINCT SWITCHES
1) FOR MAINTENANCETERflINAL
2) FOR MAINTENANCEPRINTER

p

CENTRALCONTROLUNIT
OIRECT MEflORYACCESS
EMERGENCYACTION INTERFACE
INPUT/OUTPUT PROCESSOR
MAINTENANCECHANNEL
MAINTENANCETELETYPEWRITERPERIPHERAL CONTROLLER
SWITCHING CONTROLCENTER

Fig. l—Craft Maintenance Interface Configuration

.

integrity of all application software. The SIM per- ●

, forms the following functions:

●

●

❐

Receives software fault reports and initiates
corrective action

●

Creates and irresponsible forthefaultrecov-
ery of the DMERT operating system boot
processes ●

Servesasthe main interfaceforthe exchange
of integrity information between the
DMERT operating system and all applica-
tions

Resetsthehardware sanitytimerand admin-
isters the application sanity timer

Creates integrity processes

Page 5

SECTION 254-341-120

● Maintains a record of errors.

!’fii~ SIM is a kernel boot process that is initiated by
the DMERT kernel immediately after the error in-
terrupt handler (EIH) is initialized during a system
bootstrap. The SIM executes at priority level 13,
which makes it the highest priority DMERT process

excluding the EIH, generic access package, and pro-
cesses executing in a critical region (ie, processes that
~~~~cute at priority levels 14 and 15).

A. DMERT Interfaces

2.o2 The main function of SITVTis to receive soft-
ware integrity exception data (ie, information

regarding software faults) from DMERT operating
system software and initiate corrective action.

2.03 DMERT-owned audits, overload detection
checks, DMERT boot processes, and other pro-

cesses detect software integrity faults and report
them to SIM.

2.04 Interface to DMERT-Owned Audits: All
audits report status information (success or

failure) directly to the AUDMGR. The AUDMGR is
responsible for the management of failure data and
failure thresholds for all audits. When a failure

threshold for a particular audit is exceeded, the
A[JDMGR sends an audit integrity exception mes-
sage to the SIM. The message identifies the process
which detected the failure. Audit failures which can
be corrected by the audit are not reported as failures
to SIM, but are recorded in a system error file. The
corrective action taken by SIM depends on the pro-
cess that caused the failure. In the event that the
AUDMGR sends an invalid message, an audit is run
on the AUDMGR. If failures which exceed the failure
threshold are detected during the audit of the
A[JDMGR, then the SIM will terminate and recreate

the AUDMGR process. DMERT audits that were ac-
tive at the time are rescheduled. However, applica-
tion-specified audits will not be rescheduled, but the
SIM will notify the AIM of this event via a message.

2.05 Interface to DMERT Boot Processes:
The SIM is responsible for the creation and

fault recovery of the following DMERT operating
system boot processes:

● File manager

● Disk driver

● Process manager

● Error interrupt handler

● Capability manager

● Scheduler

● Utility manager

● Memory manager.

2.06 When a system initialization is initiated, the
SIM is notified via an event by the DMERT

kernel. All boot processes are then expected to send
the SIM an initialization status message (ie, success
or failure) within 30 seconds. Also, the boot processes
will inform the SIM of any integrity faults encoun-

tered during initialization. Thus, basic DMERT in-
tegrity can be defined as the reception of all expected
successful initialization status messages from
DMERT boot processes by the SIM.

2.07 The initialization status message contains the
process number of the boot process and an

EAI output message. The SIM computes the EAI step
number based on the boot process number. The SIM
then forwards the EAI output message, along with
the step number, to the EAI.

2.08 As each successful initialization status mes-
sage is received by the SIM, an output message

is sent by SIM to the EAI. The EAI displays the mes-
sage on the maintenance terminal as a success pro-
cessor recovery message (PRM).

2.09 If a boot process cannot successfully initialize,
a failure initialization status message is sent

to notify the SIM of system error. The appropriate
information is sent to the EAI to be displayed on the

maintenance terminal as a failure PRM. The SIM
requests another system initialization.

2.10 If the SIM does not receive initialization sta-
tus messages from al 1boot processes within 30

seconds, the SIM will request another system initial-
ization. No prior notification of this initialization
will be given to the applications.

2.11 The SIM does not determine the scheduling of
the boot processes. The application should

ensure that the DMERT boot processes are not sus-
pended from running by their own processes. This

Page 6



1SS 3, SECTION 254-341-120

division 01’responsibility is to give as much decision-
making pt~wer to the application as possible. The de-
cision to make an initialization of any degree should
be made l)y the application.

2.12 Interface to the Overload Monitors:
When the SIM receives an overload indication

(via a fault or message from a system processor over-

load monitor), the SIM will inform the AIM of the
overload condition.

2.13 Other Interfaces: The SIM also interfaces
to portions of the craft interface subsystem

for the exchange of integrity information with the

apl)]ications and maintenance persons. Since these
DMERT interfaces are involved in the application
interfaces, they are described as such.

B. Application Interfaces

2.14 The SIM serves as the main interface for the
exchange of integrity information between

the DMERT operating system and all application in-
tegrity processes. The SIM will process application
requests and instructions. Most messages sent to
applications by DMERT will be handled by the SIM.
The SIM interface to the application is via the AIM.
The AIM is a kernel process, running at the same pri-
ority as SIM. In addition, the SIM will handle nles-
sages from the maintenance terminal via the craft
interface subsystem.

2.15 System Initialization Message Requests:
An application may request a copy of the ini-

tialization message from the last system initializa-
tion by sending a message to the SIM. The SIM is a
memory resident data structure built by various ini-

tialization processes during initialization. The SIM
contains:

●

●

●

●

A copy of the requested initialization param-
eters (if the initialization was the result of a
program request)

The manual request parameters from the
EAI

The value of the real-time clock when the ini-
tialization was initiated

The value of the initialization level counter

● An indication of the source of the initializa-
tion (hardware, craft, program request, etc. )

● The value of the application initialization
level counter.

Integrity Instructions

2.16 The SIM receives DMERT system integrity
commands from the craft interface PDS shell

(PDSIiI,) in the form of messages. These commands

pertain to audits, the ok’erload system, and other in-
tegrity functions. The SIM either interprets and pro-
cesses the instructions or forwards the message to
the appropriate process.

2.17 Interface to the Audit Manager: The SIM
provides a maintenance person/application

process interface to the AIJDMGR. Audit command
messages from either the craft interface PDSHL or

application processes are forwarded to the
A[JDMGR. The cornman(is for audits include:

●

●

●

●

Suspending future execution of an audit or
all audits

Rescheduling an(i resuming execution of a
suspende(i audit

Requesting the immediate execution of a sus-
pen(ie(i au(iit

Requesting the immediate termination of an

audit or all audits.

2.18 Inter face to Craft Interface Subsystem:
Au(iit an(i overload commands from the

PDSIII, are sent to the SIM, which then forwards the
messages to the ap[)ropriatc processes. Error record-
ing is han(ile(i by the SIM using th[’ output spooler.

C. Corrective Actions

2.19 The corrective actions taken by the SIM de-
pend upon the failing process. All processes in

DMERT are either essential or nonessential. The
DMERT boot processes are essential processes. All
other processes are generally considered nonessen-
tial by the SIM.

2.2o Essential Process Action: When the SIM
receives an auciit failure report from an essen-

tial process, the S1 M requests a system initialization.

Page 7



SECTION 254-341-120

The SIM uses an initialization level of 1 with no ap-
plication initialization level specified. Since the sys-
tem initialization strategies are based upon previous

initialization history, the SIM allows the built-in
fault recovery strategies to determine the actual
level of initialization.

2.21 Nonessential Process Action: The correc-
tive action initiated by the SIM in response to

an audit failure report from a nonessential process is
to send the process manager a message to terminate
the faulty process. The process manager terminates
Lhe proc<ss and sends a termination message to the
process responsible for creating the faulty process.

D. Sanity Timers

2.22 The SIM is responsible for resetting the com-
puter hardware sanity timer and administer-

ing the application sanity timer.

2.23 Hardware Sanity Timer: The integrity of
the SIM and the EIH, as well as any applica-

tion processes executing at levels 13 to 15, are main-
tained by the hardware sanity timer. The hardware
sanity timer of the on-line control unit (CU) is set to
time out in 1000 milliseconds. The hardware sanity
timer of the off-line CU (if available) is set to time
out in 1600 milliseconds (maximum). It is the respon-
sibility of the SIM to reset the hardware sanity tim-
ers every 800 milliseconds (ie, the processes executing

at levels 13 to 15 must execute in less than 200
milliseconds). If a hardware sanity timer times out,
then the integrity of the SIM is questionable and a
system initialization will occur. Fault recovery of the

SIM is the responsibility of computer microcode and
is part of the hardware fault recovery strategy. The

SIM is not responsible for its own integrity (with the
exception of resetting the timers). The AIM should be
placed at the same execution level as the SIM. Thus,

the sanity of the application monitor is dependent
upon the hardware sanity timer in a similar manner
as the SIM and EIH.

2.24 Application Sanity Timer: The purpose of
the application sanity timer is to insure that

application processes receive a share of the scheduled
processor execution time. The application sanity

timer is activated by the AIM via a message to the
SIM. The message specifies the time interval (in
milliseconds). Within that time interval, an applica-
tion process must send the SIM an application sanity
event. If the timer expires before the event arrives,

the
and

E.

SIM will assume application
cause a system initialization.

Creation of Integrity Processes

software insanity

2.25 The SIM is responsible for the creation and

subsequent restart (in case of termination) of
critical DMERT processes. These processes include:

● Audit manager

● Overload monitor

● User-level process monitor.

The user process monitor is used to monitor applica-
tion-user processes.

F. Error Reporting and Logging

2.26 The SIM reports error conditions to the main-

tenance terminal via the EAI or the output

spooler. The SIM error logging strategy uses the craft
interface output spooler to record all integrity error
conditions.

2.27 EAI Interface: During system initializa-
tion, the SIM reports error conditions using

PRMs via the EAI.

2.28 Output Spooler Interface: The SIM sends
output error messages to the maintenance ter-

minal, the maintenance printer, and the switching

control center (SCC) data link via the output spooler.
The SIM error message has the format

REPT SIMCHK a b

where “a” is the SIM error code and “b: is supple-

mentary data. The supplementary data IS binary in-
formation that may be examined to provide

additional information. The occurrence of this mes-
sage (and any supplementary data) is recorded in the
SIM log file.

2.29 Error Logging: All system error conditions
are recorded in the SIM log file. In addition to

the SIM, the DMERT audits and overload monitor
also record occurrences of errors in this file. The en-
tries in the SIM log file are

● SIMER — SIM error conditions

.

-1

‘n

Page 8



1SS 3, SECTION 254-341-120

f’-

\

.

,n

e’

● AIJDER — audit system error conditions

● OVLDER — overIoad system error condi-
tions.

G. UNIX Level Automatic Restart Process

2.30 The UNIX level automatic restart process
([JLARP) is a UNIX process whose functions

are to create and monitor critical user processes and
to restart automatically any monitored processes
that terminate.

2.31 Initialization of ULARP: During a boot-

strap procedure, SIM creates a process named
/prc/unix. In the pcreate message sent to the process
manager, the field pm_chan is set to BOOTCHAN

(defined in the header file const.h), which indicates
to the UNIX system init function that this is a boot-
strap procedure. The init function then executes the
[JLARP process. When SIM receives the acknowl-
edgement message on the successful creation of the
/prc/unix process, SIM logs the process ID and waits
for am E_SENDMSG event (defined in the header
file simdef.h) from ULARP. This event causes SIM to
send ULARP a start-up message, type IJSTARTIJP
(defined in header file simmsg.h). This message con-
tains SIMBOOT in the message text indicating a
bootstrap procedure and other system information
needed for a successful ULARP start-up.

2.32 IJLARP executes the run command file
(/etc/rc or /etc/mere). When it has completed

execution of the run command file, it sends a message
with type RCINFO (defined in header file simmsg.h)
to SIM. This message informs SIM of the status (ei-

ther SUCCESS or FAIL) of the execution of the run
command file. This status will be given to IJLARP
when [JLARP is restarted and when lJLARP is in-

structed to reread its process name file.

2.33 ULARP Failure Reports: After ULARP
has executed the run command file, ULARP

creates and monitors critical [JNIX level processes
that are designed to. run continuously. The

pathnames of ULARP child processes are contained
in process name file /etc/ularpfile. Upon execution,
ULARP stores the pathnames of its child processes
in an internal table. If one of the processes dies,
ULARP attempts to restart it under most conditions.
The craft interface integrity monitor (CMON), one of
ULARP child processes, creates and monitors the

craft interfaces processes. Their pathnames are con-
tained in the cmon.p file.

2.34 SIM receives an event from ULARP, when

ULARP encounters a failure condition. SIM
reports these failures to the craft using PRMs.

2.35 ULARP Termination: SIM receives a
death-of-child message on the ULARP process

if either the [J NIX system “init” sequence fails to
create ULARP or if LJLARP dies. When this message
is received, SIM usually assumes that ULARP was
prematurely terminated and will attempt to restart
it. However, if the termination message is received
before the E_SENDMSG event indicating a probable
failure to execute IJL.4RP, SIM will not attempt to
restart U1.ARP. If [JLARP is not restarted, SIM dis-
plays a PRM to indicate the reason for IJI,ARP fail-

ure.

2.36 Restarting ULARP: SIM will attempt to
restart the IJI,ARP process under the follow-

ing three conditions:

● [JI, ARP is prematurely terminated, such as
during a phase level 1. If this occurs, SIM re-
ceives a death-of-child message and immedi-
ately attempts to restart IJI.ARP.

● The maintenance person enters the PDS/
MM1, shell command INIT:ULARP on the
maintenance terminal. When this command
is entered, the event R_[JNIT (defined in
simd(’f. h) is sent, to SIM. When this event is
received, SIM cht’cks [; I,ARP process ID. If
IJJ,ARP is running, a message with type
IJREREAI) (defined in simmsg.h) is sent to
[JI,ARP, instructing [II,ARP to reread the
process name file and attempt to start all
monitored processes that are not executing.
If [TLAR1’ is not running, SIM attempts to
restart [J LA RI’.

● The maintenance p~’rson enters the CFT-INIT

option (cotnmanci code 15) on the emergency
action lMJW (1+’ig. ‘2) of the maintenance ter-
minal, The CFT-INIT option causes the EAI
handler to sen(l SIM the fault FLT_CFT. If
[JI,ARI’ is running, SIM terminates all craft

process~’s and sends IJI.ARP an UREREAD
message. If IILARP is not running, SIM
restarts U1.A RP.

Page 9

—



SECTION 254-341-120

NAME TYPE GENERIC <c> 05/02/81 07:50:02 ‘

SYS EMER CRITICAL MAJOR MINOR 8LDG/PWR 8LDG INH CKT LIM SYS NORM
TRAFFIC SYS INH CU CU PERPH LINK

cm: — EMERGENCYACTION PAGE—
Cu-opiii][miq FITTY 7
w-1 EAI-O ~ PRM-O 0100 3200 0000 ODDF 19 C2 10
Sees EAI-I ~ PRM-I 00C0 0005 0001 ODDF 19 C2 OC

SET CLR CU-O (Xl-l SET CLR
10 FONL-O 20 21 PRI-DISK

D

3031 BACKUP-ROOT~ 50 APPL
11 FONL-1 22 23 SEC-DISK 32 33 !lIN-CONFIG~ 51 INIT

12 FONL-ACT 24 25 INH-TIMER~~~]

D

34 35 INH-HDW-CHK 52 BOOT
13 CLR-FONL 26 27 PRM-TRAP 36 37 INH-SFT-CHK 53 BOOT+ECD

38 39 INH-ERR-INT 54 BOOT+MEM
14 CLR-EAI 28 PRM-DUMP 40 41 INH-CACHE 55 LDTAPE-O
15 CFT-INIT 42 43 APPL-PARAM 56 LDTAPE-1

\ J

a. For DMERT generic 2 or UNIX RTR Release 1 with TN83

( >
TYPE GENERIC ttya-cdAMTTYO 05102181 07:50:02

SYS EMER CRITICAL MAJOR MINOR BLDG/PWR BLDG INH CKT LIM SYS NORM
TRAFFIC SYS INH CU CU PERPH OS LINKS

CMD: —EMERGENCY

Cu o ~l~uq MTTY7
Cu 1 EAIO~ PRM O 0100 3200
Sees EAIl~ PRM 1 Ooco 0005

Set Clr CUO CU 1 Set Clr

ACTION PAGE—

0000 ODDF 19 C2 10
0001 ODDF 19 C2 OC

10 Fonl O 20 21 Pri Disk

u

30 31 Backup Rootm 50 Appl

11 Fonl 1 22 23 Sec Disk 32 33 Min Confirm 51 Init

12 Fonl Act 24 25 Inh Timer~~]~]

D

34 35 Inh Hdw Chk 52 Boot
13 Clr Fonl 26 27 PRM Trap 36 37 Inh Sft Chk 53 Boot+ECD

38 39 Inh Err Int 54 BoottMem
14 Clr EAI 40 41 Inh Cache 55 Ldtape O
15 Cft INIT Last Appl Param 42 43 Appl Param 56 Ldtape 1

--------- --------- ------- -------------- -------- -------------- --------- ------- ---

L

b. For UNIX RTR Release 1 with TN983

Fig. 2—Emergency Actian Poge

Page 10



1SS 3, SECTION 254-341-120

,

F’-=

n

2.37 After a successful ULARP restart, SIM termi-

nates all craft processes by using the

termclass OST to send an E–ABORT signal to the
class [lC_CFT (defined in the header file class. h).
Afterward, SIM sends IJLARP a start-up message.
The start-up message contains USTART (defined in
simmsg. h ) in the message text, indicating to ULARP
that this is a restart procedure. The message also
contains the status of the execution of the run com-
mand file, as reported to SIM by the previous ULARP
process.

AUDITS (DMERT GENERIC 1)

2.38 Audits detect and locate certain classes of er-

rors. Normally, audits will attempt to correct
software errors when discovered. The activation and
the results of running each audit are recorded. Au-

dits, controlled by the AMG R, are invoked by:

● Fault recognition and recovery programs
used by either the AIM or the SIM

● Periodic checking of system software to de-
tect latent faults

● The maintenance person from the mainte-
nance terminal.

A count is maintained for each type of audit error
detected.

basis according to priority. Scheduling of routine
audits is on a relative priority basis rather than an
absolute basis. The audit system does not guarantee
that certain routine audits will run during a given
interval, but it does guarantee that certain audits
will be run more frequently than others. Overload
control of routine audits is done automatically by the
operating system since the A[JDMGR is a supervisor
process. Overload control can also be maintained as

audits are disabled by the SIM.

2.42 A demand audit is initiated either by a man-
ual request from the maintenance terminal or

by a software request. The AUDMGR guarantees
that demand audits be initiated on a first-come, first-
served basis before any other routine audit is sched-
uled. There is no guarantee that a demand audit will
be run immediately or will be run to completion with-
out being interrupted. An audit runs at the execution
level of the process in which the audit code appears.

2.43 The AUDMGR performs the following func-
tions:

● Schedules audits

● Initiates audits

● Records the results of audits

● Inhibits audits
la. Audit Manager

2.39 The AUDMGR is a supervisor process which
serves as a scheduler and request administra-

tor for audits. In order to provide a uniform control
structure for the scheduling and result reporting of
audits, the AUDMGR maintains certain data about
tbe various audits in a tabular format. However, it
does not maintain information on the function or
structure of each individual audit. An entry in the
AUDMGR data table defines attributes of an audit
such as name, priority, and thresholds and provides
memory space for counters.

2.40 The AUDMGR is created at bootstrap by the
SIM. The AUDMGR then sends the SIM a

message to acknowledge creation and then initializes

the data table.

2.41 The DMERT AUDMGR is capable of initiat-

ing various audits. It does this on a routine

● Reports the results of audits.

2.44 Audit Scheduling: An audit is scheduled for
execution by placing the audit on an execution

list. The A[JDMGR can accept requests for the sched-

uling of single or multiple audits. Several audits
scheduled as a group in a specific order are called
sequenced-mode audits. The A[JDMGR must be pro-
vided the following information in order to schedule
an audit:

● The process number of the process containing
the audit code

● The relationship of the audit to a series of
au[iits linked together (for sequenced-mode
audits)

● The maximum values for error counts

Page 11



SECTION 254-341-120

● A timer for the clearing of counters after

audit completion.

2.45 Audit Initiation: Audits are initiated asyn-
chronously; i.e., the AUDMGR does not wait

for the completion of each individual audit.
Sequenced-mode audits are initiated in the specified
order. However, the application can have sequenced-
mode audits executed synchronously. In this case, the
,’iUDMGR waits for completion of each audit in the

sequence before initiating the next. The initiation of
sequenced-mode audits can be aborted on request
from the application. The AUDMGR can also add or
delete a specific audit from a sequenced-mode chain
of audits upon request.

2.46 Audit Results: Audits return a status to the
AUDMGR upon completion. Audit-corrected

errors are reported to audit control which maintains
a record of the number of errors and maximum al-
lowable values of these correctable errors. Software
errors which cannot be corrected by the audit are also
reported to audit control. The AUDMGR maintains
counts of the occurrences of these types of errors and
maximum allowable values associated with the
counts.

2.47 Inhibit Audits: The AUDMGR can tempo-
rarily inhibit the execution of a specified audit

on request. The AUDMGR can inhibit all audits, au-
dits in a specific group, or audits with a specific pri-
ority. Also, the AUDMGR can reinstate the execution
of inhibited audits on request. Status reports of all
active and inhibited audits can be requested by the
crafts person.

2.48 Reporting Audit Results: The AUDMGR
does not report the result of each individual

audit to the process requesting the report. The
AUDMGR reports failure counts that exceed thresh-
olds to the SIM. The report identifies the audit or
group of audits that have failed and the actual num-
ber of failures recorded. After reporting, the coun-
ters are cleared. Other conditions for counter
clearing are system initialization, audit scheduling,
audit inhibition or removal, and after the time inter-
val specified in the scheduling request.

2.49 The AUDMGR handles, in order of priority,
all reports of audit completion, all demand

audits, all audit scheduling, inhibit and removal re-
quests, craft interface requests, and all routine au-
dits.

SYSTEM INTEGRITY MONtTOR (DMERT GENERIC 2 and

UNIX RTR RELEASE 1)

2.50 The SIM is primarily responsible for the oper-

ating system software integrity and integrity
interface with application software. The SIM per-
forms the following functions:

●

●

●

●

●

●

Administering the computer hardware san-
ity timer and the application sanity timer

Ensuring the integrity of the operating sys-
tem bootstrap initializations and generating
boot process PRMs

Creating and monitoring the ULARP and
cooperating with it during INITULARP and
CFT-INIT procedures

Monitoring the operating system overload
conditions

Administering and scheduling DMERT and
UNIX RTR audits and initiating recover-y
action in response to audit errors

Providing an interface between the operating

system and the AIM.

The SIM is a kernel boot process initiated by the
DMERT or UNIX RTR kernel immediately after the
EIH is initialized during a system bootstrap. The
SIM executes at priority level 13. The only operating
system processes that execute at a higher level than
SIM are EIH (level 15), generic access package (level
14), and processes temporarily executing in a critical
region (level 15).

A. Bootstrap Initialization

2.51 SIM is responsible for ensuring that all essen-
tial boot processes are correctly initialized

during a DMERT or UNIX RTR bootstra~) ~Jrort’ss
(phase levels 2,3, and 4). Each boot process must send
an initialization status message (SINITSTAT) to
SIM within a specified time interval aft(’r SIM re-
ceives the E_INIT event from the DMERT or lJNIX
RTR kernel. The bootstrap processes are as follows:

● Error interrupt handler

o Disk driver

,

.

‘-n

,

‘n

Page 12



1SS 3, SECTION 254-341-120

.

.

.n

t“-”

● File manager

● Process manager

● Scheduler

● Capability manager

● Memory manager

● [Jtility manager.

2.52 The operating system initialization interval is
read from the SIM control record in the ECD.

If SIM does not receive a status message that reports
successful initialization from every essential boot
process, SIM will output a failure (F) PRM and
reboot the system at the end of the time interval. If
software checks have been inhibited by the lNH-SFT-

CHK option (command code 36) on the emergency ac-
tion page, SIM will not reboot the system.

2.53 Initialization Status Message: During the
operating system initialization interval follow-

ing a bootstrap, SIM must receive an initialization

message from every essential boot process. SIM rec-
ognizes the essential boot processes by their fixed

process numbers. SIM uses a global array of status
flags (one for each process) to remember which pro-
cesses have reported.

2.54 If SIM receives a valid status message with a
status of FAII., SIM will output all data en-

tries in the message as F PRMs and request another
system initialization. The panic code used in that ini-
tialization request will consist of two hexadecimal
digits (1 followed by the PRM step number of the pro-
cess that reported the initialization failure).

2.55 When each status message is received with a
status of SUCCESS, SIM sets the appropriate

status flag (if it is an essential process) and generates
an all-seems-well PRM with the appropriate step
number. Nonzero data entries that are sent with
SUCCESS messages are buffered for later output (af-
ter the operating system initialization interval is
completed). Nonfatal error conditions detected by
SIM during system initialization are also buffered
for later output.

2.56 Initialization Check: SIM receives a time-
out entry at the end of the initialization inter-

val. SIM checks the array of status flags to verify

that status messages have been received from all es-
sential boot processes. If any boot process has not
reported successful initialization, SIM outputs an F
PRM with step number B, function code 00, and the
eight process status flags (showing which one(s) did
not report).

2.57 If all essential boot processes have reported
successful initialization, SIM outputs an all-

seems-well PRM with step number C. SIM then initi-
ates the output of buffered data entries that were
received with SUCCESS initialization messages as

success (E) PRMs. These auxiliary PRMs are sepa-
rated by intervals of 2.5 seconds in an attempt to en-
sure that. all auxiliary PRMs be printed on the
maintenance printer and transmitted to the SCC. As
additional SIJC(IESS messages are received, the non-
zero data entries are also placed into the SIM PRM
buffer and output at 2.5-second intervals. This pro-
vides a mechanism for continuing to report the prog-
ress of system initialization beyond the end of the
initialization interval.

2.58 AIM Initialization Check: After SIM has
confirmed the successful initialization of the

essential boot processes, SIM checks the value of the
AIM initialization interval. If the AIM initialization
interval is nonzcro, then AIM must report to SIM
within that interval. AIM will send SIM either an E_

ASA N event or a message to activate the application
sanity timer. If AIM has alrea(iy activated the appli-

cation sanity timer, SIM generates a boot progress
PRM with function rode 50. If AIM has not activated

the application sanity timer, then SIM requests an-
other timeout to occur at the end of the AIM initial-
ization interval. If AIM has reported by the time SIM
receives the timt’out entry, SIM generates a boot pro-
cess PRM. If AIM has not reported, then SIM gener-
ates a’n F PRM with function code 51 and requests
another system initialization.

B. Sanity Timers

2.59 The SIM is responsible for resetting the conl-
puter hardware sanity timer and administer-

ing the application sanity timer.

Hardware Sanity Timer

2.60 SIM administers the hardware sanity timers
in both control units (CIJS) during normal sys-

tem operation. SIM sets the hardware sanity timer in
the on-line computer to time-out in 1000 milliseconds

Page 13



SECTION 254-341-120

and the off-line computer sanity timer to time-out in
1600 milliseconds. If a sanity timer times out, a main-
tenance reset function (MRF) will be generated by
the computer hardware unless that signal has been
disabled manually by selection of the INH-TIMER op-
tion (command code 24) on the emergency action page
of the maintenance terminal. This inhibits only the
JMRF; this does not stop the sanity timer from count-
ing. If the MRF has not been inhibited, a system ini -
t;:l!iz:.t ion will occur.

2.61 SIM requests a timeout event every 800
milliseconds to reset the timers. This provides

a 200-millisecond cushion that defines system insani-
ty. More than 200 milliseconds of continuous execu-
tion by any process running at level 13 to 15 may
cause the sanity timer to time-out with a resulting
system initialization.

Application Sanity Timer

2.62 SIM provides a software sanity timer for use
by AIM to ensure that application processes

are sane and being scheduled by tbe operating sys-
tem. This application sanity timer is activated by a
message from AIM to SIM. This message specifies

the timeout interval and the initialization levels to be
used in a phase request if AIM fails to reset the san-
ity timer. Once the sanity timer has been activated,
AIM must reset the sanity timer by sending SIM an
E_ASAN event at least once in every timeout inter-
val. If AIM fails to send this event during any time-
out interval, SIM will generate a failure PRM and
request a system reinitial ization unless software

checks have been inhibited by the INH-SFT-CHK option
(command code 36) on the emergency action page of

the maintenance terminal.

c. UNIX Level Automatic Restart Process (DMERT Ge-

neric 2)

2.63 ULARP is a IJNIX process whose functions
are to create and monitor critical user pro-

cesses and to restart, automatically, any monitored
processes that terminate.

2.64 Initialization of ULARP: During a boot-
strap procedure, SIM creates a process named

/prc/unix. In the pcreate message sent to the process
manager, the field pm_cban is set to BOO’I’CHAN
(defined in the header file const.h), which indicates
to the [JNIX system init function that this is a boot-
strap procedure. The init function then executes the

ULARP process. When SIM receives the acknowledg-
ment message on the successful creation of the /prc/
unix process, SIM logs the process identification (ID)
and waits for an E_ SENDMSG event (defined in the
header file simdef.h ) from ULARP. This event causes

SIM to send IJLARP a start-up message, type
USTARTUP (defined in header file simmsg.h). This
message contains SIMIIOOT in the message text indi-

cating a bootstrap procedure and other system infor-
mation needed for a successful ULARP start-up.

2.65 ULARP executes the run command file
(/etc/rc or /etc/mere). When it has completed

execution of the run command file, it sends a message
with type RCINFO (defined in header fie simmsg.h)
to SIM. This message informs SIM of the status (ei-
ther SUCCESS or FAIL) of the execution of the run

command file. This status will be given to ULARP
when ULARP is restarted and when ULARP is in-
structed to reread its process name file.

2.66 After ULARP bas executed the run command
file, [JLARP creates and monitors critical

IJNIX level processes that are designed to run contin-
uously. The pathnames of ULARP child processes are
contained in process na]ne file /etc/ularpfile. Upon
execution, IJLARP stores the patbnames of its child
processes in an internal table. If one of tbe processes
dies, ULARP attempts to restart it under most condi-
tions. The CM ON, one of UL.4 RP child processes,
creates and monitors the craft interfaces processes.
Their pathnames are contained in the cmon.p file.

2.67 ULARP Failure Reports: SIM receives an
event from ULARP when ULARP encounters

a failure condition. SIM reports these failures to the
craft using PRMs.

2.68 ULARP Termination: SIM receives a

death-of-child message on the ULARP process
if either the UNIX system “init” sequence fails to
create ULARP or ULARP dies. When this message is
received, SIM usually assumes that ULARP was pre-
maturely terminated and attempts to restart it.
However, if the termination message is received be-
fore the E_SENDMSG event indicating a probable
failure to execute IJLARP, SIM does not attempt to
restart ULARP. If [JLARP is not restarted, SIM dis-
plays a PRM to indicate the reason for ULARP fail-
ure.

--R,

.

“?

‘-n

‘n

,

Page 14



2.69 Restarting ULARP: SIM will attempt to
restart the UI.ARP process under the follow-

ing three conditions:

●

❐

●

●

ULARP is prematurely terminated, such as
during a phase level 1. If this occurs, SIM re-

ceives a death-of-child message and immedi-
ately attempts to restart ULARP.

‘rhe maintenance person enters the PDS/

MML shell command INIT:ULARP on the
maintenance terminal. When this command
is entered, the event E_ UINIT (defined in
simdef.h) is send to SIM. When this event is
received, SIM checks ULARP process ID. If
IJLARP is running, a message with type
[JREREAD (defined in simmsg.h) is sent to
[JI,ARP, instructing ULARP to reread the
process name file and attempt to start all
monitored processes that are not executing.
If ULARP is not running, SIM attempts to
restart [JLARP.

The maintenance ]Ierson enters the CFT-INIT

t“=

option (command (ode 15) on the emergency

action page of the maintenance terminal. The
CFT-INIT option causes the EAI handler to
send SIM the fault FLT_CFT. If IJLA RP is
running, SIM terminates all craft processes
and sends [JLARP a [J R1’;READ message. If
ULARP is not running, SIM restarts
ULARP.

2.70 After a successful ULARP restart, SIM termi-
nates all craft processes by using the

termclass OST to send an E_ ABORT signal to the
class DC_CFT (defined in the header file class. h).
Afterward, SIM sends (JLARP a startup message.

P
The startup message contains USTART (defined in
simmsg.h ) in the message text, indicating to ULARP
that this is a restart procedure. The message also
contains the status of the execution of the run com-
mand file, as reported to SIM by the previous ULARP
process.

D. UNIX Level Automatic Restart Process (UNIX RTR

Release 1)

2.71 ULARP is a IJNIX process whose
are to create and monitor critical

functions
user pro-

1SS 3, SECTION 254-341-120

cesses and to restart automatically any monitored
processes that terminate.

2.72 Initialization of ULARP: During a boot-
strap procedure, SIM creates a process named

/prc/unix. In the pcreate message sent to the pro-
cess manager, the field pm_chan is set to
BOOTCHAN (defined in the header file const.h),
which indicates to the IJNIX system hit function

that this is a bootstrap procedure. The init function
then executes the LJLARP process. When SIM re-
ceives the acknowledgment message on the success-
ful creation of the /prc/unix process, SIM logs the
process ID and waits for an E_ SENDMSG event (tle-

fined in the header file simdef.h) from [JLARP. This
event causes SIM to send [JLA RP a start-up message,
type USTARTUP (defined in header file simmsg.h).
This mesage contains SIMROOT in the message text
indicating a bootstrap procedure and other system
information needed for a successful ULARP start-up.

2.73 The run command files, ULARP’S process file,

and cmon.p input file for CMON have all been
replaced by ECD records. The CMON program has
been eliminated. lJLARP executes and monitors its
child processes and those formerly executed by
CIMON and executes but does not monitor each of the
run commands.

2.74 ULARP Failure Reports: Error conditions

are reported by spooler output messages if the
spooler is running. If the spooler is not running,
[JLARP reports errors to SIM by means of

SINITSTAT- messages, \vhich result in the output of
PRMs to he output during a hootstrap or craft initial-
ization procedure. All errors reported by lJLARP are
logged in the [JI,ARPI.OG log file.

2.75 ULARP Termination: SIM receives a
deat}l-of-chilrl message on the ULARP process

if either the [J NIX system “init” sequence fails to
create ULARP or [JLARP dies. When this message is
received, SIM usually assutnes that lJLARP was pre-
maturely terminated and attempts to restart it.
However, if the termination message is received be-
fore the ILSENI)MS(; event indicating a probable
failure to execute [JLA RP, SIM does not attempt to
restart [J I,ARP. If [; I,ARP is not restarted, SIM dis-
plays a PRM to indicate the reason for ULARP fail-
ure.

Page 15



SECTION 254-341-120

2.76 Z?estarthtg ULARP: SIM wi 11 attempt to
restart the ULARP process under the follow-

ing three conditions:

● ULARP is prematurely terminated, such as
during a phase level 1. If this occurs, SIM re-
ceives a death-of-child message and immedi-
ately attempts to restart IJLARP.

● The maintenance person enters the PDS/
MML shell command INITULARP! on the
maintenance terminal. When this command

is entered, the event E_[JINIT (defined in
simdef. h) is sent to SIM. When this event is
received, SIM checks ULARP process ID. If
ULARP is running-, SIM sends the E_UINIT
event to ULARP. This instructs ULARP to
reread the database records and attempt to
start any child processes which are not exe-
cuting. If ULARP is not running, SIM at-
tempts to restart ULARP.

● The maintenance person enters the CFT-INIT

option (command code 15) on the emergency
action page of the maintenance terminal. The
CFT-INIT option causes the craft interface
handler to send SIM the fault FLT-CFT. If
ULARP is running, SIM sends the E_

CI?TERM event, warning that a craft initial-
ization is going to take place. ULARP replies
with an E_ KILCFT event to SIM, instructing

SIM to kill the craft processes. SIM termi-
nates the craft processes and then sends an
E_ RSTCFT event to ULARP telling ULARP
to restart the craft processes. At this time,
ULARP restarts craft processes only. When
all craft processes have been restarted,
ULARP sends an E_CFTCOMP event to SIM
indicating that the craft initialization is com-
plete. Until SIM receives the completion

event, SIM will not initiate any new craft ini-
tialization procedure. If ULARP is not run-
ning, SIM restarts ULARP, terminates the

craft processes, and sends ULARP a

USTARTUP message with the value
CFTSTART. SIM will not kill any craft pro-
cesses if disk limp mode is in effect.

2.77 If [JLARP dies and is restarted, SIM does not
terminate craft processes unless the restart is

in response to a craft initialization request. SIM
sends ULARP a startup message USTARTUP, with
one of two values; USTART or CFTSTART. USTART

results in ULARP attempting to adopt its former
child processes. If an adopt call returns failure,
ULARP will attempt to restart that process.
CFTSTART result in ULA RP restarting craft pro-
cesses and attempting to adopt other child processes.
If the adopt fails, [JLARP will restart the process at
this time.

AUDITS (DMERT GENERIC 2 AND UNIX RTR RELEASE 1)

2.78 The DMERT generic 2 and UNIX RTR Release
1 audit control systems are composed of the

following .

The System Integrity Monitor process is re-
sponsible for scheduling and dispatching all
audits and for initiating audit error recovery
procedures

The Equipment Configuration Database
(ECD) stores all software integrity informa-
tion used by SIM. SIM uses software integ-
rity control, audit control, and audit instance
records to administer audits

Audits that verify, correct system data struc-

tures, and recover lost system resources. -,
Audits may reside in long-lived or transient
processes

Library functions that provide the interface
between audit processes and the software
integrity subsystem

The System Integrity Output Formatter

(SIOF) process provides a consistent output
message format when reporting audit results
to maintenance personnel

‘?
Manual standard P13S/MML input com-
mands (AUD, INH:AIJD, OP:AIJD, etc. ) are
provided to query and request software in-

tegrity services

Requests from other processes to run audits
or block audits

T
Periodic status reports output a periodic
REPT AUDSTAT message to inform mainte-
nance personnel when audits are inhibited or
blocked

?

Page 16



1SS 3, SECTION 254-341-120

● A Plant Measurements interface allows

counts of audit attempts and failures to be
stored in the plant measurements database.

2.79 Audit Identification: All audits are catego-

P rized by the type of data audited (ie, file man-
~Xt,r, message buffer, and ECD). Each audit category

is referred to as a family and each family has a name
that is up to six characters long. The audit name
should be mnemonic for the name of the system re-
sources or facility to be audited. A member number
is used to distinguish among audits in the same
family.

2.80 [n [)MERT generic 2, each audit control re-
cord contains one or more audit instances and

each audit instance may have a name that is up to 19
characters long. Audit instances maintain informa-
tion specific to a particular occurrence of data to be
audited. Because of ECD record size limitations, only
four audit instances are permitted per audit control
record. An audit that requires more than four audit
instances is forced to use multiple audit control
rec{)rds.

2.81 In UNIX RTR Release 1, each audit control

P record is associated with one or more audit
instance records. Each audit instance may have a
name that is up to 19 characters long. Audit instances
maintain information specific to a particular occur-
rence of data to be audited.

2.82 An audit with only one audit instance is iden-
tified by the audit name and audit member

number of the audit. If an audit has more than one
audit instance, the audit name, audit member num-
ber, and audit instance name identify the audit.

F-’
2.83 Correcting Audits: All DMERT and [JNIX

RTR audits should be capable of correcting
an~~ errors that audits detect. By default, audits
should execute in error correcting mode. Audits must
be flexible enough to execute in error detecting mode
only. The default error correction mode of each audit
is stored in the audit record.

Audit Control and Scheduling

P
2.84 When scheduling audits, SIM is required to

limit the number of routine, manual, and soft-
ware requested audits that may execute simulta-

If’
neously. SIM is also required to control the amount

of CU time audits use.

2.85 Audit System Initialization: Initialization
of the audit control system after a system

bootstrap requires SIM to access the system integrity
control record, each audit and audit instance record
in the ECD, and each audit. record in the plant main-
tenance database. If any steJ) in the initialization
procedure fails, SIM outputs a message to inform the
user. Whenever audit system initialization has

failed, SIM recognizes the AI.W:AUD:ALL input
command as a request to attempt to reinitialize the
subsystem and begin running routine audits.

2.86 Audit Segmentation: The audit control sys-
tem supports segmented and nonsegmented

audits. Segmented audits relinquish the CIJ after a
predetermined amount of time. Most kernel level

audits should execute in a segmented mode. When
scheduled routinely or by a software request, a kernel
level audit will execute one audit segment each time
it is dispatched by SIM. When a segmented audit is
requested manually, more than one segment may be
executed each time it is dispatched.

2.87 Nonsegmented audits run to completion and
report to SIM the amount of CIJ time used. All

[JNIX and supervisor level audits must be
nonsegrnented. Nonsegrnented kernel level audits
must compute and report the amount of CU time it

uses. For (JNIX LLndsupervisor leve] audits, the audit
interface library functions compute and report the
CLJ time usage.

2.88 Audit Dispatching: Audits are dispatched
using messages (messages accompanied by an

E_ A{J1) event and events). Most kernel level audits

and all [J NIX and supervisor level audits must be
message dispatched. Effective with IJNIX RTR Re-
lease 1, messages accompanied by an E_ AIJJl event
are provided as a p(’rformance improvement for ker-
nel Ie.vel audits only. Kernel lev[’1 audits are the only

event dispatched audits. only the message queue
audit is event dispatched.

2.89 Audit Execution Modes: The audit control
mechanism supports routine, manual, soft-

ware, and demand tjxecution modes. Routine audits
are executed at a given frtv~uency or at specified
times during normal system operation. Manual au-
dits are manually requsted hy maintenance input
commands. Software audits are requested by pro-
cesses other than maintenance input commands.
Demand audits are (Iemanded hy SI,M as a result of
a system error.

Page 17



SECTION 254-341-120

2.90 The audit control system allows an audit to
execute in any of the execution modes, depend-

ing upon the audit invocation. The permitted execu-

tion modes of each audit are specified in the ECI)
record for that audit.

2.91 Blocking Audit: The execution of audits can
be blocked using explicit and implicit block-

ing. Explicit, blocking occurs when a process specifi-

cally requests the blocking of an audit instance by
calling the au{l_block library function. This prevents
:!l(> giudit irlstance from being executed in any mode.

If all the instances of an audit need to be blocked, the

aud_block function must be called for each instance.
Implicit blocking is used when scheduling audits.
SIM ensures that no two audits with the same name
are run simultaneously and no two instances of the
same audit are run simultaneously.

2.92 Inhibiting Routine Execution of Audits:
Inhibiting audits prevents them from being

scheduled to run routinely or by software request.
Separate inhibit states are provided for the follow-
ing

● All audits

c All instances of a specific audit

● A specific instance of an audit.

The INH:AUD and ALW:AUD commands are used to

control audit inhibits. Setting or resetting the master
inhibit state for all audits turns routine audit sched-
uling off and on. The inhibit states of individual au-
dits or audit instances are not affected by setting or
resetting the master inhibit state. Manual audit in-
hibits will not be allowed automatically by SIM. A
periodic output message, REPT AUDSTAT, reports
the inhibit status of audits when the system is run-
ning in full configuration.

2.93 Frequency Group Audits: Each frequency
group audit is assigned a frequency labeled A

through H, where A is the highest frequency and H
is the lowest frequency. Each audit in a higher fre-
quency group executes twice as often as an audit in

the next lower frequency group. The frequency group
of each audit instance is specified in the audit ECD
record in J)MERT generic 2 or in the audit instance
record in IJNIX RTR Release 1. Because the fre-

quency group is instance dependent, different in-

stances of the same audit may be assigned to
different frequency groups, ?,

2.94 Timed Audits: Audits that must be run at
given times of the day should use the timed

audit facility. Each audit instance contains informa-
-,

tion that allows the audit to be scheduled to execute
at a specified hour and day. Different instances may
be scheduled to run at different times or on different
days. A given instance cannot be both a timed in-
stance and a frequency group instance. However, the
same audit may have one or more timed instances
and one or more frequency group instances. When
scheduling timed audits, schedule no more than one
hour of work to be done in a single hour-long interval. ?,

Audit Library Functions

2.95 SIM uses messages and events to dispatch
audits as specified in their audit control

records. Audit processes interface with SIM via audit
interface library functions. The library functions
perform the following:

● Assist audits in reporting errors and termi-
nation status to SIM

● Accumulate total error counts

● Determine how many error reports may be
forwarded to SIM for output by the SIOF

● Advise an audit when an error correction
limit is reached.

For audits that report supplementary error data, the
library functions provide the supplementary data
interface with SIOF. For kernel and special kernel
audit processes, the library functions assist in read-
ing the audit ECD record (if necessary).

2.96 The library functions implement two kinds of
interfaces with SIM, depending upon the exe-

cution level at which the process is running. In pro-
cesses below the level of SIM, the library functions
use operating system trap (OST) calls to communi-
cate with SIM. In processes running at or above the
level of SIM, the library functions send messages to
SIM. ‘?

2.97 The appropriate craft interface commands
make OST calls to SIM to initiate the re-

quested action. Other system processes call library ‘T,

Page 18



1SS 3, SECTION 254-341-120

functions which send messages to SIM to request

that audits he run or audit instances be blocked. SIM
sends reply messages back to the requesters. The
S1OF makes OST calls to SIM to retrieve data for
audit output messages. SIOF is created and moni-

,P tored by ULARP. In UNIX RTR Release 1, SIM inhib-
its the routine scheduling of audits if SIOF is not
executed successfully at bootstrap time or terminates
and is not restarted by ULARP.

OVERLOAD MONITOR

2.98 The overload monitor is responsible for moni-
toring the resources of the operating system

and the reporting of overload conditions to the SIM.
The overload monitor is actually a portion of the SIM,
although under most conditions the overload monitor
functions as an independent entity.

Overload Detection and Reporting

2.99 The overload monitor, with few exceptions, is
not responsible for overload detection. As re-

sources are allocated to DMERT or UNIX RTR pro-
cesses, checks are made for overload conditions. As
processes detect overload conditions, they are re-

P ported to SIM, which reports them to AIM and gener-
ates REPT SIMCHK output messages which are
recorded in the system integrity log file.

2.100 The operating system detects overload ccmdi -
tions for the following resources and reports

them by sending faults to SIM:

● Message buffer overflow

● Memory manager overflow

● Disk swap space overload
,m

● Segment descriptor table overflow

● Dispatcher control table overflow

● File manager input request queue

● Disk file controller job queue.

2.101 Nonswappable Main Memory: The

memory manager has a limit to the amount
of main memory that can be filled with

nonswappable processes. When creation of a new ker-
nel process is requested, the memory manager checks

that the allocation of memory to that process will not

exceed that limit. The memory manager will monitor
the amount of nonswappable main memory that is
allocated. When the amount allocated reaches 80 per-

cent of the maximum, the memory manager will send
the fault 0V_MJ3MLOW to SIM. When the amount
allocated is reduced to 60 percent of the maximum,
the memory manager will send the fault OV_
MEMCLR to SIM. When creation of a kernel process
fails due to insufficient memory, the memory man-

ager will send the fault OV_MEMKPFL to SIM.

2.102 Nonswappable Module 1 Memory
(UNIX RTR Release 1): There is a limited

amount of memory available in the module 1 memo-
ry. The memory in this module is not swappable, thus
having the potential to be overloaded. The memory
manager will monitor the amount of module 1 mem-
ory in use. When the amount allocated reaches 80
percent of maximum, the memory manager will send
the fault OV_MEMII,OW to SIM. When the amount

allocated is reduced to 60 percent of the maximum,
the memory manager will send the fault OV_
MEMICLR to SIM. If a request for module 1 memory
cannot be granted because of a lack of pages, the fault
OV_MEMIF’(JL is sent to SIM.

2.103 Disk Swap Space: The amount of swap
space on disk currently in use is monitored to

detect overload. When the amount used reaches 80
percent of the maximum space allocated, the memory
manager will send the fault OV_SWAPLOW to SIM.
When the amount is reduced to 60 percent of the
maximum space allocated, the memory manager will
send the fault OV_SWAPCLR to SIM.

2.104 Segment Descriptor Table Entries: Cre-
ation of any new process requires a minimum

of three entries in the segment descriptor table. The
maximum number of segment descriptor table en-
tries required by a process is 128. Most processes use
less than six entries. The number of entries in the
segment descriptor table will be monitored to detect
overload. When the numberof free entries falls below
50, the memory manager will send the fault OV_
SDELOW to SIM. When the number of free entries
has recovered to 100 or more, the fault OV_SDECLR
will be sent to SIM. When the creation of a new pro-

cess or a new segment of an existing process fails due
to insufficient free segment descriptor table entries,

the fault OV_SDEPRFL will be sent to SIM.

Page 19



SECTION 2S4-341 -120

2.105 Dispatcher Cent rol Table Overload: The
number of entries in the dispatcher control

table will be monitored to detect overload. The
I) MJ3RT and IJNIX RTR kernel will track the number
of entries in the dispatcher control table. When the
entries in the dispatcher control table reach 70 per-
cent of the maximum, the kernel will send the fault
OV_DCTOVLD to the overload monitor. When the
dispatcher control table entries are 100 percent allo-
::~ted, the kernel will send the fault OV_DCTCRIT to
the overload monitor. When the entries are reduced
to 50 percent, the kernel will send the fault OV_
I)(~TOK to the overload monitor.

2. i 06 File System Monitor: File system over-
load conditions are detected by a UNIX pro-

cess that runs under ULARP. File System Monitor
(FSMON) monitors the number of free blocks in each
mounted file system. FSMON attempts to predict
when a file system might run out of free blocks based

upon the rate of decrease as a percentage of the num-
ber remaining. The file manager reports to SIM the
name of any file system that is overflowing or that
might soon overflow. The file manager sends an
FSOVWARN message to SIM if the file system ap-
pears to be in danger of overflowing within 2 hours.
The file manager sends an FSOVCRIT message to
SIM if the file system has no free blocks left or free
inodes. When data is removed from a file system that

overflowed, the file manager sends SIM an
FSOVCLR message. SIM forwards file system over-
load reports to AIM and generates REPT F’S OVER-

FLOW output messages with the file system names.

2.107 Disk Driver Overload: The disk driver
administers a separate job queue for each

disk file controller (DFC) in the system. Overload on
a DFC depends upon the number of jobs waiting for
that DFC and the sizes of those jobs. A DFC will be
considered overloaded if its internal queue of 64 jobs
becomes full. When the DFC internal queue is re-
duced to 50 jobs, the overload condition is considered
cleared. A DFC will also be considered overloaded if
incoming jobs wait too long because pending jobs are

too big. When the waiting time for new jobs reaches
7 seconds, the controller will be considered overload-
ed. When the waiting time is reduced to 5 seconds, the
overload condition will be considered cleared.

2.108 The DFC will send the fault OV_DFCOVLD
to the overload monitor when either of the

above conditions occur on a DFC. Another fault will
be sent if a second DFC becomes overloaded. When

both of the above conditions are cleared for a DFC,

the disk driver will send the fault OV_DFCOK to the
overload monitor.

Real Time Overload Monitors

2.109 Process lockout conditions are detected by
SIM with the help of two related monitor

processes. KLMON is a kernel process that executes

at level 3, which is the lowest level available to regu-
lar kernel processes. SUOVPRC is a supervisor pro-
cess that executes at a fixed priority level below the
priority at which ordinary UNIX processes execute.
The KLMON and SUOVPRC report by sending
events to SIM periodically in order to verify that pro-
cesses are being scheduled by the operating system.

2.110 The KLMON process stops reporting to SIM
when some other kernel process at or above

level 3 (but below level 13) is using up all the CU time.
This is called kernel level lockout. A SUOVPRC stops
reporting to SIM when another supervisor or UNIX
process is using too much CU time. This is called su-
pervisor level lockout. SIM reports these lockout con-
ditions by sending faults to itself and to AIM in
exactly the same way that other overload conditions
are reported.

2.111 Each KLMON detects a less severe type of
real-time overload by measuring the time

interval between its own timeout entries. KLMON
reports an overload condition to SIM when its time-
out entry is delayed by more than a specified amount.

E. Message Buffer Overload Recovery

2.112 The AIM is responsible for initiating the
bulk of overload recovery action. The only

overload condition for which SIM takes any recovery
action is message buffer overload. Also, the SIM will
notify applications when critical system resources ‘?

exceed predetermined critical levels.

2.113 The DMERT and UNIX RTR kernel provides
OSTS to recovei’ message buffers from pro-

cesses in order to relieve overload conditions. SIM
uses the OSTS in the recovery procedures as follows:

.

● Count the message buffers that are on the
input queues of selected processes

● Flush messages from the input queues of se-
lected processes

T

Page 20



1SS 3, SECTION 254-341-120

● Terminate selected processes and free their
message buffers.

SIM uses the spy library functions to obtain informa-
tion from the system concerning message buffer allo-

,- cation and the addresses and sizes of data structures
included in a selective panic dump. If a kernel-level
lockout condition exists when message buffer over-
load occurs, SIM requests a phase 1 reintialization in
an attempt to break the lockout. If none of the at-
tempted recovery actions succeed, SIM will repeat-

. edly request a phase 1 until the DMERT fault
recovery strategy escalates the initialization level to

,P.
a phase 2 bootstrap. If this occurs, a selective panic
dump will be written to disk. After the system has
recovered, the data in the panic dump can be used to
help determine what caused the overload.

3. PLANT MEASUREMENTS

3.01 The PMS provides a means by which the appli-

cation can obtain measurements regarding
the long-term performance of various entities of the
DMERT or UNIX RTR operating system and the
3B20D computer. The computer is composed of the
following hardware units:

P
● Control Unit (CU)

● Direct User Interface Controller (DUIC)

● Direct User Interface (DUI)

● Synchronous Data Link Controller (SDLC)

● Synchronous Data Link (SDL)

● Scanner/Signal Distributor Controller
(SCSDC).

3.02 The plant measurements provide information

that can be used for:

● Determining when equipment needs
servicing or replacing

● Determining appropriate thresholds for au-

dits and fault recovery

● Indicating overall system reliability

● Evaluating the performance of the office and
the craft.

A. Plant Measurement Structure

3.o3 Essentially, the PMS is composed of the fol-

lowing entities:

● Disk File Controller (DFC)
● Measurement database/PMS library

● Moving Head Disk (MHD)
● Plant daemon

● Input/Output Processor (IOP)
● Operating system interfaces

● Emergency Action Interface (EAI)
● Application interface.

● Switching Control Center (SCC) Link
Measurements Database

● Maintenance TTY Peripheral Controller
(MTTYPC)

● Maintenance Terminal

● TTY Controller (TTYC)

● Teletypewriter (TTY)

● Magnetic Tape Controller (MTC)

● Magnetic Tape (MT)

● Maintenance Printer (receive-only printer)

3.o4 In DMERT generic 1, the PMS measurement
database has been implemented as a public

library composed of two portions. The first portion is
the database access primitives (Table A) used to ac-
cess the data in the data portion of the measurement
database. The second portion is the measurement
data consisting of sets of measurements. [n DM13RT
generic 2 and UNIX RTR Release 1, the access primi-
tives and measurement data are maintained in two
distinct entities (PMS library and measurement
databases, respectively). The PMS library has been
implemented as a public library containing database
access primitives. The public library is locked in

Page 21



SECTION 254-341-120

primary memory to provide fast execution of the cess, it is locked in primary memory. The plant dae-

database access primitive. mon performs the following functions: -%

3.05 Database Access Primitives: The database ●

access primitives (functional calls) are com-
posed of low level access (LLA) primitives that use a ●

master outline to provide operating system and ap-
plication access to the measurement data. The LLA
primitives provide a means for preserving data integ- ●

rity by allowing only one operating system process to
update a record at a given time. These access primi-
tives are accessible from both supervisor and kernel
processes. User level processes require an additonal
[JNIX system function call in order to access the pub-
lic library.

3.06 Measurement Data: The measurement
data consists of sets of measurements, or

counts, which are stored in the form of records. To
retrieve information from the database, an applica-
tion must read the individual set(s) for which it is
interested in obtaining the information.

Plant Daemon

3.o7 The plant daemon is a nonkillable kernel pro-
cess of level 3 which is created during boot-

strap. In software, a process that is referred to as a
“daemon” controls information of other processes
with unusual effectiveness. Since it is a kernel pro-

Manages the measurements database

Ensures that the measurement database is
locked in primary memory

Computes maintenance usage.

Operating System interfaces

3.08 Several operating system processes use the
access primitives to store performance mea- ?.

surement data in the measurement database. These
operating system processes (followed by the type of
information stored) are as follows:

(a) Error Interrupt Handler: This process
keeps track of the source and level of all sys-

tem initializations. It also maintains the record of
each level of processor error interrupts.

(b) Alarm Control Process (DMERT Generic
Z and 2): This process controls the record

maintained for each type of system alarm (except
for power alarms). -,

(c) Coordinator of the Spooler Output Pro-
cessor (UNIX RTR Release 1): This pro-

TABLE A

MEASUREMENTS DATABASE ACCESS PRIMITIVES

PRIMITIVE DESCRIPTION

pl_attrec Reads the specified record (if present) or creates a new record (used by operating system
processes only)

pl_delete Deletes the specified record (used by operating system processes only)

pl_init Attaches the measurements database and data dictionary to the calling process (used by
operating system and application processes)

pl_read Reads the contents of the measurements database and copies all records into a specified buffer
area (used by application processes on] y)

pl_update Writes the contents of a specified buffer into the specified measurements database record (used
by operating system)

Page 22



1SS 3, SECTION 254-341-120

cess controls the record maintained for each type
,P of system alarm (except for power alarms).

(d)

(e)

Power Switch Monitor: This process keeps
a record of power alarm counts.

Audit Manager (DMERT Generic l):
These process~s keep a record of all audit at-

tempts and failures.

(f) System Integrity Monitor (DMERT Ge-
neric 2 and UNIX RTR Release 1): These

processes keep a record of all audit attempts and
failures.

p

(g) Communications Protocol Handler: This

process maintains a record of the unautho-
rized access attempts on individual data links.

(h) Con figuration Control Process: This pro-

cess keeps track of the number of instances
and amount of time a unit is in the nonactive state.
It also records faults and errors reported against
specific units.

(i) Processor Control Process Audit: This

F
process keeps track of the state of the CU.

Application Interface

3.o9 The application interface consists of two plant
function calls which are contained in the pub-

lic library. They are the pl_init and pl_read func-
tion calls. Basically, the pl_init function call returns
connection and set information used in the pl_read
function call to read the database.

3.10 PL_INIT Function: The pl_init function
call should be implemented as part of the ap-

plication’s initialization sequence. It is used to attach
a process to the plant measurements database for the
life of the process. If the application is a user level
process, the UNIX system plib function call should be
included in the initialization sequence prior to the
pl_init call. The pl_init function call returns,
through the function parameters, a copy of the set
identifier record and information used on subsequent

pl_read calls.

3.11 PL_READ Function: The pl_read func-
tion call is used to retrieve data from the

database, i.e., to copy the records contained in the

p
plant measurement set defined by the application

and passed on the call into a buffer area. If success-

ful, the pl_read call also returns a count of the num-
ber of records that were read from the database. This
count makes it possible to see if additional records
were added to or deleted from a particular measure-
ment set. Only the records contained in the specified
plant measurement set are returned by the pl_read
function call. This allows the application the option
of omitting those sets of records for which it has no
need.

B. Measurements

3.12 The PMS provides eight basic record sets of
information. These record sets are as follows:

●

●

●

●

●

●

●

●

System

System initializations

Alarms

Audits

Processor error interrupts

Data links

Data link groups

Equipment information

Set identifier.

Initializations

3.13 System initializations can be initiated manu-

ally (requested by the maintenance person)
through a software fault or through a hardware
fault. There are also four different levels of severity
associated with each initialization. The range of lev-
els is from 1 to 4 (level O is transparent to the operat-
ing system and is not counted). Initialization levels
1 through 3 can be initiated in any of the three ways

mentioned above. Level 4 initializations must be
manually invoked by the maintenance person. There
are ten possible combinations for which a count will
be provided. Each count will represent the number of
initializations made for a particular combination.
The following list indicates the different types of sys-
tem initialization combinations for which counts are
maintained.

● Software initiated—level 1

Page 23

—



SECTION 254-341-120

● Software initiated— level 2

● Software initiated— level 3

● Hardware initiated—level 1

● Hardware initiated—level 2

● Hardware initiated—level 3

● Manually requested—level 1

● Manually requested—level 2

● Manually requested—level 3

● Manually requested—level 4.

3.14 Initializations are counted after they occur by
a post-mortem dump process (Recovery Mes-

sage Formatter). In the event of a rapid series of
initializations, this process is able to read from mem-
ory the information pertaining to the first, second,
third, and last initialization. Thus, in the case of roll-
ing MRFs, only data concerning four initializations
is recorded.

Alarms

3.15 There are three basic types of system alarms.
They are critcal, major, and minor alarms. A

count of the number of occurrences is made for each
type.

3.16 Specific counts of power alarms are also kept.
Since critical power alarms are not currently

possible, separate counts will be maintained only for
major and minor power alarms. The counters associ-
ated with each basic type of alarm (critical, major,
and minor) are under the control of the alarm control
process (DMERT generics 1 and 2) or CSOP (UNIX
RTR Release 1). The PMS maintains control of the
power alarm counts.

Audits

3.17 In DMERT generic 1, there are nine entities
which are audited periodically and on request

by the maintenance person. A count is maintained of
each attempted audit and how many times an audit
fails. A count of audit errors will not be maintained.
An audit error is considered to have occurred when
the number of audit failures exceeds a specified

threshold. Audit counts maintained by the PMS are

as follows:

9

●

●

●

●

Audit manager audit attempts (DMERT ge-
neric 1)

Audit manager audit failures (DMERT ge-
neric 1 )

Message buffer audit attempts

Message buffer audit failures

Scheduler audit attempts

Scheduler audit failures

Memory manager audit attempts

Memory manager audit failures

File manager audit attempts

File manager audit failures

Hardware audit attempts

Hardware audit failures ?

Application ECD audit attempts (DMERT

generic 2 and UNIX RTR Release 1)

Application ECD audit failures (DMERT
generic 2 and UNIX RTR Reiease 1)

ECD (disk copy) audit attempts (DMERT
generic 2 and UNIX RT Release 1)

ECD (disk copy) audit failures (DMERT ge-
neric 2 and UNIX RTR Release 1 )

Incore ECD audit attempts (DMERT generic
2 and UNIX RTR Release 1 )

Incore ECD audit failures (DMERT generic
2 and UNIX RTR Release 1)

In DMERT generic 2 and UNIX RTR Release
1, a PMS database record is created and nlain-
by the SIM process for each audit control re-

3.18

tained
cord in the ECD using the same audit name and
member number. This includes all audits providvd by
the DMERT or UNIX RTR system, plus any audits

‘?

Pssge 24



add{xi by the application to be administered by the
DMtlRT/IJNIX RTR audit control system. Each

audit record in the PMS database contains an at-
tempts counter and a failures counter for that audit.
These counters are updated by SIM every time the
audit is run.

3.19 All of the audit counters are controlled by the
AIJDMGR process (DMERT generic 1) and the

SIM process (IIMERT generic 2 and UNIX RTR Re-
lease 1).

Processor Error Interrupts

3.20 There are three levels of severity of processor
error interrupts. The range of levels is from O

to 2. Level O corresponds to on-line hardware errors.
I,evel 1 corresponds to off-line error interrupts. Level
2 corresponds to software and memory management
exceptions. Counts of the number of error interrupts
which occur are maintained for each level described
above. The EIH process records the counts associated
with each level of processor error interrupt.

Data links

3.21 A count is maintained of the number of unau-

thorized attempts to access an individual data
link. Data link traffic information is also recorded.
These counts are maintained by the communication
protocol handler.

3.22 Initially, no records of this type will be in the
database. Records in this set are created dy-

namically whenever an unauthorized access or traffic
activity is detected. The record is identified by the
complex name and number and the individual unit
name and number as defined in the ECD.

Data link Groups

3.23 A count is maintained of the number of occur-
rences of an input/output buffer overflow

within a data link group. An overflow is considered
to have occurred if a request is made for an inputl
ouput buffer and none are available. This count is
maintained by the communication protocol handler.
The record is identified by the logical device record
(record type mdct) of the ECD.

1SS 3, SECTION 254-341-120

Equipment Information

3.24 Maintenance measurements are recorded for
each individual unit of restorable hardware.

The measurements that are collected for equipment
are the most involved of the PMS, both in terms of
the number of units involved and the type of informa-
tion collected.

3.25 Equipment information measurements can be
broken down into two basic categories. They

are maintenance usage information and forced active
information.

3.26 Maintenance Usage Information: An
error occurring in a piece of equipment can be

real or possibly a fluke (a transient error). To deter-
mine whether or not a problem is real, thresholds are
established in the ECD for each restorable unit.
Within a specified time period, if the total number of
errors which have occurred in a unit reaches the
threshold of the unit, then that unit is faulted. The
number of errors that contribute to a unit’s threshold

are considered transient errors. A count of these er-
rors is maintained in the PMS.

3.27 It is sometimes necessary that a unit be placed
in a nonactive state. The nonactive state for a

unit may be requested for the following reasons:

●

●

●

Routine maintenance by the automatic diag-
nostic process

Manually initiated by the maintenance per-
son

Unit is faulted due to threshold being exceed-
ed.

3.28 A separate record of both the amount of time
and the number of instances a unit is in the

nonactive state is maintained by the PMS for each of

tbe reasons mentioned above. Thus, to find the total
amount of time a unit was in the nonactive state and
the total number of instances the unit was placed in

the nonactive state, it is necessary to add together
the three separate time records and instance counts,
respectively. The configuration control process han-
dles these counts.

3.29 Forced Active Information: As mentioned
previously, when a unit is faulted, a request is

made to place that unit in the nonactive state.

Page 25



However, if the unit is essential in nature and a
backup is not available, the unit cannot be placed in

the nonactive state without jeopardizing the system.
Two alternatives to the nonactive state request are

available. For any essential piece of equipment with-
out an available backup, a fault may be relieved by
a system initialization. The second alternative ap-
plies only if the faulted piece of equipment is a CU.
This unit can be manually forced active by the main-

tenance person.

3.3o The PMS maintains counts of the amount of
time and the number of instances that a CU is

placed in the forced active state. This state is also
indicated on the common processor display on the

MTTY.

3.31 Records concerning the states of restorable
units are controlled by the configuration con-

trol process routines, which inform the PMS of

changes in the state of a unit. The records maintained
for the forced active state of the CU are controlled by
the processor control process audit process which in-

;he PMS of the state of the CU.forms

3.32

(a)

(b)

●

●

●

●

●

●

The following list depicts the equipment infor-
mation records maintained per unit:

l’ransient errors–total number

Maintenance usage information

Automatic diagnostic process request—num-
ber of instances

Automatic diagnostic process request—
amount of time

Manual request–number of instances

Manual request–amount of time

Threshold fault request–number of in-
stances

Threshold fault reqeust—amount of time.

(c) Forced active information–number of in-
stances and amount of time for manual re-

quests only. This information currently pertains
only to the CU.

3.33 As with the data link record set, the database
will be initialized with no records in the equip- -,

ment information record set. The records will be cre-
ated whenever a unit is taken out of service.

3.34 In DMERT generic 1, this set can have a maxi-
mum of 100 records. All counts in these

records are preserved until a new version of the pub-
lic library is brought into core after a level 2 or
higher system initalization. All counts are cleared

after such an initialization; thus, all data collected
since the last initialization is lost. Once the entire
capacity of the equipment information portion of the
PMS database is used, attempts to create additional
records results in a PL_RCRT_ERROR message
being returned from the pl_attrec function. No addi-
tional records can be created until the PMS database
is reinitialized with a level 2 or higher system
initialization.

3.35 In DMERT generic 2 and UNIX RTR Release
1, the equipment information record set can

have a maximum of 150 records. The PMS database
is periodically (approximately every 15 minutes) cop-
ied to disk. A level 2 or higher system initialization
restores the PMS database from its last disk copy.
Thus the only data lost upon reinitialization is that
which was collected since the last time the PMS

database was copied onto disk. As with DMERT ge-
neric 1, attempts to create additional records after
record capacity has been reached result in a PL_
RCRT_ERROR message. Additional records can be
created only after a level 2 or higher system initial-
ization has reinitialized the PMS database.

Set Identifier

3.36 The set identifier record is the last record set ?
in the plant measurements database. This re-

cord contains a set identifier for each set of measure-
ments in the database (eg, system initializations,
alarms, audits, etc.). These identifiers allow unique
accessing of each individual set of measurements.

3.37 The set identifier record also contains a field
that is written by the plant measurements dae-

mon with the time that the database was brought
into core. This allows an application to determine
whether or not the database was initialized since the
last time data was read from itby that application. -,

Poge 26



1SS 3, SECTION 254-341-120

t-’

,f-

4. CRAFT INTERFACE

HARDWARE

4.01 The following paragraphs provide general
descriptions of the hardware components of

the craft interface subsystem.

A. Maintenance TTY Peripheral Controller

4.02 The MTTYPC provides access to the normal
input/output channels of the IOP and the EAI

(Fig. 1). The MTTYPC supports interfaces to the
maintenance terminal, maintenance printer (which
is a receive-only printer), and SCC.

4.o3 For DMERT generic 1 and 2, the MTTYPC
provides two independent channels. Each

channel has two ports (Table B). For UNIX RTR Re-
lease 1, the MTTYPC provides four independent
channels, one of which has two ports (Table B). Be-
cause MTTYPCS operate autonomously, conflicting

commands from different MTTYPCS are executed on
a first-come, first-served basis by the EAI. Coordina-

tion is required between the local office and the SCC
system (SCCS).

MTTYPC/EAl Communications

4.o4 Each MTTYPC communicates with both J3A1s

over a full-duplex serial communication link
at 9600 baud. Communication with the EAIs is in the
form of upper case American Standard Code for In-
formation Interchange (ASCII). These ASCII mes-
sages represent either commands to the EAIs or
acknowledgments/responses from the EAIs and sta-
tus reports to the MTTYPCS.

4.o5 Normally, the EAI does not initiate communi-
cation. The MTTYPC sends a command to the

EAI. The EAl then checks the command, performs
the requested actions, and returns an acknowledge-
ment verifying the execution of the command. But for
certain status changes, the EAI will initiate commu-
nication by signaling the MTTYPC via a control lead
of the communication link. These status changes are:

●

●

●

The RUN, ACTIVE, or EAI ENABLE status
changed

The EAI was unable to execute a command

One or more EAI functions has arbitrarily
changed state.

TABLE B

MTTYPC CHANNELS

HARDWARE
DMERT GENERIC 1

AND 2
UNIX RTR RELEASE 1

Maintenance Channel O Channel O

Terminal

Emergency Channel O Channel 2

Action Port 1 Port O

Interface O

Emergency Channel O Channel 2

Action Port 1 Port 1

Interface 1

Switching Channel 1 Channel 3

Control Port O

Center

Maintenance Channel 1 Channel 1

Printer Port 1

Page 27

—



SECTION 254-341-120

l~pon reception of a signal from the EAI, the

MTTYPC will request status information from the
EAI to determine the reason for the signal.

MTTYPC/Maintencmce Terminol Communications

4.06 Each MTTYPC will communicate with the
maintenance terminal over full duplex serial

communications links. The local maintenance termi-
nal link operates at 9600 baud, and the remote SCCS
link operates at 2400 baud. The full 128-character
ASCII set is used for communication with certain
sequences reserved for control of the MTTYPC and
the maintenance terminal. With the exception of con-
trol sequences, the MTTYPC will echo to the mainte-
nance terminal.

MTTYPC Errors and Alarms

4.o7 The MTTYPC reports to the input/output pro-
cessor the following errors and communica-

tion failures:

● Parity fail

● Sanity fail

● Clock fail

● Routine diagnostic fail.

When these failures occur between the MTTYPC and
the active CU, the failures are reported to special cir-
cuitry on the power monitor for pickup by the local
office alarm g-rid. Communication failures between
the MTTYPC and the CU or EAI are reported to the
maintenance terminal and SCCS. A major alarm re-

sults when communication failures occur between
the MTTYPC and the active CU. Communication fail-
ures between both MTTYPCS and the active CU re-
sult in a critical alarm. If a communication failure
occurs between the MTTYPC and the EAI, a report
is sent to the active IOP which will determine the
appropriate alarm level.

B. Emergency Action Interfoce

4.08 The EAI circuit pack provides a low-level
maintenance access path from the mainte-

nance terminal to the computer. The EAI is a small

stand-alone microprocessor system. The major com-
ponents of the EAI are:

● An Intel* microprocessor

● Read-Only Memory (ROM)

● Random-Access Memory (RAM)

● Two Universal Asynchronous Receiver
Transmitter (UART) devices.

The EAI circuit pack is located in the processor
frame and shares the power supply of the computer.

4.o9 There are two EAIs, one associated with each
computer. The EAI can function regardless of

the current state of its associated computer. The EAI
receives emergency action requests from the mainte-
nance terminal or from a SCC via a MTTYPC port.

4.10 The EAI displays status information via light
emitting diode (LED) indicators mounted on

the faceplate of the EAI circuit pack. The following
list describes these indicators.

●

●

●

●

●

●

STATUS–Displays, as a single hexadecimal
digit, the low four bits of the system status
register

RUN–Indicates that the associated central
control (CC) is on-line

ACTIVE—Displays the state of the processor
on-line (PONL) signal from the associated
computer

FORCED ONLINE—Displays the state of
the forced on-line (FONL) signal from t ho
associated computer

FORCED OFFLINE–Displays the st.att’ of
the forced off-line (FOFL) signal from the
associated computer

EMERGENCY ACTION ENABLED–Dis-
plays the emergency action enabled (EAEN)
status bit.

* Trademark of Intel (’corporation.

‘-y

“m

.=-l

Page 28



1SS 3, SECTION 254-341-120

!’- c-P“wer‘witch
4.11 The power switch circuit pack provides control

over the power supply of the CC. This circuit
pack is adjacent to the EAI circuit pack. The power
switch administration displays status information
via LED indicators mounted on the faceplate of the
power switch circuit pack. Also mounted on the face-
plate are the power switches. These indicators and
switches are:

.m

/-

●

●

●

●

●

●

●

●

●

●

ON switch–Turns the power converter on by
initiating a power-up sequence

OFF switch–Turns the power converter off
by initiating a power-down sequence

OFF indicator–Lighted when the power con-
verter is off

ALM indicator–Alarms lighted when the
power converter is out of tolerance, a fuse is
blown, an auxiliary circuit is faulty

00S indicator–I.ighted when the power con-
verter is out-of-service

RQIP indicator–Lighted when a request ini-
tiated from one of the power switches is in
progress

ROS inciicator-Lighted when the ROS/RST
switch is in the Request out-of-service (ROS)
position

ROS/RST switch–Requests that the unit be
taken out-of-service (ROS) or be restored to
service (RST)

ACO/T switch—Alarm cut-off or lamp test

MOR switch–Manual override of the OFF/
00S interlock.

D. Maintenance Terminal

4.12 The maintenance person interacts with the
computer primarily through the maintenance

terminal. The maintenance terminal provides mes-
sage input and output facilities. The maintenance
terminal keyboard is used to enter PDS messages or
MML (DMERT generic 2 and [JNIX RTR Release 1)
messages. The messages are found in the Input Mes-

sage Manual, IM-4CXN0-01 or IM-4C00201, respec-
tively. The maintenance terminal also provides
graphic displays of system status and alarms. The
maintenance person selects input commands from
the menu (list of commands) on each display page.
The display screen of the maintenance terminal is
split. The upper portion of the screen displays infor-
mation necessary for the maintenance person to
maintain the system while the lower portion displays

a scroll of consecutive input and output messages.

Maintenance Printer

4.13 The maintenance printer is a Model 40 Data
Terminal receive-only printer USOC 40P2F

manufactured by Teletype Corporation (or equiva-
lent). The printer is used to maintain a printed record
of the communication to/from the maintenance ter-
minal.

SOFTWARE

4.14 The following paragraphs provide general
descriptions of the major software compo-

nents of the craft interface subsystem.

A. Emergency Action Interface Firmware

4.15 The EAI provides a low-level maintenance

access path from the maintenance terminal to
the computer. The EAI software is contained in
ROM. Thus, the software for the EAI cannot be de-
stroyed due to power failure or accidental over-write.
The primary purposes for the EAI are dead start and
recovering from software insanity through manual
intervention. The EAI performs the following func-
tions:

●

●

●

●

Executes EAI commands sent from the
MTTYPC

Handles recovery messages from the CC

Performs self-initialization, if necessary

Perform audits and detects EAI errors.

EAI Commands

4.16 The following paragraphs describe the com-
mands that can be requested from the mainte-

nance terminal via the EAI. These actions can be

Page 29



SECTION 254-341-120

performed regardless of the current state of the com-
puter system.

4.17 Force Commands: The following com-
mands are overrides that provide the basic

emergency control over the associated CC:

● FONL (Force CC On-Line )—Forces the asso-

ciated CC to the on-line state regardless of
software attempts to switch (The other CC is
forced off-line)

● FBDP (Force Primary Boot Device) —Forces
usage of primary boot device (ie, disk) during
subsequent system boots, regardless of soft-
ware or firmware attempts to use secondary

device (ie, magnetic tape)

● FBDS (Force Secondary Boot Device)—
Forces usage of secondary boot device during
subsequent system boots, regardless of soft-
ware or firmware attempts to use primary

device

● DTIM (Disable Sanity Timer) —Forces the
sanity timer of the associated CC to be dis-
abled; this inhibits subsequent switches.

4.18 Initialization Commands: The following

functions relate to the initialization of the as-
sociated CC and the EAI:

●

●

●

●

CLREAI (Clear EAI)–Resets the EAI to CC
outputs and clears the EAI memory associ-
ated with these outputs

EAIMRF (EAI Maintenance Reset

Function) –Forces the associated CC to ini-
tialize (ie, MRF)

INIP (Input Initialization Parameter)—
Transfers 64 bits of the operating system ini-
tialization parameter from the MTTYPC to
the EAI, where it is placed in EAI memory

OUTIP (Output Initialization Parameter)–
Transfers the contents of the EAI initializa-

tion parameter from the EAI to the
MTTYPC.

4.19 Status Monitoring: The EAI provides a
command that collects various information

related to the status of the associated CC and the EAI
itself. This command is: T,

(a) OUTSTAT (Output Status) –Returns a status
message to the MTTYPC which contains

●

●

●

●

●

●

●

●

●

●

-,

RST–Indicates that the EAI has gone
through a power-up restart

RUN–Indicates that the associated CC is

executing instructions from main store

ACTIVE–Indicates that the associated CC is
on-line

ASW– Indicates that the EAI thinks that all
seems well (ie, no internal faults detected)

PRM – Indicates that a process recovery mes-
sage has been received from the associated
cc

SPR–Indicates that a MRF has started

PP22,PP23– Indicates the last active state of
the pulse points from the CC T

IPB— Indicates that the EAI initialization
parameter buffer contains nonzero data

EAEN–Indicates that a force function to the
associated CC is active or the initialization
parameter is nonzero

FBDP, FBDS, FONL, FOFL. DTIM,
EAIM”RF– Indicates the “state of the corre~
spending EAI function node.

4.20 Processor Recovery Message: The follow- 9

ing function allows the PRM to be accessed by
the MTTYPC for display on the maintenance termi-
nal:

● OUTPRM (Output Processor Recovery
Message) –Transfers the 64-bit contents of
the PRM buffer to the MTTYPC.

‘7

4.21 Recovery Message Handling: As a main-

tenance reset function (MRF) occurs in the
associated CC, PRMs are generated by each step or
process executed during the initialization. One or ?

Page 30



1SS 3, SECTION 254-341-120

p
more PRMs will be generated by the following steps
or processes:

● Microboot

* ● Little boot

● Pinit

● Big boot

● DMERT kernel

● Error interrupt handler

● Disk driver

● IOP driver

● File manager

● Operating system processes

● Process manager

● SIM.

The PRM is composed of 16 hex digits that define the
step or process sending the PRM, the initialization
lev[Ils (operating system and application), the partic-

ular function within the step, and failure or progress
information. Basically, there are two types of PRMs;

All Seems Well (ASW) and Failure. The PRMs are
sent to the associated EA1. The EAI forwards the
message to the MTTYPC which in turn sends the
PRMs to the maintenance terminal.

4.22 Self-Initialization: The EAI may need to

P
perform a self-initialization. There are three

initialization levels which are (in order of decreasing
severity):

● Total Initialization—Executed during pow-
er-up or when both MTTYPC ports receive a
BREAK; all RAM, registers, and flip-flops
are cleared; the force outputs and UA RTs are

P
reset.

● Single-Break Initialization—Executed when
a BREAK detected at only one port receives
a BREAK; the UART and the area in RAM
associated with the port are initialized.

● CLREA1 Initialization—Executed when a
CLREAI command is received; the force out-
puts and the area of RAM associated with
these outputs are cleared.

4.23 EAI Audits: When the EAI is not executing
MTTYPC commands or handling PRMs or di-

agnostic requests, the EAI performs audits and self-
tests. The EAI will signal the MTTYPC when an
error is detected during the self-tests or some of the
audits. The audits performed are as follows

(1) Output Audit–Compares the state of the out-
puts to the computer with an internal record

of what the state should be; discrepancies will
cause the EAI to signal the MTTYPC. The
MTTYPC is responsible for taking the appropriate
actions to recover the EAI or mark the EAI out of
service. (This audit is designed to detect backplane
shorts and EAI driver faults. )

(2) EAEN Audit–Checks the state of the force
outputs and the initialization parameter; mod-

ulates the EAEN status bit and LED.

(3) Status Audit–Checks the state of the PONL
signal and RUN logic; if a change occurs, the

status word is updated and the MTTYPC is sig-
naled.

(4) Data Link Audit–Checks the status of the
ports to the MTTYPC; when an intercharacter

time-out occurs or a port initialization exists, the
IJART of the port is reinitialized.

4.24 Error Detection: The EAI can detect the
following types of operational errors:

● UART Initialization Fault—The EAI cannot
initialize the lJART and cannot exit the ini-

tialization loop. The MTTYPC recognizes this
fault by the absence of an acknowledgement
to a command.

● Command-Data Error—A parity error,
framing error, or overrun error that occurs
during transmission from the MTTYPC to
the EAI. The EAI will return an error mes-
sage to the MTTYPC.

● Command Syntax Error—A grammatically
incorrect command from the MTTYPC; the

Page 31

—



SECTION 254-341-120

EAI will return
MTTYPC.

an error message to the

● Output Error—The EAI outputs do not agree
with the expected states; the EAI will signal
the MTTYPC via a control lead.

B. MTTYPC Handler

4.25 A portion of the IOP software is responsible
for interfacing the MTTYPC to the operating

system. This software performs the following func-
tions:

. Restores the MTTYPC, when necessary

● Provides the interface to the special files

● Provides two separate paths for simulta-
neous input and output

● Provides direct memory access to and from
application segments

● Provides terminal control access.

4.26 The application processes interface to the
maintenance terminal are via three special

files. These files are:

(1)

(2)

(3)

/dev/tty –The terminal interface; used for
ordinary input/output

/dev/ack–Acknowledgment channel; used for
acknowledgments to PDS messages

/dev/cd–Control/Display interface; used for
displays and control information.

C. Program Documentation Standards Shell (DMERT

Generic 1 and 2)

4.27 The PDSHL supports the PDS maintenance
terminal input language and MML language

(DMERT generic 2) designed for ESS* switching

equipment. The PDSHL is responsible for processing
commands input from the maintenance terminals.
Application programs are invoked by the PDSHL in
response to a terminal command. The application

* Traflemark of AT&T.

programs are stored in files under several directo-
ries. Briefly, the actions of the PDSHL are as follows: ?,

(1)

(2)

(3)

(4)

Accept and parse commands from the termi-
nals

Perform directory search for application pro-
grams

Create the application program and wait for
its termination

Determine if system is PDS or MML (DMERT
generic 2).

In addition, the PDSHL will handle terminal signals

that occur during any of these actions.

4.28 When the program is located, the PDSHL will
attach the standard input of the application

program to the terminal. This allows input from the
terminal to the application program, if necessary.
The PDSHL process uses conventions of the UNIX
system to allow flexibility, simplicity, overall pro-
gram modularity, and loose connectivity. The design
of PDSHL process is based heavily on environment
and support tools provided by the UNIX system. The
PDSHL process, for example, provides an interface
between the maintenance terminal, maintenance
input. request administrator (MIRA), and many other
processes.

4.29 PDSGETTY: The PDSG ETTY process pro-
vides the early initialization procedure for

craft PDSHL terminals. This includes setting up
standard input, standard output, and standard error
file descriptors, initializing control display and
spooler output capabilities, and executing the
PDSHL.

4.3o The initialization procedure for a craft
PDSHL terminal is the same as that used for

a DMERT operating system terminal up to the point
that the GETTY program is executed. The DMERT
operating system allows for alternate GETTYs to be
executed by the init process of the UNIX system by
making appropriate entries in ECD on per-terminal
basis. This allows maintenance terminals and termi-

‘?
nals of the UNIX system to coexist on the same
DMERT operating system. Once executed, the
pdsgetty process needs specific information to deter-
mine the initial directory to be associated with a ter-
minal, which shell to execute for that terminal, and ?

Page 32



1SS 3, SECTION 254-341-120

whether control display or spooler output capabili-
ties are to be associated with that terminal. This in-
formation is contained in the ECD.

4.31 ECD Specifications for PDSGETTY: The
ECD provides a GETTY record, defined as

struct gettY_rec in the header file (lla/cft_rec. h), to con-
tain information needed by the PDSGETTY process.
The PI) SGETTY accesses the information in getty_
rec through low level access (LLA) functions calls.

4.32 The pathname (.pname) file is in the initial
directory that the PDSHL uses when attach-

ing to a terminal. The .pname file is assumed by the
shell to exist in the current directory. The PDSHL
determines the current directory when first created
by PDSGETTY. Thereafter, the PDSHL always uses
the same directory upon request by client processes.
Each line of the .pname file describes an environment
for the PDSHL as follows:

numeric label: PDS/MML search directory
Iist:current directory: alternate shell $optional
parameters

The PDSHL switches environments to parameters

specified in the line when a client command for a line
in the .pname file passes a return value to the
PDSHL equal to the value in the numeric label field.
Return values of zero from client command are ig-
nored by PDSHL. Therefore, if environmental
changes are desired, zero should not be used in the
numeric label field. The first line in the .pname file
is used by PDSHL as the default environment when
the PDSHL is first created. A line in the .pname file
may be continued with a backslash or terminated
after any parameter with a new line.

4.33 The list of PDSHL search directories is

F searched by the shell. This list should be sepa-
rated by blanks. The current directory parameter
causes the PDSHL to execute a cd (change directory)
using the current directory in the specified line. If on
exit from a PDS/MML command a positive return
code corresponds to an environment line with an al-
ternate shell specified, the PDSHL will fork and exe-
cute the alternate shell in the specified directory. On

P exit from the alternate shell, the PDSHL will return
to the previous environment.

4.34 The parameters following the dollar sign on
the environment line are optional and are ig-

nored by the PDSHL. An application may wish to add

parameters to an environment by placing them after
the dollar sign. A PDS/MML command created by
PDSHL uses standard input, standard output, and
standard error as set up by PDSGETTY.

4.35 Input Line Parser: The input to the
PDSHL parser is the first line of the terminal

command (ie, the command line). For the application
command, the parser builds a list of the tokens that
occur on the command line. For the PDSHL, the
parser builds a list of character strings from the com-
mand line which is used to find the application pro-

gram. The parser also provides syntactical and
lexical error detection along with a minimal amount
of error analysis. For example, the following com-
mand line is used to diagnose a CU:

DGN:CU O!

This line would be parsed into a list composed of a
verb, delimiters, and identifications (ids), such as the
following

“DGN” (verb)

“:” (delimiter)

“CU” (id 1[0,0])

“O” (id 1[0,1])

“!” (delimiter).

4.36 The PDSHL would use the first token of the
command line (ie, the verb) in the form of a

character string to locate the program responsible
for executing this particular diagnostic. When found,

the program is created and the PDSHL passes the list
of five tokens to the program. The program would use
this list to identify the specified operation to be per-
formed. The parser for PDSHL is generated using the
LEX and YACC programs. Semantic analysis is per-
formed by the yyparse subroutine. The yylex subrou-

tine is called by yyparse for lexical analysis.

4.37 The PDSHL implements a subset of standard
PDS/MML syntax in the following two areas:

● Input delimiters

● Message diagnostics.

Page 33



SECTION 254-341-120

The ?A, ?1, ?D, and ?E are syntax error messages is-
sued by PDSHL. The improper teletypewriter chan-
nel message ( ?C) feature is not supported by the
PDSHL. The PDSHL input delimiters (“/” or “!”) in
PDS or (“?” or “;”) in MML cause the terminal to be

connected to the standard input of the application
program. The connection permits the application
program to read unparsed input from the terminal as
needed.

4.38 Directory Search: The PDSHL has access
to the file “.pname”. This file contains a list of

the pathnames of the directories that contain the
application programs. The directory search algo-
rithm used by the PDSHL is as follows:

(1) Checks the verb against the files in the first

directory in the “.pname” file. If the verb
matches the name of an executable file, the file is
executed.

(2) If the verb matches a directory, checks the
files within that directory against the first id.

If the first id matches an executable file, the file
is executed.

(3) If the first id matches a directory, then the
files in that directory are matched against the

second id. If an executable file is matched, the file
is executed.

(4) If no match is found during the search in steps
1 through 3, then the procedure is repeated for

the next directory listed in the “.pname” file.

(5) After all directories listed in the “.pname” file
have been searched and an executable file has

not been found, the PDSHL abandons the search
and issues an error message.

4.39 Process Creation: The PDSHL invokes
application programs by executing the “fork

and exec” command of the UNIX system. The file
name of the application program is supplied by the
P13SHL as an argument to this command. Likewise,
the list of tokens is also passed to the application pro-
gram.

4.40 Signal Handling: When a signal is gener-
ated by the terminal or terminal handler, the

signal is sent to all processes associated with the ter-

minal. Each process then has one of the following
options:

●

●

●

Not catching the signal and terminating

Catching and ignoring the signal ?.

Catching the signal and trapping to a subrou-
tine.

The response by PDSHL to the signals varies from
ignoring to dying upon receipt of the signal. Break
and delete signals are caught by PDSHL. The hangup
signals cause PDSHL to die forcing the terminal han-
dler to bring up a new PDSHL for the terminal.

4.41 The terminal handler also originates the fol-
lowing time-out signals:

● Intercharacter time-out signal

● No acknowledgment time-out signal.

If the terminal handler waits more than the
intercharacter time-out value (specified in the ECD)
between characters, the intercharacter time-out sig- ~
nal is sent to PDSHL. A “?T” is sent to the terminal
by PDSHL in response to an intercharacter time-out
signal. The no acknowledgment signal depends on the
acknowledgment time-out value in ECD. This signal
is sent by the terminal handler to the PDSHL when
the value in ECD is exceeded and no command ac-
knowledgement is output to the standard error file
descriptor. The PDSHL responds to a no acknowledg-
ment signal by sending an “NA” to the terminal.

4.42 Program Documentation Standards
Shell Library Functions (DMERT Ge- ~

neric 2): The PDSHL library functions have been
combined into a craft library (libCFT). Basically,
PDSHL reads a properly terminated input message
and parses the input message into tokens. Then the
appropriate client/application process with pointers
to the parsed input message is invoked. Client and/or
application processes have responsibilities (eg, ac-
knowledgment time-out) to the PDSHL and IOP. The
libCFT functions were developed for the following
reasons:

● To aid client processes in meeting these re-
sponsibilities uniformly -.

Page 34



,.
1SS 3, SECTION 254-341-120

F-+
● To provide client processes with tools for

PDS/MML input message processing

● PDS/MML parsed input pointer development

● PI)WMML input data field/subfield data

conversions

● Procedural functions to meet PDS/MML pro-

cessing requirements within the 3B20J3 com-
puter DMERT operating system

environment

● Procedural functions to meet PDS/MML pro-
cessing requirements within a remotely lo-

cated SCC facility

● PDS/MML output message generation and
destination routing.

Detailed information required by PDSHL client pro-
cesses are defined in the standard header file for the
PDS libraries ( <cft/pdslib.h> ).

4.43 Some of the functions described by libCFT are
specifically designed for PDSHL clients

and/or applications which handle multiline PDS in-
put. The PDSHL is responsible for reading the initial
portion of a multiline input command. The PDSHL
client and/or application processes are responsible
for reading subsequent lines of input using the func-
tions in libCFT. In addition, there are function calls
that allow user processes to interface directly with
the craft interface output spooler. The libCFT is ac-
cessed by typing “sharelib:lib CFT” in the specifica-

tion (b) file.

D. Craft Shell (UNIX RTR Release 1 Only)

f= 4.44 The CFTSHI. supports the PDS maintenance
terminal input language and MML language

designed for ESS switching equipment. The CFTSHL
is also responsible for processing commands input
from the maintenance terminals. Application pro-
grams are invoked by CFTSHL in response to a ter-

minal command. The application programs are
stored in files under several directories. Fh-iefly, the

‘P actions of the CFTSHL are as follows

(1) Determine if system is PDS or MML

(2) Accept and parse commands from the termi-
,m nals using the input message catalog database

(3) Verify the existence and executability of client
programs or perform a directory search for

client programs

(4) Display acknowledgements to input messages

as indicated in the input message catalog

(5) Create client programs and wait for the pro-

grams to terminate.

In addition, the CFTSHL will handle terminal sig-
nals that occur during any of these actions.

4.45 When the program is located, the CFTSHL
will attach the standard input of the client

program to the terminal. This allows input from the
terminal to the client program, if necessary. The
CFTSHL process uses conventions of the UNIX sys-
tem to allow flexibility, simplicity, overall program
modularity, and loose connectivity. The design of
CFTSHL process is based heavily on environment
and support tools provided by the UNIX system. The
CFTSHL process, for example, provides an interface
between the maintenance terminal, MIRA, and many
other processes.

4.46 SHLGETTY: The SHLGETTY process pro-

vides the early initialization procedure for
CFTSHL terminals. This includes setting up stan-
dard input, standard output, and standard error file
descriptors, initializing control display and spooler
output capabilities, and executing the CFTSHL.

4.47 The initialization procedure for a CFTSHL
terminal is the same as that used for a UNIX

RTR operating system terminal up to the point that
the G ETTY program is executed. The operating sys-
tem allows for alternate GETTYs to be executed by
the init process of the UNIX system by making ap-
propriate entries in ECD on per-terminal basis. This

allows maintenance terminals and terminals of the
UNIX system to coexist on the same operating sys-
tem. Once executed, the SHLGETTY process needs
specific information to determine the initial direc-
tory to be associated with a terminal, which shell to
execute for that terminal, and whether control dis-
play or spooler output capabilities are to be associ-

ated with that terminal. This information is
contained in the ECD.

4.48 ECD Specifications for SHLGETTY: The
ECD provides a GETTY record, defined as

struct getty_rec in the header file (lla/cft_rec.h),

Page 35



SECTION 254-341-120

to contain information needed by the SHLGETTY
process. The SHLGETTY accesses the information in

getty_rec through LLA function calls.

4.49 The pathname (.pname) file is in the initial
directory that the CFTSHL uses when attach-

ing to a terminal. The .pname file is assumed by the
shell to exist in the current directory. The CFTSHL
determines the current directory when first created
by SHLG ETTY. Thereafter, the CFTSHL always

uses the same directory upon request by client pro-
cesses. Each line of the .pname file describes an envi-
ronment for the CFTSHL as follows:

numeric label: PDS/MML search directory
list: current directory :alternate shell $optional

parameters

The CFTSHL switches environments to parameters
specified in the line when a client command for a line
in the .pname file passes a return value to the
CFTSHL that is equal to the value in the numeric
label field. Return values of zero from client com-
mand are ignored by CFTSHL. Therefore, if environ-
mental changes are desired, zero should not be used
in the numeric label field. The first line in the .pname
file is used by CFTSHL as the default environment
when the shell is first created. A line in the .pname
file may be continued with a backslash (\) or termi-
nated after any parameter with a new line character
(\n).

4.5o The list of CFTSHL search directories is used
by the shell to locate/validate client process

pathnames. This list should be separated by blanks.
The current directory parameter causes the CFTSHL
to execute a cd (change directory) using the current
directory in the specified line. If on exit from a PDS/
MML command a positive return code corresponds to

an environment line with an alternate shell specified,
the CFTSHL will fork and execute the alternate shell
in the specified directory. On exit from the alternate
shell, the CFTSHL will return to the previous envi-
ronment.

4.5 I The parameters following the dollar sign on
the environment line are optional and are ig-

nored by the (; FTSIIL. An application may wish to
add parameters to an environment by placing them
after the dollar sign. A PDWMML command created
by O’TSHL uses standard input, standard output,
and standard error as set up by SHLGETTY.

4.52 Input Message Catalog Database: The
CFTSHL uses the input message (IM) catalog

T

database to validate the contents of input messages
entered at a maintenance terminal. The IM catalog
contains information about input message formats,
keywords, valid argument values, and full pathnames
of the client programs that execute the specified com-
mands. The IM catalog also contains information
which indicates whether the CFTSHL or a client pro-
gram is to display the appropriate acknowledgement
for each input message.

4.53 The CFTSHL operates in three different capa-
bility modes - full capability mode, partial ‘?

capability mode, and limp mode. The full capability
mode assumes that all [JNIX RTR and application
input messages are defined in the IM catalog

database. The partial capability mode assumes that
all UNIX RTR input messages are defined in the cat-
alog but not all application input messages are de-
fined in the catalog. If the IM catalog database

cannot be accessed, the CFTSHL will operate in limp
mode, which is a special case of the partial capability
mode.

4.54 ECD Specifications for CFTSHL: The
CFTSHL uses the following fields of the

spooler information (splrinfo) record in the ECD:

●

●

IM/OM syntax: This field can be set to PDS/
MML. The CFTSHL and output spooler read
this field to determine the proper 1/0 syntax. ~

Full/Part capability mode: This field can be
set to FULL or PART. The CFTSHL reads
this field to determine the proper capability
mode. Applicants who do not want to add
their messages into the IM catalog must
change the mode from FULL to PART using
the recent change and verify system. ?

When it is initialized, the CFTSHL reports the capa-
bility mode and IM syntax it is using in the REPT
CFTSHL TERMINAL IN SERVICE output message.

4.55 CFTSHL Help Facility: The Help facility
of the CFTSHL provides assistance to users

entering UNIX RTR PDS/MML input messages and -i

can be used to complete or correct errors in input
messages. If an input message is not defined in the
IM catalog or if it contains invalid keywords or argu-
ment value(s), the CFTSHL will reject the input mes-

sage with an appropriate error acknowledgenxmt. If ‘7

Page 36



1SS 3, SECTION 254-341-120

,-
the user does not understand or know what to do with
the error acknowledgement, the user can get help
from the CFTSHL by simply entering a question
mark (’?’). The CFTSHL interprets the ‘?’ at the end
of a partial input message or following an error ac-
knowledgement as a request for information about
the format of the message. A second ‘?’ is interpreted
as a request to enter prompting mode. In the prompt-
ing mode, the shell will prompt the user for each
keyword and argument in the message and provide
information about the values that can be entered.
When a complete input message has been construct-
ed, the user may append to it, execute it, or cancel it.

,n The help session is then completed; that is, help is
provided for only one input message at a time.

4.56 Input Line Parser: The input to the

CFTSHL parser is the first line of the termi-
nal command (ie, the command line). For the client
program, the parser builds a list of the tokens that
occur on the command line. For the CFTSHL, the
parser builds a list of character strings from the com-
mand line which may be used to find the client pro-
gram. The parser also provides syntactical and
lexical error detection along with a minimal amount
of error analysis. For example, the following com-
mand line is used to diagnose a (XJ:

DGN:CIJO!

This line would be parsed into a list composed of a
verb, delimiters, and identifications (ids), such as the
followinfq

“DGN” (verb)

“:” (delimiter)

“CU” (id 1[0,0])

,f’-
“0” (id 1[0,1])

“!” (delimiter).

4.s7 If the command is not found in the IM catalog
and the CFTSHL is operating in partial or

limp capability mode, the CFTSHL would use the
first token of the command line (ie, the verb) in the
form of a character string to locate the program re-
sponsible for executing this particular diagnostic.
When found, the program is created and CFTSIIL
passes the list of five tokens to the program. The pro-
gram would use this list to identify the specified op-

eration to be performed. The parser for CFTSHL is
generated using the LEX and YACC programs. Se-
mantic analysis is performed by the yyparse subrou-
tine. The yylex subroutine is called by yyparse for
lexical analysis.

4.58 The CFTSHL implements a subset of standard
PDS/MML syntax in the following two areas:

● Input delimiters

● Message diagnostics.

The ?A, ?1, ?D, and ?E are syntax error messages is-
sued by CFTSHL. The improper teletypewriter chan-
nel message (?C) feature is not supported by the
CFTSHL. The CFTSHL makes no distinction be-
tween input delimiters (“/” or “!”) in PDS or (“!” with
craft consistency feature) or “;”) in MML. For each
delimiter, the terminal is connected to the standard
input of the application program until a terminal
output unlocking, acknowledgment occurs. The con-
nection permits the application program to read
unparsed input from the terminal as needed.

4.59 Directory Search: The CFTSHL has access
to the file “.pname”. This file contains a list of

the pathnames of the directories that contain the cli-
ent programs. If the input message is found in the
input/output catalog, then the search directory is
compared against the list of “.pname” directories. If
the input/output catalog directory matches any
“.pname” directory, then the CFTSHL verifies the
existence and executability of the specified file. If the
input/output catalog directory is not listed in the
“.pname” file or if the process file specified in the
input/output catalog does not exist or is not execut-
able, then the input message is rejected. If the input
message is not found in the input/output catalog and
the CFTSHL is operating in partial capability mode
or in limp mode, then the CFTSHL performs a direc-
tory search for the client program. The directory
search algorithm used by the CFTSHL is as follows:

(1) Checks the verb against the files in the first
directory in the “.pname” file. If the verb

matches the name of an executable file, the file is
executed.

(2) If the verb matches a directory, checks the
files within that directory against the first id.

If the first id matches an executable file, the file
is executed.

Page 37



SECTION 254-341-120

(3) If the first id matches a directory, the files in
that directory are matched against the second

id. If an executable file is matched, the file is exe-
cuted.

(4) If no match is found during the search in steps
1 through 3, the procedure is repeated for the

next directory listed in the “.pname” file.

(5) After all directories listed in the “.pname” file
have been searched and an executable file has

not been found, the CFTSHL abandons the search
and issues an error message.

4.60 Process Creation: The CFTSHL invokes
application programs by executing the fork

and exec commands of the UNIX system. The file
name of the application program is supplied by the
CFTSHI. as an argument to this command. Likewise,
the list of tokens is also passed to the application pro-
gram.

4.61 Signal Handling: When a signal is gener-
ated by the terminal or terminal handler, all

processes associated with the terminal are sent the
signal. Each process then has one of the following
options:

● Not catching the signal and terminating

● Catching and ignoring the signal

● Catching the signal and trapping to a subrou-

tine.

The response by CFTSHL to the signals varies from
ignoring to dying upon receipt of the signal. Break
and delete signals are caught by CFTSHL. The aban-
don signals cause CFTSHL to abort the read com-
mand. The hangup signals cause CFTSHL to die
forcing the terminal handler to bring up a new

CFTSHL for the terminal.

4.62 The terminal handler also originates the fol-
lowing time-out signals

● Intercharacter time-out signal

● No acknowledgment time-out signal.

If the terminal handler waits more than the
intercharacter time-out value (specified in the ECD)
between characters, the intercharacter time-out sig-

nal is sent to CFTSHL. A “?T” is sent to the terminal

by CFTSHL in response to an intercharacter time-
out signal. The no acknowledgment signal depends on
the acknowledgment time-out value in ECD. This sig-
nal is sent by the terminal handler when the value in
ECD is exceeded and no command acknowledgement
is output to the standard error file descriptor. The
CFTSHL responds to a no acknowledgment signal by
sending an “NA” to the terminal.

4.63 Craft Shell Library Functions: The
CFTSHL library functions have been com-

bined into craft libraries (libCFT and libPARS). The
libCFT contains functions and routines for clients

and/or applications involved with maintenance input
messages, handles muitiline PDS/MML input and
the generation of PDS/MML output messages. Basi-
cally, CFTSHL reads a properly terminated input
message and parses the input message into tokens.
Then the appropriate client/application process with

pointers to the parsed input message is invoked. Cli-
ent and/or application processes have responsibili-
ties (eg, acknowledgment time-out) to the CFTSHL
and input/output processor. The libCFT and
libPARS functions were developed for the following
reasons:

●

●

●

●

●

●

●

●

●

To aid client processes in meeting these re-
sponsibilities uniformly

To provide client processes with tools for
PDS/MML input message processing.

PDS/MML input message parsing

PDS/MML input data fielrl/subfield data
conversion

PDS/MML terminator syntax chttcking :ind
uppercase conversions

PDS/MML system installation li(4i’rmina-
tion

PDS/MML language translation

PDS/MML input message acknowl{!tlg(~lll(’llt
generation

Procedural functions to meet P~S/M M 1, l}r{~-
cessing requirements within a rcm{}ti’ly l(J-
cated SCC facility

page 38



1SS 3, SECTION 254-341-120

● PDS/MM1, output message generation and
destination routing

● Attachment to the input message catalog

database.

.n
IJetailed information required by CFTSHL client
processes are defined in the standard header file for
the PIEVMM1, libraries (cft/pdslib.h).

4.64 Some of the functions described by library
libCFT are specifically designed for CFTSHL

clients and/or applications which handle multiline
PI) S/MML input. The CFTSHL is responsible for
reading the initial portion of a multiline input com-
mand. The CFTSHL client and/or application pro-

cesses are responsible for reading subsequent lines of
input using the functions in library libCFT. In addi-
tion, there are function calls that allow user pro-
cesses to interface directly with the craft interface
output spooler. The libCFT is accessed by typing
“sharelib:libCFT” in the specification (b) file. The
libPARS is accessed by typing “-lPARS in the input
section of the specification file.

E. Output Spooler (DMERT Generic 1)

P 4.65 The output spooler regulates the flow of out-
put messages to maintenance terminals,

maintenance printer, log files, data links, and other
output devices. All output devices (regardless of type)
are referred to as output files. The output spooler
maintains a work queue for each output file. This
work queue contains entries indicating the messages

to be sent to the associated output file. The messages
may or may not be sent based on the assigned priori-
ties of the messages on the queue. Briefly, the func-
tions of the output spooler are:

t“= ● Output message routing—Sends output mes-
sages to one or more output files.

● Output message flow control—Regulates the
flow of messages to a specific output file to
prevent the intermingling of the lines of sev-
eral output messages sent at the same time
to the same output file.

● Logging— Records the occurrences of differ-
ent types of messages.

● Time stamping—Appends to the message,
the time it was received by the output

spooler; the time is specified in minutes past
the hour (basic stamp) or full time and date
(full stamp).

4.66 Message Classes: A certain type of message
may need to be sent to more than one output

file. For example, output messages pertaining to
hardware removed from service may need to be sent
to two particular terminals and one particular log
file. The output spooler provides a mechanism that
defines the output files and allows this association of
a class of messages to an arbitrary set of output files.
These associations are recorded in the map file.

4.67 Map File: The map file contains information
defining device parameters, file parameters,

and message classes. The pathname for this file is:

ft/spl/map file.p

The map file can be edited by the maintenance person
to alter message classes or output file definitions, if
necessary. The map file contains two types of entries:

(1) Output file definition entry–Every output file
is defined by an entry in the map file. The out-

put file definition entry contains

● A unique tag that represents the pathname
of the output file

● Type of output file

● Whether or not output device is temporary

● Whether or not the messages sent to the out-
put file should be sorted and output based on
the priority of the messages

● Limits size of the internal queue associated
with output file

● Specifies the forced line length of the output
file

● Full pathname to the output file.

(2) Class definition entry–Message class to out-
put file mapping is defined by class definition

entries. This entry contains

● A class identifier (O to 255); class O is reserved
for the output spooler error log

Page 39



SECTION 254-341-120

● Whether alarms are to be handled by output

spooler or ignored

● A list of the names of output files associated
with this class of messages.

User Process Interface

4.68 User processes interface to the output spooler
via a UNIX pipe. The output sent to the

spooler consists of a user control string, the text of
the message, and the end-of-transmission character.

4.69 The user control string (referred to as the
spooler string) consists of ASCII characters.

The handling of the text following the spooler string
is based on the information within the spooler string.
The important parameters of the spooler string are:

●

●

●

●

●

●

●

●

●

A name identifying the output device or file
pathname as defined in the map file (may be
omitted if a class is specified)

A class identifier as defined in the mapfile

A priority-of-action indicator which is used
to control audible alarms

A time stamp option which is basic stamp,
full stamp, or no stamp

The priority of the output message, O (low) to
7 (high)

An ident which is used to link an item in a log
file with an entry in another file

Type of entry on a log file

The full pathname to an optional text file;
text in this file is appended to the message

Process identifier of the sending process.

4.7o The text of the message consists of an ASCII
character string. The output spooler does not

modify this field at any time. It is sent to the output
file exactly as is. Following the text of the message
is the end-of-transmission character which signifies
the end of the message.

Output Spooler Structure
‘?,

4.71 The output spooler (Fig. 3) is composed of four
processes. These processes are:

●

●

●

●

Spooler Input Processor (SIP )–Accepts ?
spooler input messages and places them on
the appropriate output file message queue

Coordinator of the Spooler Output Processor
(CSOP)–Keeps track of work queues, as-
signs work to the output processes, and noti-
fies the alarm control process of alarms

‘?,
Spooler Output Processor (SOP) –Moves
messages from the temporary storage mes-

sage files to the output files

Operating Queue Audit (OPAUD)–Rou-
tinely removes text files from the temporary
storage message files.

4.72 Spooler Input Processor: The SIP accepts
input messages from the PDSHL and applica-

tion processes. The SIP performs the following ac-
tions for each message received:

(1) Appends the priority-of-action field and time
stamp to the beginning of the message

(2) Writes the message into an output message
file for temporary storage. This file is located

in one of eight directories depending on the prior-
ity of the message. (The name of the output mes-

sage file used for temporary storage is determined
by the SIP.) There is a directory for each message
priority.

(3) Sends the CSOP a message containing the ~
path name of the output message file and the

class of the output message.

4.73 Coordinator of the Spooler Output Pro-
cessor: The CSOP performs job assignment

and overall coordination of SOPS. The CSOP main-
tains a master work queue that contains entries for
every job sent from the SIP or by spoolf. The actions
taken by the CSOP in response to a message from the
SIP are:

(1) Place the message from the SIP or spoolf in
the master work queue.

Page 40



#’--

.#’-

KERNELOR
SUPERVISOR
PROCESSES

IULARP
INITIATION

ISS3, SECTION 254-34 1-120

SPOOLF USER

~ =SES

HESSAGE
+

1,
SIP

J
OEATH-OF-CHILD o

I I
MESSAGE

7
9

P
RTS CSOP

P Q
SPOOLER

1/0 u
OPQUEUE

+ 4
AUOIT

E
u

ACP
SHAREOSEGMENT

1/0

1/0 IIESSAGE HESSAGE 1/0
SOP

LOG
FILES I

RTE
1M

OEL: LOG
TTY

4 CHANNEL

I
L

1/0

v

I
OP:NAP

DEVICE
HANDLERS

LEGEND

ACP - ALARMCONTROLPROCESS
CSOP - COORDINATOROF THE SPOOLEROUTPUTPROCESS

OEL:LOG - OELETE LOGFILE
ERRPORT- ERRORREPORT

OP:FIAP - OUTPUTllAPFILE

OPQUEUE- OPERATINGQIJEuE
POSGETTY- PROGRAIIDOCUMENTATIONSTANOAROSGETTY

RTS - REAL TINE STATUS
Scc - SIIIITCHINGCONTROLCENTER
SIP - SPOOLERINPUT PROCESS
SOP - SPOOLEROUTPUTPROCESS

ULARP - USER LEVEL AUTOIIATICRECOVERYPROCESS

Fig. 3—Spooler Interface and Utilities (DMERT Generic 1)

Page 41



SECTION 254-341-120

(2) Assign the job to the appropriate output file
work queues based on the message class infor-

mation defined in the mapfile. Depending on the

priority option specified in the mapfile, the job is
placed in the appropriate output file work queues
based on:

● Time of message arrival (first-in/first-out
basis)

● Priority of message, then by time of message

(3)

(4)

arrival.

Create SOPS for the output files that do not
currently have one.

Assign the first job on an output file work
queue to the appropriate SOP by passing a

message to the SOP; the message contains the path
name of the output message file.

(5) Upon receiving an acknowledgment message
from an SOP, the CSOP removes the appropri-

ate job entry from the appropriate output file
work queue.

(6) Send a message to an SOP assigning the next
job.

(7) Determine if the last message sent completes
the job. If the message has been sent to all out-

put files in the message class (ie, none of the out-
put file work queues associated with the message
class contain an entry for the message), then the
entry for the message is removed from the master
work queue and the output message file is then
removed from the appropriate priority directory.
If the text of the message was obtained from a
[JSER~FILE, an attempt is made to remove this
file

(8)

4.74

also.

Repeat actions 5 through 7 until all messages
are output.

Spooler Output Process: In general, there
will be one SOP in existence fo~ each output

file. The SOP writes the message file specified by the
CSOP to its output file. If the output file is not a log
file, the SOP will remove the spooler string from the
message before sending it. When the job is complet-
ed, the SOP will send an acknowledgement to the
CSOP.

4.75 Operating Queue: The pathname of _
OPQUEUE (operating queue) is /cft/spl/

opqueue. The OPQ1.JEUE directory is used internally
by the spooler for temporary storage of text for
spooling. Old test files are routinely removed from
OPQUEUE by an OPQUAD (OPQUEUE audit). The
OPQUAD pathname is /cft/spl/ opquad. OPQUAD is
initiated by the CRON (clock daemon) every 12 hours
to read through the spoolers OPQUEUE. All files
over 6 hours old are discarded via UNLINK.

F. Output Spooler (DMERT Generic 2 and UNIX RTR Re-

lease 1)

4.76 The output spooler regulates the flow of out-
put messages to maintenance terminals,

maintenance printers, log files, data links, and other

output devices. All output devices (regardless of type)
are referred to as output files. The output spooler
maintains a work queue for each outpu-t file: This
work queue contains entries indicating the messages

to be sent to the associated output file. The messages
may or may not be sent based on the assigned priori-
ties of the messages on the queue. Briefly, the func-

tions of the output spooler are as follows:

●

●

●

●

●

output

Output message routing–Sends output mes- ‘7
sages to one or more output files.

Output message flow control– Regulates the
flow of messages to a specific output file to
prevent the intermingling of the lines of sev-
eral output messages sent at the same time
to the same output file.

Logging–Records the occurrences of differ-
ent types of messages.

Alarm control UNIX RTR Release 1 only–
Provides an optional mechanism for the con-
trol of major, minor, and critical alarms.

Time stamping—Appends to the nl(wsagtI the

time it was received by the output spooler;
the time is specified in minutes past the hour
(basic stamp) or full time and date (full
stamp).

?,
Class Definition

4.77 The spooler uses the ECD for assigning output
messages to terminals. The mai)ping may 1)(>

changed by recent change/verify, but a fill Iback de- ?

Poge 42



1SS 3, SECTION 254-341-120

fault mapping will always be retained. An output
message to the spooler may have no output class if
outputted on a terminal in response to an input com-
mand. Both output message class and terminal on
which the input command occurred or only one may
be specified to the spooler. The ECD defines the de-
vice and file parameters and classes for the spooler.
The output device and class mapping are defined in

the ECD. The ECII must be created before CSOP can
be executed. For each output file specified in the
ECD, CSOP creates a SOP process. The pathname of

SOP is /cft/spl/sop. Changes to the ECD may be
made via recent change/verify.

4.78 Class Definition Records: The class defini-
tion (classdef) records are a set of records de-

fining the 256 possible classes. Not all classes need be
defined. The classdef record contains the following
fields.

(a) Class Definition: A number between O and

255 specifying class definition.

(b) Alarm Flag: The alarm flag specifies if
alarms associated with output messages di-

rected to the class are forwarded to the SC/SD and
alarm control process (ACP) for DMERT generic
2 or DAP for UNIX RTR Release 1 alarm func-
tions.

(c) Logical Name List: A list of logical device
names. The device record supplies definitions

for each logical device.

4.79 Device Definition Records: The device
definition (device) records are spooler device

specification which defines a spooler output device.
The device record contains the folIowing fields:

F’-’ (a) Logical Name: A one to eight character
name. Legal references to an output device in

the message control string are the logical name or
a class containing the logical name.

(b) Deuice Name: Except for log files, this is

the path name that the UNIX system uses to
reference the output device (ie, “/dev/ropO”). For

P log files, it is all but the last character of path

name.

(c) Sequence Numbering: If sequence number-

n
ing is enable (“y”), output messages sent to

this device contain a sequence number indicating

the order that the spooler received the output mes-
sage request.

(d) Log Files and Regular Files: A flag speci-
fying whether the output device is to be

treated as a log file for a regular file (“y” for log
file, “n” for regular file). The entries sent to a log
file contain header information used by OP:LOG

and DEL LOG maintenance commands to process
log files. This flag also enables split files. When a
log file grows beyond the log file overflow limit, it
is closed and another log file is opened. The names
of the two files are formed by appending an ASCII
one (1) or zero (0) to the end of the device name.
Regular files are any spooler output device other
than log files.

(e) Temporary Spooler Output Processes: If
an SOP encounters an output error and this

flag specifies a “temporary” SOP, the SOP exits.
Messages sent to this device are lost until the
CSOP receives a SOP restart request for that de-
vice. The restart request comes from a getty for
the output device. An SOP that is “permanent”
does not die on an output error; processing contin-
ues normally except that the current output mes-
sage is lost.

(f) Priority: This option causes the output
queue for a device to be kept in priority order

rather than chronological order.

(g) Force Time Stamp: If this field is set to
msgon or msgoff, it overrides the requested

time stamp of an output message for the specifed
device. If the field is set to dontcare, the message
stamp is used. The option is overridden if the force
time stamp option in the miscellaneous spooler
information (splrinfo) record is set to msgon or
msgof f.

(h) Enable Multiple Messages per Write: If
this flag is set, an SOP blocks as many mes-

sages into an output buffer as possible before writ-
ing the buffer out to its device. This option only
has an effect if the output queue for an SOP has
more than one output message in it. An output
buffer contains a partial message if the output
message is larger than block size. Messages con-
tained in the same output buffer are separated by
the message trailer string. If forced line length is
nonzero and the output file is not a log file, the
multiple messages per write feature are affected.

Page 43



SECTION 254-341-120

Tab expansion and additional new line codes in the
output message throw off the character counter.
This impacts only those applications which cannot

tolerate message spanning write ( ) buffers.

(i) Queue Size: This field specifies the maxi-
mum number of output messages that are

queued in CSOP for this device.

(j) Block Size: The size of an output buffer used
by the write( ) function to output to the device.

(k) Forced Line Length: If this number is non-
zero, lines greater than the specified limit are

broken with a new line character. Forced line
length has no effect on log files.

(1) Log File Overflow Limit: If the output de-

vice is a log file, this specifies the overflow
limit for a log file half, specified in number of
bytes.

(m) Message Header String: This is a O to 15
character string that precedes every output

message on the device. To conform to MML output
standards, this string is a new line character since
MML requires a blank line between output mes-
sages.

(n) Message Header String: This is a O to 15
character string that separates every output

message contained in the same output buffer. Its
purpose is to aid those applications who previously
relied on there being one message per output
buffer to parse spooler output.

4.80 Miscellaneous Spooler Information Re-
cord: A splrinfo record defines miscella-

neous information of the spooler. The splrinfo record
contains the following fields:

(a) IM/OM Syntax: This field can be set to
“MML” or “PDS”. The craft spooler and shell

read this field to determine the proper input/
output syntax.

(b) Force Time Stamp: If this field is set to
msgon or msgoff, it overrides the requested

time stamp of output messages for all devices. If
the field is set to dontcare, the force time stamp
specification for each device is used.

User Process Interface

4.81 The output to the spooler consists of an ASCII

string in the form of a user control “UCS”
string followed by the text to be spooled. ASCII
string is commonly referred to as the spooler string.
The “UCS” must be preceded and followed by dollar
signs ($).

4.82 The format of the spooler string is $UCS$ text,
where “UCS” consists of one to nine positional

parameters separated by commas (,). Fields may be
omitted, but delimiting commas must remain, except
trailing commas. An output message sent to spool or
spoolf may contain the following fields.

●

●

●

●

●

●

●

●

●

●

A name identifying the output device or file
pathname as defined in the ECD (may be
omitted if a class is specified)

A class identifier as defined in the ECD

A priority-of-action indicator which is used
to control audible alarms

A time stamp option, which is basic stamp,
full stamp, or no stamp

The priority of the output message, O(low) to
7(high)

An ident which is used to link an item in a log
file with an entry in another file

Type of entry on a log file

The full path name to an optional text file;
text in this file is appended to the message

Process identifier of the sending process

Text consists of ASCII characters which will
be passed to the output file.

4.83 The spooler (Fig. 4 for DMERT generic 2 or
Fig. 5 for UNIX RTR Release 1 ) consists of the

following executable modules:

● CSOP— Accepts spooler input messages and
places them on the appropriate output file
message queue. A ISO keeps track of work
queues, assigns work to the output processes,
and notifies the alarm control process of

Page 44



1SS 3, SECTION 254-341-120

i

f-=

alarms (in 13MERT generic 2) or control
alarm functions (in UNIX RTR Release 1).

● SOP— Moves messages from the temporary
storage message files to the output files.

The spooler also consists of output configuration def-
initions in the l+;(~l~. During normal processing, the
modules are initiated by one of the following primary
stimuli:

● Spoolf—Waiting for a message from the
parent process

● CSOP–Waiting for input from spool/
spoolf library functions

● SOP—Waiting for a message from CSOP to
output to its device.

4.84 The spoolf function accepts input messages
from the PDSHL (DMERT generic 2) or

CFTSHL (UNIX RTR Release 1) and application pro-

cesses. The spoolf performs the following actions for
each message received:

(1) Appends the priority-of-action field and time
stamp to the beginning of the message.

(2) Writes the message into an output message
file for temporary storage. This file is located

in one of eight directories depending on the prior-
ity of the message. (The name of the output mes-
sage file used for temporary storage is determined
by the spoolf.) There is a directory for each mes-

sage priority.

(3) Sends the CSOP a message that contains the
pathname of the output message file and the

class of the output message.

4.85 The CSOP performs job assignment and over-
all coordination of SOPS. The CSOP maintains

a master work queue that contains entries for every
job sent from the spoolf. The actions taken by the
CSOP in response to a message are:

t-
(1) Places the message from the spoolf in the

master work queue.

(2) Assigns the job to the appropriate output file
work queues based on the message class infor-

mation defined in the ECD. Depending on the pri-

ority option specified in the message, the job is
placed in the appropriate output file work queues
based on the following

(a) Time of message arrival (first-in first-out
basis)

(b) Priority of message; then by time of mes-
sage arrival.

(3) Creates SOPS for the output files that do not

currently have one.

(4) Assigns the first job on an output file work

queue to the appropriate SOP by passing a
message to the SOP; the message contains the path
name of the output message file.

(5) Upon receiving an acknowledgement message
from an SOP, the CSOP removes the appropri-

ate job entry from the appropriate output file
work queue.

(6) Sends a message to an SOP assigning the next

job

(7) Determines if the last message sent completes

the job. If the message has been sent to all out-
put files in the message class (ie, none of the out-
put file work queues associated with the message
class contain an entry for the message), then the
entry for the message is removed from the master
work queue and the output message file is removed
from the appropriate priority directory. If the text
of the message was obtained from a user-file, an
attempt is made to remove this file also.

(8) Repeat Steps 5 through 7 until all messages
are output.

4.86 In general, there will be one SOP in existence
for each output file. The SOP writes the mes-

sage file specified by the CSOP to its output file. If
the output file is not a log file, the SOP will remove
the spooler string from the message before sending
it. When the job is completed, the SOP will send an
acknowledgment to the CSOP. The library functions
are the interfaces that exist to the output spooler.

G. Display Administration Process

4.87 The display administration process (DAP)

provides a bidirectional graphic interface

Page 45



SECTION 254-341-120

KERNELOR
SUPERVISOR
PROCESSES

ULARP
INITIATION

PCJSGETTY

w

IIESSAGE
9 CSOP

SPOOLF USER
LEVEL
PROCESSES

k--
~HAREDSEGMENT

1
flESSAGE @lESSAGE 1/0

6 SOP
LOG

I

I I

FILES
ECD

TTY
CHANNEL

DEVICE
HANDLERS

LEGEND

ACP - ALARM CONTROL PROCESS PDSGETTY - PROGRAM DOCUMENTATION STANDAROS GETTY
CSOP - COORDINATOR OF SPOOLER OUTPUT PROCESSES RTS - REAL TIME STATUS

OEL:LOG - OELETE LOGFILE SCC - SWITCHING CONTROL CENTER
ECD - EQUIPMENTCONFIGURATIONDATAEASE SOP - SPOOLEROUTPUTPRDCESS

ERRPORT- ERRORREPORT ULARP - UNIX LEVEL AUTDMATIC RESTART PROCESS ‘T

Fig. 4—Spooler lnterfoce and Utilities (DMERTGeneric2)

bctweenoperating system/application processes and
the maintenance terminal. The primary function of
DAPis to generate virtual panel images (referredto
as pages) and display these imageson the screen of
the maintenance terminal. A page is a setoffunc-
tionally grouped software-controlled indicators. In-
teractive modifications to these displays (ie,

changing the state ofan indicator, selectingan option

from amenu, etc.) are referred teas’’pokes’’.The
DAP accepts information regarding pokes that occur
and modifies the graphic disp]ay to coincide with th~’ ?
requested change. In addition, the DAP will initiate
the request by notifying the appropriate process to
carry out the request. The application proccsscs can
request changes onapage via messages to the Il,\P.
Thus, the DAP provides a means of reyucsting

Page 46



1SS 3, SECTION 254-341-120

,#-

f’-

KERNELOR
SUPERVISOR
PROCESSES

&

ULARP
INITIATION

ERRPORT
WIERT

OUTPUTMESSAGE

LEGEND

CSOP -
OEL:LOG -

ECO -
ERRPORT-

I
GETTY

v 1

[ I

IIIESSAGE CSOP
RTS

T

SPOOLF USER
LEVEL
PROCESSES

1-
1

HESSAGE HESSAGE 1/0
SOP/SOF

LOG
I

I-J

FILES

ECO
TTY
CHANNEL

COORDINATOROF SPOOLEROUTPUTPROCESSES RTS -
OELETE LOGFILE Scc -
EQUIP?4ENTCONFIGURATIONDATABASE GETTY -
ERRORREPORT SOP -

SOF -

ULARP -

*
OEVICE
HANOLERS

REAL TIME STATUS
SWITCHING CONTROL CENTER
POS/MML GETTY OR DIALOGUEGETTY
SPOOLEROUTPUTPROCESS
SPOOLEROUTPUTFUNCTION (PART OF THE
OIALOGUESHELL)
UNIX LEVEL AUTOMATIC RESTART PROCESS

Fig. 5-Spaoler interface and Utilities (UNIX RTR Release 1)

information, changes to the system, diagnostics, etc., ●

bya means other than the typical terminal message.

p
The DAP can display upto eight pages on one main-
tenance terminal. Basically, DAP: ●

● Allows interactive graphics (panel type dis- ●

,P
plays) that can be modified through cursor

control or light pen

Allows designof screen images (eight pages
maximum) by the application

Allows flexible page design

Supports independent maintenance terminal
communities (ie, one maintenance terminal
for diagnostics, one for restorations, etc.).

Page 47



SECTION 254-341-120

4.88 Application processes can control a variety of
attributes associated with graphic displays

via the DAP interface. An application process can:

●

●

●

●

●

●

●

Attach a maintenance terminal

Remove a maintenance terminal

Initialize a page

IJisIJlay a page on a specific maintenance ter-
minal

Erase a page displayed on a specific mainte-
nance terminal

Change the state, poke characteristics, or
variable text of an indicator

Request the state, poke characteristics, or
var~able text of an indicator.

4.89 The DA P interfaces between user processes
running under the DMERT or IJNIX RTR op-

erating system. The page descriptor files (P I)Fs) are
generated on an off-line support computer using page
(Ieseriptor file generator and states processes/tools.
The PI)Fs are data structures that instruct DAP on
the placwnlc’nt of patterns on the maintenance termi-
nal screen to form display pages. The PDJ?s also pro-
~ide information which is based on the fixed or

dynamic status of display variables to DAP concern-
ing the handling of control inputs. The page descrip-
tor language (PADL) is used to build source files
containing one or more display page descrip ions.
These source files are used to generate the PDF:. The
PADI. is a language that simplifies the construction
of displays.

4.90 A page can contain up to 128 indicators. Each
page has a state (on/off), a set of display attri-

butes (shape, color, intensity, and legend), and two

control attributes (acknowledgment and action). The
variables associated with an indicator are state, text,
and poke characteristics. When displaying the indi-
cator on the maintenance terminal, these software
variables are options. Indicators can be composed of
one or more of the following basic shapes:

● Keys

● Rectangles

● Lines

● Text fields.

The placement of these shapes on the screen is fixed
in PDF. However, two visual characteristics (color

and text) can reference indicator variables. These
characteristics may change when the referenced
variable changes.

H. Real Time Status Report

4.91 The real-time status (RTS) process reports
hardware status changes of the computer to

the maintenance terminal via PDS/MML compatible
terminal messages and 11.4P display pages. For
DMERT generics 1 and 2, the RTS process places a
time stamp message in the log files of the form:

RE1’T:TIME month/day/year,

hours: minutes: seconds

This allows log files to be searched for entries
that fall within specified times.

4.92 Effective with II NIX RTR Re ease 1 craft con-
sist ency feature, thtl time stamp message will

he a separate en~ity. The time stamjl rness:~ge will he
controlled by the clock daemon (CRON) mechanisnl
time-of-d: y scheduler. This will alloyv each applica-

tion to change its timing parameter or suppress it
entirely. [)ue to restrictions on (’RON, the time
stamp message will not be executed ~;hen the system
is operating in minimum configuration.

4.93 The RTS process consists primarily of inter-
faces to various entities of the DMERT sys-

tem. These interfaces are:

A status-reporting port interface from the
hardware drivers for receiving status

changes

An equipment configuration database access
interface for retrieving status information of
a unit control block (UCB) via low level ac-
cess system function calls

A spooler interface for outputting unit st:ttus
messages that conform to PDS/MML via
spoolf library function

Page 48



● A DAP interface for updating the common
processor display page and accepting menu
inputs from that page

● An application interface to allow applica-
tions to receive unit status changes.

4.94 Upon creation, the RTS process will access the
ECD and the current read status of all units

associated with the system display page from the
UCB in the ECD. The DAP display page is initialized
and spooler messages are sent via the spooler to indi-
cate the current status of the common hardware

,P units.

4.9s When an operating system driver reports a

status change, the RTS process retrieves the
current status of the associated hardware from the
ECD. Then, the display page is updated (via the DAP)
and a PDS/MML message is sent to the maintenance
terminal (via the output spooler). Also, the status
change is reported to the application via the applica-
tion interface.

4.96 When a “poke” input is received from the DAP
(ie, a menu item on the display page was se-

- lected ), the process that owns the page forwards the
request to MIRA. The application is also notified of
the request via the application interface.

4.97 The RTS owns the common processor display

page. This page is composed of a set of indica-
tors. An RTS indicator has the following attributes:

(a) Unit name (such as CIJ, IOP, etc.)

(b) Major state, which can be:

,P.

f-

●

●

●

●

●

●

●

Active (ACT)

Growth (GROW) DMERT generic 2 and
UNIX RTR Release 1

Initialization in progress (INIT)

Out of service (00S)

Standby (STBY)

Unavailable (UNAV)

Unequipped (UNEQ)

1SS 3, SECTION 254-341-120

● Unit off-line (OFL).

(c) Optional minor state, which can be:

Automatic diagnostic (AUTO)

By Pass (BYP)

Fault (FALT)

Error recognition inhibited (INH)

Manual (MAN)

Unit forced active (FRCL)

All of the major and minor states may not be applica-
ble for a given hardware unit.

Power Switch Monitor

4.98 The power switch monitor is informed of
changes in power switch states via the scan-

ner/signal distributor (SC/SD) administrator. A
group 1 power switch has three scan points and two
distribute points which are organized into a logical
SC/SD group. The power switch monitor uses a tran-
sition table to determine the appropriate action to be
taken for each scan change. A scan point change re-
sults in one or more of the following actions:

● Generates a remove/restore request and
sends the request to MIRA

● Operates the power switch lamps

o Sends a message to the output spooler.

$5. CENTRAL OUTPUT MECHANISM FEATURE

5.01 The central output mechanism feature
(NI.043) is a UNIX RTR Release 1 feature that

provides the capability to put UNIX RTR output mes-
sages in a central database. This feature has the dual
aim of centralizing output messages to facilitate con-
verting their English text to other natural languages
for applications with non-English-speaking custom-
ers and to allow the manipulation of the alarm level
and message class associated with the output mes-
sage. The Central Acknowledgement Mechanism
(NI.043C), an add-on to the central output mecha-
nism feature, provides the centralizing of input mes-
sage acknowledgements.

Page 49



SECTION 254-341-120

5.02 These features are provided for the 5ESS
Switch Export project for customers outside

the United States who want output messages in lan-
guages other than English. Having the output mes-
sages in a central place makes it practical for them
to provide this capability. The customers also require
the flexibility to customize the message class to
which an output message is routed, and what alarm,
if any, should be associated with the message.

5.03 The major aspects of the central output mech-
anism feature are:

● Specifying all UNIX RTR spooler output
messages in a central output message
database (OMDB)

● Add format and spool capabilities using the
OMDB to the existing spool-only capabilities
in the UNIX RTR output message spooler

● New craft input commands to update and
examine the message class and alarm level
associated with each output message defined
in the OMDB.

5.o4 The major impacts of this feature are:

●

●

●

●

●

●

●

New software tools and administrative pro-
cedures for building and maintaining the
OMDB

The need to update the OMDB whenever a
UNIX RTR spooler output message is added,

changed, or deleted

Addition of a new field to the spirerzfo ECD
record and RC/V form

Addition of a new field update type to the SG
database and a new MSGS template for the
OMDB

Changes to several global header files, in-
cluding spooler.h, fault.h, cft/pdslib.h,
lla/sg.h, fmgr/segcodes.h, and libs.h

New format-and-spool interface functions
added to libCFT and Iiberrpt

Extensive changes to the output message
SrJo(Jler (CSOP)

●

●

●

New craft input commands to manipulate the
OMDB

Updates to several UNIX RTR documents,
including the Input and Output Message
Manuals, Volumes 1,2,3, and 4 of the UNIX
RTR Programmer’s Manual, and the
Craft Interface Users Guide

Conversion of all UNIX RTR spooler output
message-generating software to use the new
mechanism.

5.o5 The major aspects and impacts of the Central-
ized Acknowledgement feature are:

●

●

●

●

●

●

o

Specifying all UNIX RTR acknowledgement
messages in a central acknowledgement

database (ACKDB)

New software tools and administrative pro-
cedures for building and maintaining the
ACKDB

The need to update the ACKDB whenever a
UNIX RTR acknowledgement message is
added, changed, or deleted

Changes to the global header files fmgr/
seg-codes.h and libs.h

New acknowledgement functions added to
libCFT

Updates to several UNIX RTR documents

Conversion of all UNIX RTR acknowledge-
ment message-generating software to use the
new mechanism.

A. Output Message Database

5.06 The OMDB is a binary file which contains all
the information necessary to display output

messages from the 3B20D computer system. When
the CSOP is started up, it will read the disk copy of
the OMDB into its address space. While reading the
database in (and also when processing formatting
requests), segments of the database will be selec-
tively removed and added to CSOP. The CSOP ac-

cesses this information in order to format and spool

‘-)

Page 50



an output message to a device. Each message in the

.

OMI]B “ “ ““” “ “- ‘“

●

●

●

●

●

●

contains the tollow]ng lntormatlon:

Message class

Alarm level

Handling priority

Timestamp option

Message, table header, and/or dump line text

Variable translation and enumerations.

All the above fields are specified by the creator of the
output message (See paragraph 5.16). All other fields
in the database are created by the database builder
(3 bobhi) and are used for administrative purposes.

OMDB Structure on Disk

5.o7 The OM~B, as it resides on disk, is shown pic-
.? torially in Fig. 6. The disk OMDB consists of

six sections. All sections except the 0MD13 header are
dynamic in size during the building procedure. In the
disk file, however, they have been concatenated to
avoid wasted space.

Disk

OMDBRDR
rospec base ~

rospec next RTR CMSGSPECS T
aospec~base ~ ——————— OMSGSPECS

aospec next APPL OMSGSPECS

eftbl Fase ~ L

ENUMERATION
eftbl next FILE TABLE
enum base —>

enum next
com)N ENuMs

obuf-base .—~

OUTPUTBUFFER

cbuf next -—.

n
$Fig. 6–OMDB as Created on Diskt

1SS 3, SECTION 254-341-120

5.08 OMDB Header: The first section is an ad-
ministrative header which contains points to

the beginning and end of each of the other database
sections. This section of the database has a fixed size
(size of OMDBHDR) and is always located at offset
O in the disk database (see Note). The header also
contains the first and last UNIX RTR and application
keys. These fields are used to verify the validity of
keys when accessing the OMDB.

Note: The OMDB header contains absolute
addresses. All other addresses are actually rela-
tive offsets from one of these header points.

5.o9 UNIX RTR Output Message Speci fication
Records: The second section of the database

is an array of output message specification records
(OMSGSPEC structures). Each OMSGSPEC struc-
ture contains the message class, alarm level, han-
dling priority, and timestamp option for a UNIX RTR
message. Also in this structure is a pointer to the
message text (found in the output buffer section), the
size of the message text, and a count of the number
of variables in this output message. Only UNIX RTR
message specifications are contained in this section.
The size of this section depends on the largest UNIX
RTR key in use (up to FIRST_APPL_KEY-l). Any
unused keys less than the largest used key will cause
gaps.

5.10 Application Output Message Specifica-
tion Records: This section contains applica-

tion output message specification records. These
records have the same structure as the IJNIX RTR
specification records. lJNIX RTR and application

output message specifications are kept separate in
order to minimize the administrative problems of
database key allocation. In the disk file, the smallest
allowed application key (FIRST_ APPL_KEY) fol-
lows immediately after the largest used UNIX RTR
key. The largest used application key determines the
size of this section. [Jnused keys will cause gaps.

5.11 Enumeration File Table: This section is
organized as an array of enumeration file

table ( EFTBL) structures. Each EFTBL entry con-
tains a common enumeration filename and a pointer
to the enumeration data within the common enumer-
ation section. Private enumerations do not have a
filename associated with them, so they do not reside
in this section.

Page 51



SECTION 254-341-120

5.12 common Enumerations: Common
enumerations are enumerations which are not

unique to any one individual output message. The
values and strings of these enumerations are con-
tained in this section. Only one copy of each of the
enumerations is maintained in this section, so all out-

put messages requiring one of these enumerations
share the same copy of the enumeration data. This
section is organized as consecutive enumeration data
elements, where an enumeration data element is an

array of ENTUM structures followed by all the enu-
meration strings for an enumeration variable.

5.13 Output Buffer: This section contains the

text for an output message, translation infor-
mation for each formatted variable, and local enu-
meration data. The layout of the output buffer
section is shown in Fig. 7. Every message in the
database has an output message specification
(OMSGSPEC) entry, located in either the UNIX RTR
or application output message specification section.
Each OMSGSPEC entry contains a pointer in the
output buffer section to the ASCII text for a message.
The VAR entries for the message begin immediately
after the message text and can be easily found by
using the obuf_sz field from the OMSGSPEC.

OMDBHDR.obuf base

S. 14 The VA R entries are organized as an array of
VAR structures. Each structure contains the

following fields:

●

●

●

●

translation — The type of translation to be
performed on this variable

data_in_bytes – A Boolean bit field indi-
cating whether I he field_sz and field_off
fields are in bytes or bits. This field is pro-
vided to increase the performance of output
message formatting; formatting bytes and
words is faster than formatting bit fields

c_enum –A Boolean field indicating
whether an enumeration is a common (value

= 1) or a private (value = O) enumeration,
When formatting a message, this field actu-
ally indicates whether the enumeration data
can be found in the common enumeration sec-
tion or in the output buffer section.

field_sz, field_off – These two fields indi-—
cate where in the user’s output message re-
quest the data for the variable is located. The

field_off indicates the offset into the user’s

OUTPUTBUFFERSECTI(M
6MSGSPEC[key;]. obuf_of f ~

TEXT, I
TABLEHORS,
DUMPLINES

+ OMSGSPEC[keya]. obuf_sz ~
VARIO]
VAR[l]

● ,*
VARIO]:en_of f .—*

LOCALENUMIO]
LOCALENUM[l] T

VARIO]:ENUMIO].str_off .—*

VARIO]:ENUM[l]. str off .—* t=@=H
VAR[l] :en_off ~

m“;”’”

: t=m=il
VAR[l]:ENUMIOJ.str off .—~

VAR[l]:ENUM[l]. str off —*

VAR[2]:en_off ~

OMSGSPEC[key b]. obuf off ~
=l=U

OMOBHDR.obuf next ~ ~

$Fig. 7—Layout of output Buffer 5ection4

‘-)

.’n

Page 52



1SS 3, SECTION 254-341-120

●

●

●

●

data and field_sz indicates the size of the
data field: These two fields are in bytes or
bits depending on the value of the data_in_
bytes field.

np_value — A nonprinting value for a vari-
able. This is specified by the user in a .ofmt
file.

elrnnt_sz — Dump element size is the size
(in bytes) of the structure which will be
dumped as part of a dumpline. This field is
used as an increment to find the next occur-
rence of a dump element.

en_off — Offset to the enumeration struc-
tures. If the enumeration is a common enu-
meration (com_enurn = Z), the offset is
relative to the enum_base field, otherwise it
is relative to the obuf_base field.

prnt_fld_sz — Size of the data field, when
printed. The prnt_fld_sz specifies the mini-
mum number of characters that will be print-
ed. If the printed data value requires more
than prnt_fld_sz characters, prnt_fld_sz
is effectively ignored.

appl_fld — A reference point for applica-

tions to put their own special fields in the
VAR structure.

5.15 Immediately following the VAR entries are
the local enumerations. The enum_off field

of the VAR structure points to an array of ENUM
structures. The text string for an enumeration is
pointed to by the str_off field in the ENUM struc-
ture. The string-s for local enumerations are placed
after the last ENUM structure for a variable.

B. OMDB Structure in Memory

S. 16 The incore OMDB is shown pictorially in Fig.
8. The common enumerations are stored in an

unnamed segment; and the header and output mes-
sage specifications are placed in a named segment.
This segment is named so that the gomdb( ) library
function can gain access to the message class and
alarm level data stored in this segment. The common
enumerations are contained in an unnamed segment,
because CSOP is the only process which requires ac-
cess to the common enumeration data. Since these
enumerations are used by many messages, the

enumerations are kept in their own segment, sepa-
rate from the output buffer segments, so that this
segment can always be resident incore. [Segments
are variable in size from 1 to 64 pages (2048 bytes to
128K bytes)]. The output buffer segment(s) are
unnamed segments. Since only one process, CSOP,
needs access to the actual message text, naming the
segments is not required. The output buffer segments
will be created at adjoining virtual addresses in
CSOP’S address space. As shown in Fig. 8, the header
points to the beginning and end of each section.

rospec base ~

rospec next
aospec~base ~

aospec next
enum biise ~

enum next
obuf-base .—g

obuf next —g

Memory

OMDBHBR

RTR WSGSPECS

——— ——— -

APPL OMSGSPECS

~ENuMs

OUTPUTBUFFER

T’
OMSGSPEC

&

$Fig. 8–lncore OMDB~

5.17 The incore copy of the OMDB is organized
similar to the disk OMDB. The differences

between the two databases are:

●

●

●

The incore OMDB contains different pointers
in the OMDBHDR. These pointers contain
virtual addresses which specify the begin-
ning and end of each of the other incore
OMDB sections.

The UNIX RTR and application OMSGSPEC
records are concatenated together and
treated as one section.

The enumeration file table (EFTBL) section
is only used when building the database.

Since it is not needed when accessing the
database, this section is not part of the incore
OMDB.

Page 53



SECTION 254-341-120

● The output buffer section is aligned on a segm-
ent boundary, so that segments of the
database can be added and removed easily.

c. OMDB Generation Tools

Output Message Definition Files

5.18 Special purpose files called output message
definition files contain a description of the

presentation of the report at the craft interface and

the translation rules needed to transform the data
needed by the formatter into its external form. A de-
scription of any data needed by the formatter to com-
plete a report must be provided as standard “C” data
definitions in header files, which are included in the
message definition files.

[include < ~]
[include “ ‘]

5.19 .ofmt Files: The introduction of the Central .-,
Output Mechanism necessitated the introduc-

tion of new .ofmt files for the UNIX RTR. Some
changes were made to the existing .oty files of the
5ESS. The output message definition files — .ofmt
— to be used within the IJNIX RTR have the layout
shown in Fig. 9. All lowercase bold names indicate
reserved keywords. All uppercase names indicate

develop-supplied data. Entries enclosed in [] are op-
tional. Entries of the form (x i y) indicate that either
x or y must be chosen but not both.

Intermediate Build Products — .om Files

“?
5.20 The process of building an OMDB from mes-

sage definition files is a 2-stage one. First, the
.oty or .ofmt files are built into intermediate
products called .om files. The .om files are then built

into the database itself. A .om file is an ASCII file

# The opening brace may be placed either on the same line as
# “output” or on the following line (in the first character
# position)

output ( { 1
})

key KEYVAL
time TSTAMP
class MSGCLASS
alarm PRI~CT
outprior HNDLPRIO

# Choose either a reference to a consaon definition
# or the complete definition itself

( cormon COKN REY I
# At least one of the ~ollowing three 1ines must be present

[

1[

include
}

if the complete definition is given
prototype MSGTEXT ]
tblhdr HDR-TEXT]
dumpl ine DIJ@XXT ]
field ITM_W TRANSTYP[ VARFLD] [ SIZE_OR_NP ] ]

● (number of variable fields)

[ ( en~ FJMfIDFNSTR I
<PMMI_FILE>) ] )

‘-l

[ O;tpt ( { I

.
*
●

}1

$Fig. 9–Layout of .ofmt Filet

Page 54



.

which can contain many identically formatted en-

tries, each entry corresponding to one output { ]
structure from the .ofmt or .oty file. The layout of
a single entry is as follows:

key class timestamp alarm priority
( common key i
text - line(s)
item - count
item - spec(s) )

The .ofrrzt File Parsing Tool (o~mtparse)

5.21 The .ofmt file processing tool, ofmtparse,
performs the first step towards building an

OMDB. It accepts an input of one or more .ofmt files
(in the current directory) and creates as output an

equivalent number of .om files, also in the current
directory. The tool can be invoked via UNIX-level
command on any UNIX RTR development system, as
well as via the official build procedure. The UNIX-
Ievel command is:

ofmtparse [–d] <.ofmt file> [<.ofmt fle> ...]

The generated .om files have the same names as the
.ofmt files, except that the “.ofmt” is replaced by
“em”. The –d option requests the tool to preserve in-
termediate human-readable files for debugging pur-
poses.

5.22 The tool first checks the correctness of the
command line. There must be at least one

ofmt file, and the only valid option is –d. Each other
file must be in the current directory, its name must
end with the characters “ofmt”, and not exceed 14
characters in length. The tool also checks that the
user has the environment variable “OFC” defined. It
must point to the official node to allow access to vari-
ous header files during the compilation phase. For
each input file, the tool goes through four main
phases:

(1)

(2)

(3)

(4)

5.23

Processing of include files

Parsing of data

Compilation of generated .C files

Execution of object program.

The main goal of the first two phases is to gen-
erate a “C” program, consisting of a main rou-

1SS 3, SECTION 254-341-120

tine, a supporting header file, and a number of
functions, each of which deals with just one output
structure from the ofmt file.

5.24 The compilation phase first gathers all of the
generated .C files. There is one main file,

named after the input ofmt file, which contains the
maino function, plus one file for each key found in
the input file. A compiler command string is con-
structed and then offered to the systemo function
for execution.

5.25 The final phase of the program simply calls
the systemo function with the “a.out” file

generated during the compilation phase. The output
of this is a .om file corresponding to the original
.ofmt file.

5.26 All error messages generated by the program

are sent to stderr. In general, the occurrence
of an error will not cause the program to abort.
Where possible, the program will continue processing
until the end of the parsing phase. No attempt is
made to compile and execute the generated program
if errors were detected.

5.27 One warning message (rather than an error
message) is generated if the user’s alarm level

and handling priority appear to be incompatible.
This, in isolation, will not prevent the generation of

an .om file.

Output Message Database Builder (3bobld)

5.28 The final stage in the process of OMDB gener-

ation is the building of the OMDB itself from
.om files. The building tool can accept one or more
.om files as input and will generate one binary
database file, called omdb, as output. The tool can be
invoked via a UNIX-level command on any UNIX
RTR development system, as well as via the official
build procedure. The UNIX-level command is:

3bobld [–UXS] <.om file> <.om file>

5.29 The –u option allows the user to indicate that
this build will include updated .om entries (i.e.

duplicates of existing database entries), which should
be accepted by the builder without causing the
builder to abort, and which are intended to replace
the current ones. This option is intended to be used
by developers to test a changed output message with-
out having to rebuild the entire OMDB.

Page 55



SECTION 254-341-120

I

5.3o The –x option causes the builder to generate
an additional file of output. This file, called

omdb. xref, contains a cross-reference between each
database key and the text of the related output re-
port. It is an ASCII file and is intended to he for-
warded to the appropriate documentation
department to form part of the OM manual. Other
information included in the cross-reference is mes-
sage class and alarm level for each message.

5.31 The –s option indicates to the builder to print
statistics about the current OMDB. These sta-

tistics are printed to stdout and contain information
about each of the sections of the OMDB, the keys not
used in the OMDR, and the size of the disk and incore
OMDBS.

5.32 The builder allows for the generation of full or
incremental builds, i.e., it can start from

scratch or it can add to an existing database. This is
possible because each section of the database gener-
ated from any build grows dynamically with the ad-
dition of new keys and data.

5.33 If errors are detected during the build process,
the builder adopts one of two strategies based

on the presence or absence of the –u option. If the –u
option is not specified, the majority of errors will
cause an appropriate error message to be generated,
and the build will stop after the status quo has been
restored. However, if the –u option is specified, a
duplicate key error that would have been considered
fatal without the –u option can be accepted and the
build will continue. In such a case, an appropriate
warning message is generated. Error and warning

Developer

messages are generated on the standard error chan-
nel, stdtv-r.

OMDB Key Assignment Administration

5.34 An overview of the UNIX RTR OMDB key as-
7

signment is shown in Fig. 10. To request a new
output message key, an interactive script is available
on all UNIX RTR development machines. This script,
get_omdb_key, will prompt the developer for sub-

.

system, .ofrnt file name, and identifying text of ‘the
output message. The identifying text should be taken
from the first text line in the .ofmt file (i.e., proto-
type, dumpline, or tblhdr line) for that message. The
first 30 characters entered as identifying text and the T

.ofmt file name will be recorded in the administra-
tive key file for reference. The get_omdb_key will
determine the developer’s machine using uname and
his/her login using logname. This script will then
send a request to the UNIX RTR key administrator
via nusend to assign the next OMDB key available,
passing the subsystem name, identifying text, and
return electronic address.

5.35 The assignkey program will be executed
under the key adminstrator’s login when it

receives a developer’s request for a new key. The

assignkey will determine the next available key by
examining the administrative key file (omdb. key),
mark that key as used, fill in that key’s entry with the

subsystem and identifying text of the output mes-
sage. The UNIX RTR keys will be assigned consecu-
tively from O to MAXRTRKEY. MAXRTRKEY is
defined as FIRST_APPL_KEY-l, and FIRST_APPL_
KEY is defined in omdb.h. The date the key was as-

1r=— RTR OMDBkey file

‘n

1

.

●

.

MAKRTRKEY

- Remote Machine – ---- Key Administration Machine -- --

$Fig. 10—UNIX RTR OMDB Key Assignment

Page 56



1SS 3, SECTION 254-341-120

signed will be determined from the system date and
also noted in the file. The layout of the key file is
shown in Table C. To everyone besides the key admin-
istrator, the key file will be read-only. The new key
will he sent back to the requesting [JNIX RTR devel-

oper electronically using the machine name and login
determined by the remote script get_omdb_key.

s.36 It is the developer’s responsibility to make
note of the new key and use that key in his/her

.ofmt file and in the corresponding format-and-spool
call.

5.37 In addition to updating the administrative key
file, assignkey will log the request, including

the electronic return address, in a separate log file.
This will provide the key administrator with a record

of all requests and any error messages produced dur-
ing a key assignment attempt.

5.38 An overview of the application OMDB key as-
signment is shown in Fig. 11. To request a new

output message key, an interactive script is available
on all application machines. Applications using this
script must customize the script with the machine
address and Iogin of their key administrator (where
the assignappkey tool is installed). Applications
must provide their own subsystem names (or other
identifiable entities) to the get_app_key script.
This script will prompt the application for subsys-
tem, .ofmt file name, and identifying text of the out-
put message. The i(ientifying text shoul(i be taken
from the first text line in the .ofmt file (i.e., proto-
type, dumpline, or tblhdr line) for that message. The
first 30 characters entered as identifying text and the
,ofmt file name will be recorded in the administrative
key file for reference. The get_app_key will deter-
mine the application’s machine using uname and

his/her Iogin using logname. This script will then
send a request to the key administrator via nusend
to assign the next OMDB key available, passing the
subsystem name, identifying text, and return elec-
tronic address.

5.39 The assignappkey program will be executed

under the key administrator’s login when it
receives a request for a new key. The assignappkey
will determine the next available key by examining
the administrative key file (onzdb.keys), mark that
key as used, and fill in that key’s entry with the sub-
system and identifying text of the output message.
The keys will be assigned consecutively from

MAXRTRKEY+l to MAX.KEY. (MAX_KEY is de-
fined in omdb.h. ) The date the key was assigned will

be determined from the system date and also noted
in the file. The layout of the key file is shown in Table
C. To everyone except the key administrator, the key
file is read-only.

5.40 In addition to updating the administrative key
file, assignappkey will log the request, in-

cluding the electronic return address, in a separate
log file. This provides the key administrator with a
record of all requests and any error messages pro-
duced during the key assignment attempt.

5.41 Because of the potential for reapplying craft
message class and alarm level updates to the

wrong messages after a field update of the OMDB,
keys should not be reused. For example, if a drafts-
person had changed the alarm level of message 101
to INFO (because the content of the message text as-
sociated with that key was not deemed worthy of a
higher alarm) and the message key 101 was reused in

a successive load to reference a truly critical alarm,
the re-APPLY of the craft changes would result in

TABLE C

I
OMDB KEY FILE LAYOUT

KEY DATE SUBSYSTEM MESSAGE TEXT .OFMT FILENAME

o 850101 Cft REPT CSOP IN SERVICE csop.ofmt

1 850501 Cft REPT OP LOG COMi)LETE oplog.ofmt

2 850502 pudrv SET 10DRV setiodrv.ofmt

Note: Headings do not appear in the actual key file. I

Page 57



SECTON 254-341-120

Application
Developer

Application
OMDBkey file

MAXRTRKEY+ 1

●

●

●

MAXKEY

~Fig. 11 —Application OMDBKey Assignment~

The request will be ~assed on to CSOP suoolin~ andthe alarm level of that message being changed to
INFO.

5.42 It is possible, however, at some time in the fu-
ture there may be a need or desire to reuse

keys. Applications must make their own decision
about their policy on the reuse of keys with the real-
ization of the impact of reusing a key within the same
load. A “load” must be defined by the application; it
does not necessarily mean a single load. Any “load”
(including individual loads packaged together) that
contains a deletion of a message and reuse of the

same key could be disastrous.

E. CSOP and SOP

5.43 CSOP is the process responsible for the new
tasks of initializing and accessing the OMDB,

formatting of output messages, and a part in the
change capability. Fig. 12 shows the flow in CSOP of
these new tasks as well as existing CSOP tasks that
play a part in this feature.

5.44 Initialization within CSOP must allocate
memory for the active OMDB and populate

the memory from the OMDB disk file. After initial-
ization, CSOP enters a loop of receiving interprocess
messages. Two new message types will be received by
this loop.

5.45 Existing spool requests (See b in Fig. 12) will
continue to be processed in the current man-

ner. The new format-and-spool requests (see a in Fig.
12) will cause a read of the active OMDB. The new
output message will be formatted using the test from

the OMDB and parameters from the client process.

‘-i

treated the same as “if a spool-only reque& had-been
made.

5.46 The second new message type that CSOP will
recognize is for requests to update, activate,

output, or apply the logged changes to the OMDB (see
c in Fig. 12). The CSOP will be the only process to ac-

cess either the active OMDB or the OMDB disk file.
Therefore, much of the work for the change capabil- T
ity is done in CSOP, not in the input commands. To
handle the change capability requests, CSOP will

access the appropriate OMDB copy and then continue
processing. Update and apply will result in writing
the OMDB disk file. An activate request will cause
the active OMDB to be repopulated. Output for the
OP:OMDB command will be given to the formatting-

and-spool process.

5.47 Three new text buffers are provided to pass
message text from CSOP to the SOP or the

SOF. Changes are provided in the SOP process and ~

to the SOF allowing the SOP/SOF to manage the new
buffers.

5.48 OMDB Initialization: Before CSOP can
begin processing any output messages, it must

first create the incore OMDB. CSOP maintains a
field, max_db_segs_incore, which is a COPYof the
ECD field (orndb_mode). This field indicates how
many segments of the OMDB should be kept in
CSOP’S address space at any given time- The ~aX_

db_segs_incore field is used during CSOP initial-
ization and whenever data for a message is being ref-
erenced in the output buffer sert.ion. [Jpon successful

Page 58



1SS 3, SECTION 254-341-120

.

CSOP Entry

J

f Initialization )

.

t’-

W“
Populate

active OMDB

IMI_MSG_TYPE(a)

b Message (recvw) 4
I

SIP_MSG_TYPE(b)

1 /

~

(a) (c)

/ L

i

format -
and-spool

l-+
access Spoo 1

active OMDB

F=cl

(b)

L ,ang
formatted

output message
u

LupD_MsG_~pE (c)

\

OP UPD, ACTV, OP
OMOB &APPLY OMDB

J
read OMDB

active
copy to
output

access OMDB disk file

J--r-L
to to to

output update activat
or apply

(read) (write) (read)

v I 1

J-
1

OFig. 12–CSOP High Level Design with OMDBq

creation of the incore OMDB, the following message

P is printed:

REPTCSOPINSERVICE
OMDBSEGMENTS:

TOTAL ACTIVE

a b

,-
—agivesthe tota] number ofsegments for the
OMDB.

–bgives the number of segments that areac-
tive (income).

5.49 OMDBAccess Routines: InorderforCSOP
toaccessthedata in the varioussections of the

incore OMDB, five internal interface routines are
required. These are described in the following para-

graphs. Theget_ospeco routine is the only access
routine to check the validityof any of its arguments.
All other routines assume valid arguments are being

passed.

1 getdospec(key) — The get_ospeco routine
finds the OMSGSPEC corresponding to the
requested key. It does this by comparing the
keywith the last UNIX RTR key and with the
first and last application key. By doing these

comparisons, the validityofthe key ischecked.

Page 59



SECTION 254-341-120

If it is valid, then the OMSGSPEC is found by
doing a simple pointer calculation. After locat-

ing the OMSCISPEC, tbe function also verifies
the OMSGSP13C is in use. If it is not in use,
IIA1l_KeY is returned to tbe caller. If tbe

OMSGSPEC is not in use, a pointer to this
OMSGSPEC is returned to tbe user. When
CSOP is operating in primitive mode, because
the incore OMDB was not able to be created,
get_ospecoi returns NO_OFllJF.

2. get_obu~(&OMSFSPEC) – The get_obuf
function takes as an argument an OMSGSPEC
pointer, and after performing some adminis-
trative actions, returns to the caller a pointer
to the output buffer for this OMSGSPEC.

3. get_nxt_var – The get_nxt_varo macro
returns a pointer to the next VAR structure to
be processed. The macro simply increments
the nxt_VAZl variable.

4. reset_ var(VAR_ualue) — This macro is
used to reset the nxt_VAR variable to a pre-
vious value (the first argument). This routine
is useful when VAR structures must be pro-
cessed mulitple times as in the case when for-
matting dumplines.

5. find_enum(& VAR,enum_value) – The
find function takes two arguments, a VAR
pointer and an enumeration value. The func-
tion searches the VAR pointer’s enumeration
structures for a match of the specified enu-
meration value. If a match is found, a pointer
to the enumeration string is returned to the
caller. This function must also determine
whether the enumeration is private or com-
mon, so the com_enum field in the VAR

structure must be taken in to account before
any searching is done. NULL is returned to the
caller when no match is found.

F. Formatting

5.5o Tbe new function is CSOP, fmtmsg, will pro-
cess the format-and-spool requests. Input to

fmtmsg is a structure of type somb_req which con-
tains the input from the client. This structure is in
spooler. h. The message text and additional informa-
tion necessary to format the message must be taken
from the OMDB.

5.5 I When tbe formatting is complete, fmtmsg
will call sipmsg (the CSOP function that han-

dles the spooling). sipmsg expects to receive a
struture of type som_req (also in spooler. h). The
fmtmsg will set up a copy of som_req to pass to
sipmsg.

5.52 The first step in fmtmsg is to access the
OMSGSPEC for the message key from the cli-

ent via the get_ospec routine. The message key is in
the Key field in splomdb_args (in spooler.h)
Error conditions that can be returned by get_osPec
are BAD_KEY and NO.OBUF.

5.53 If BAD_ KEY is returned, an OMSGSPEC
could not be found for this message key. An

error message will be given and all processing for
this format-and-spool request will be terminated.
The error message is:

REPT CSOP FORMATTING

BAD KEY PASSED 13Y CLIENT

KEY: a PID: b UTILITY ID: c

— a contains the invalid key.

– b contains the process id of the requesting
process.

— c contains the utility id of the requesting
process.

5.54 If NO_OBUF is returned, the named segment
cannot be accessed, i.e. no OMSGSPECS can be

accessed. To fill in a som_req structure for spooling
of the primitive mode message, information passed
by the client will be used. For information that can
only be found in the OMSGSPEC, default values will
be used.

5.55 Given that an OMSGSPEC is found, fmtmsg
will proceed with setting up a som_req struc-

ture with the administrative information. Next,

fmtmsg must access the text of the message and do
the formatting. The get_obuf function will be used
to obtain the text. The function will return a pointer
to a character string which contains all the text for
this message key, null terminated. The NO_OEWJF
will be returned if a problem occurs in accessing the

segment which contains the message text. for this
key. The request will lxI i)rocessed in primitive mode

Page 60



1SS 3, SECTION 254-341-120

f-%

using the message class and alarm level already set
in som_req.

G. Change Capability

5.56 The Change Capability involves a new UNIX-
level process for the input commands and

changes to CSOP for access to the OMDB. The new
process for the input commands is described in para-
graph 5.68. The design changes for CSOP is described

as follows.

5.57 To accommodate the interface between the
input command process and CSOP, a new mes-

sage type and new structures are added to spooler.h.
The new message type is UPD.MSG.TYPE and the
structures involved are: struct, update, struct output,
and struct change_req. The input command will pop-
ulate the change_req structure and pass it to CSOP
in an interprocess message of the type UPD_MSG_
TYPE.

5.58 The CSOP will assume that the information
passed in the change_req structure has been

validated by the input commands. However, valida-
tion of the key by the input command only insures
that the key is within the valid range; further valida-
tion will be done by CSOP as it accesses the OMDB.

5.59 The CSOP is responsible for giving an indica-
tion of the result and letting the draftsperson

know that the command has completed. To do this,
CSOP will call its own format-and-spool processing
to output most messages. Since the output messages
that report a failure to access the OMDB will occur
when CSOP cannot access either the disk or active
copy, those messages will not be in the OMDB but
rather in an “essential messages” header file and will

be spooled.

H. RC/V Capabilities

5.60 The incore OMDB is affected if the omdb_
mode field in the spooler information record

is changed. A change to this field will not necessarily
have an immediate impact, but CSOP will update to
the new value as it is processing format-and-spool
requests.

5.61 When the omdb_mode field is changed to the
incore ECD, RC/V will send a message to

CSOP after a successful TREND. The CSOP will up-
date the max_db_seg_in-core variable. If the

value of mux_db_seg_in-core has been
decremented, the number of OMDB output buffer
se~ments incore will be adjusted immediately. If the
value has been incremented, the adjustment will not
be made until the next format-and-spool request is
made and get_ospec is called.

1. Disk Independent Operations

5.62 A new OST, dio_notify, is added to the oper-
ating system subsystem to inform the system

when it is in the disk simplex mode. A call to this OST
will inform the operating system that the calling pro-

cess wants to be informed about DIO state changes.
CSOP will call dio_notify during its initialization.

5.63 When disk simplex mode is entered, the oper-

ating system will send a fault (received by
CSOP as a signal). Only processes that have called
dio_notify will receive this notification. The CSOP
will then attempt to bring any OMDB segments
incore that are not currently there in anticipation

that disk limp mode could occur. The CSOP cannot
wait until disk limp mode as the OMDR segments
would not be available at all if they were not already
incore. Applications must engineer their memory
requirements, allowing for the maximum number of
OMDB segments, in order to guarantee that all seg-
ments can be brought incore during disk simplex op-
eration.

5.64 If a format-and-spool request is made for a
message whose text is not in one of the incore

segments, the message will be output in primitive
mode. If primitive mode is not acceptable, the only
alternative is to run with all OMDB segments incore
at all times.

5.65 The CSOP will receive notification via the
fault/signal mechanism when the system is

returned to disk duplex mode. The CSOP will return
to the state it was in before the notification of disk
simplex mode.

J. Format-and-Spool Interface Functions

5.66 In order for processes and the kernel to output
messages which are contained in the OMDB,

five new interface library functions are provided. The
purpose of all but one of these functions is to convert
the client process’s arguments into a somdbl_req
structure format and send this structure in a mes-
sage to CSOP. The client processes must pass one

Page 61



SECTION 254-341-120

argument to these functions, the address of a
splomdb_args structure. The splomdb_args con-
tains information on where to find the user’s data,
the size of the data, and fields which are used to con-
vey information which would previously be passed as

part of the user control string. All fields of the
splomdb_args structure must be filled in by the cli-
ent, since this structure will be passed intact to

CSOP. The fifth interface function is provided so that
any craft process can obtain the message class and
alarm level for a given key.

5.67 sp[omdb_args Fields: The splomdb_args
structure contains all the information neces-

sary for initiating an OMDB spool request.

K. Change Capability Input Cammands

5.68 Since CSOP is responsible for accessing the
OMDB to do the work associated with the

change capability input commands, this leaves little
work besides parsing for the input command process-

(es). Therefore, a single new process is provided to
handle all four new input commands:

(1)

(2)

(3)

(4)

UPD:OMDB:KEY = a: DATA, {MSGCLS = b !
ALARM = C);

ACTV:OMDB;

OP:OMDB{DISK ! ACT}: KEY = a;

APPLY: OMDB;

This new process will group together all craft inter-
faces to the OMDB.

5.69 In response to the draftsperson typing one of
the new input commands, and after success-

fully parsing and validating the command, the craft
shell will fork and execute the command process. The
command process is also responsible for doing pars-
ing and parameter validation, so if the craft shell is
in IM catalog-limp mode and cannot fully validate
the input message, only expected values will be
passed to CSOP. This process, updomdb, will deter-
mine which activity is desired: update message class
or alarm level (UPD), refresh CSOP’S active copy of
the OMDB (ACTV), output one or more OMDB en-
tries (OP), or apply previous updates during field
update (APPLY ). For UPD or OP, updomdb will
check that the value(s) entered for KEY are numeric
and with the valid range for an OMDB key. For UPD,

this process will check that if MSGCLS is specified,

the value is numeric and within the valid range for ?,

message classes (O-255). If ALARM is the specified
keyword on the UPD command, updomdb will check
that the value specified is one of the following CRIT,
MAJ, MIN, MAN, ACT, INFO, or VAR. For OP, the
command process will determine if the draftsperson
wishes to reveiw the DISK or ACTIVE copy of the

OMDB. Any invalid values will result in an appropri-
ate error acknowledgement. .

5.7o If the command entered was syntactically cor-
rect, the command process will set the cmd_

type flag in the message structure change_req indi- n,
eating the desired operation (update, activate, out-
put, or apply), and fill in any data associated with the
UPD or OP operations in the appropriate structure
(struct update for UPD or struct output for OP).
These structures are defined in spooler.h. The dia-
logue information must be taken from the spooler
environment variable and also placed in the change_
req structure.

5.71 A maximum of 32 keys can be sent to CSOP for
processing at one time for an UPD or OP com-

mand. If fewer than 32 keys are specified on the com-
mand line, the command process will fill in a value
of –1 in the key array to mark the end of the keys
being passed for the current request. After filling in
the necessary information in the change_req mes-
sage structure, the command process will issue an
“1P” acknowledgement for update, activate, or apply
requests or a “PF” for an output request.

5.72 The updomdb will then send an interprocess
message of type UPD_MSG_TYPE (also de-

fined in spooler.h) to CSOP using sendpwo. If the
spendpwo is not successful, indicated by a return
value of –1 from the sendpwo, updomdb will call
splomdbo to format and spool the following output ?

message:

a OMDB ABORTED
UNABLE TO SEND REQUEST TO CSOP

— a is the verb of the command being execut-
ed: ACTV, APPLY, C)P, or UPD.

The CSOP is responsible for issuing a completion re-
port for successful commands, or reporting errors it
detects while attempting to do the requested opera-
tion. T

Page 62



,.
1SS3, SECTION 254-341-120

L. OMDB Field Update Procedure

5.73 A new OMJ)B field update procedure is pro-
vided because different steps are required to

p install a new OMDB than for existing products.

Changes to implement this procedure are provided in
the field update mkmsg source and in the SG
database.

5.74 During a field update, the OMDB is not merely
. copied onto the 3B20 computer system; after

installation into /cft/spl/omdb, CSOP must be
forced to read this disk file and refresh its incore
copy. The command ACTV:OMDB exists to do pre-
cisely this, therefore, this command must be included
in the MSGS file. To prevent the loss of craft message
class and alarm level updates made to the previous
version of the OMDB disk file, the command
APPLY:OMDB must be included in the PERM phase
of the MSGS file before an ACTV:OMDB. The
APPLY:OMDB cannot be done as part of the APPLY
phase because of the nature of the command (it ac-
cesses /cft/spl/omdb which is the file being field
updated) and the way in which the field update
works.

P

5.75 In summary, the steps required for the OMDB
during various phases of a field update are:

APPLY phase

–Save a copy of /c ft/spl/omdb.
–Install new OMDB file

– Execute ACTV:OMDB.

BACKOUT phase

r’

in /cft/spl/omdb.

– Restore /cft/spl/OMDBLOG.
– Execute ACTV:OMDB.

PERM phase

–Execute APPLY: OMDB.
–Execute ACTV:OMDB.
–Remove saved file.

Since a MSGS template is generated according to

P
field update type, the new field update type for the
OMDB is added to the SG database.

M. Input Message Acknowledgements

The Acknowledgement Database

5.76 The database is a table of variable length
acknowledgements separated by null charac-

ters. Each unique acknowledgement has a numeric
key associated with it which is used to build the
database but is not part of this database. The very
beginning of the database is an array of variable size,
ordered by key, of the offsets of the various text en-
tries. The first two bytes of the database contain the
number of bytes required to store the keys for RTR
acknowledgement messages. The following two bytes
of the database contain the number of bytes required
to store the key values of application messages. The
first four bytes of the database thus determine the
beginning address of the text entries which will im-
mediately follow this array. This makes it possible to
reference an acknowledgement without any search-
ing or hashing to keep the performance requirements
intact. In addition, the only unused space in the

database is the offset entries of unused keys. Careful
administration of the keys will help avoid unused
keys in the database. The array will allow maximums
of 1000 keys for UNIX RTR and 2000 keys for applica-
tions. The space between the maximum RTR key and
the first application key will be closed.

5.77 At run-time the database resides in a named
segment, specifically segment 45, which is ini-

tialized by DAP, a Craft Shell, or a Dialogue Shell,
whichever is created first. If the shells and DAP
never successfully initialize after a boot, the Ac-
knowledgement Database (ACKDB) will not be avail-
able. The segment is part of every shell’s address
space, ensuring that as long as one can enter input
messages, the database is accessible in main memory.
(Note that the ACKDB is shared by all CFTSHLS,
DLGSHLS, DAP, and all client processes.)

5.78 It should be noted that since DAP is DIO es-
sential and DAP has the database in its ad-

dress space, in effect the ACKDB is DIO essential.

5.79 The two character acknowledgement codes
and supplemental information have separate

entries in the acknowledgement database to provide
flexibility to the user and to conserve database space.
A complete acknowledgement consists of a two char-
acter code and up to three sections of explanatory
text. This corresponds closely to the PDS and MML
standards, which prescribe certain sections of in for-

Page 63



SECTION 254-341-120

mation for certain types of acknowledgements. The
standard set of acknowledgements provided includes
text for each of these sections.

5.80 The disk copy of the database resides in /cft/
shl/ackdb.

Acknowledgement Format Files

5.81 The format files for the database, called
“.afmt” files, consists of lists of acknowledge-

ment specifications. An example of a “.afmt” file
might be:

#include “defirtes.h”

#define BADCAT 24

key 2
text “NG”

/*This message indicates that the IMCATLG
is unavailable */

key BADCAT
text “BAD IMCATLG”

5.82 Comments are enclosed in /* */. constants
may be #defined to integer values in either the

.afmt file or in a #included file. A new global header
file, acks.h, is added which contains #defines of key
numbers for the most common acknowledgements.

5.83 An acknowledgement specification is two
lines, the key and the text. Each specification

is followed by one or more blank lines. For UNIX
RTR, there is one format file per subsystem, each lo-
cated in a new directory (afmt) one level below the
subsystem directory.

Acknowledgement Database Building Tools

5.84 The afmtparse will accept an input file (the
file name must end with .afmt) and call the

C preprocessor to resolve all #defined constants and
remove comments. Then, afmtparse will remove the
quotation marks from the text strings. It will output
a file named the same as the input file except “afmt”
will be replaced by “am”.

5.85 The following .am file corresponds to the
sample .afmt file:

key 2

text NG

--.,

.---

key 24

text BAD IMCATLG .

It is suggested that applications also limit each sub-
system to one .afrnt file since the names of all .am
files must fit on the command line for 3babld. In the
UNIX RTR Project, the .am files are kept in a new -,
global directory, “ack’, and is available on all devel-
opment machines.

5.86 The builder (3babJd) will accept .am files as
arguments, insert each text line contiguously

into the database in the next available location, and
place that relative location into the offset array at
the location specified by the key. The 3babld is sup-
ported in both maxi and 3B20S computer environ-
ments. The existing OMDl? key assignment tools are
copied and modified to assign and maintain acknowl-
edgement keys. The ACKDB key assignment tools
prevent duplicate keys from being assigned but will
not check for duplicate text. Developers are able to

examine all messages contained in the ACKDB using
the dmpackdb command. However, dmpackdb wi11
not be able to identify the subsystem which owns a
given message and thus, not be able to indicate where
a constant is #defined. The 3babld is responsible for
flagging multiple uses of a key as an error.

New libCFT and libminCFT Functions

5.87 ackdb_init( ): This function is called by the
CFTSHL, the DLGSHL, or DAP to read the

database from disk into memory, if it has not already n,

been dent’. The supervisor calls alocseg( ), addseg(
), setmapo, and unbiksego which is used to initial-
ize the segment. Synchronization will be handled in-
side this function. The return code from alocseg( )
will determine the state of the ACKDB and whether
it must be read from disk.

5.88 query ackdb (key 1, key2, key3, key4, and Q

buffer): This function will accept four keys
and a buffer as arguments, and place the retrieved
acknowledgement into the buffer. One key is for the
two character code, and the other three, which may
be NULL if desired, are for the optional explanatory

?.

Page 64 .,



1SS 3, SECTlON 254-341-120

text. The DAP, CFTSHL, and DLFSHL will use this
function directly because they perform their own
1/0. The database will be accessed in the following
manner. Let AC KDBASE be the base address of the
database. Then for a given key, the text for that key

P
can be found by looking at the offset entry for that
key and adding it to ACKBASE + (the size for the
offset array).

5.93 inechodb( ): When a command process calls
this function it must pass it four keys (includ-

ing 0) and the output message class. This function

passes the original input line and the specified ac-
knowledgement to the output message spooler for the
input message echoing function. This function will
call query_ackdb( ) to retrieve the acknowledge-
ment portion of the input message and then will con-
catenate both before passing it to the spooler.

5.89 get_ackdb( ): The get_ackdb function will
inspect the process’s pcb to see if the ACKDB Craft Shell and Dialogue Changes

is already Dart of its address space. If not, it will
make the-a~knowledgement database part of the call-
ing process’s address space, giving the segment read-

5.94 The Craft Shell and Dialogue Shell currently

only permission. It will return O if successful, –1 if
retrieve an acknowledgement string, either

1P, PF, or OK, from the IMCATLG. The Shell will
not.

test this string and choose the proper key to use in
query_ackdb( ).

5.90 rmv_ackdb( ): This function will remove the
ACKDB from a process’s address space.

Performance

5.91 ackudb( ), ackldb( ), acklpdb( ), and
ackip2db( ): These functions will act as

5.95 Since no searching or hashing is required, the

fronts for their counterparts, ackuo, acklo, acklp(
vast majority of the additional time it will

), and acklp2( ). When a command process calls one
take to write an acknowledgement is consumed by

of these new functions, it will pass it a key for the two
adding the database to each calling process’s address

,- space. This is estimated to take less than 14
character ack and up to three keys for the explana-
tory text. If less than four keys are desired, the last

milliseconds.

argument must be O.Then get_ackdbo will be called
to attach to the database. Next, query_ackdbo will
be called, being passed the key for the two character
code and the keys for the text, if any. The acknowl-
edgement database function will receive the
concatenated acknowledgement associated with the
kt’ys and call its corresponding acknowledgement
function [acku( ), etc.], passing this function the
retreived acknowledgement. Errors involving an in-
valid key will be handled with an error indication of
“NA - INVALID KEY”, and the process will be al-
lowed to continue. In the case of ackudb( ), rmu_
ackdb( ) will be called to remove the ACKDB from
the process’s address space. Acknowledgement trap-
ping will still be done.

ACKDB Field Update Procedures

5.96 A new command, CLR:ACKDB, makes sure
the database exists on disk, and then clears

the segment name, using the clrname( ) supervisor
call. This makes sure that any new processes must
use the new version and the ACKDB must be
reinitialized for them. If a process is currently at-

tached to the database, it will use the old copy of the
segment. Note that once a process does an unlocking

acknowledgement, the ACKDB will be removed from
its address space.

5.97 The apply phase can be done as follows. Do the

5.92 trapacksdbo: This function will trap and/or
file replacement for the ACKDB, execute

translate acknowledgements for the libCFT
CLR:ACKDB, and on the 103 page poke the Shell Re-

,0
ack functions in support of improved input message

start and then the DAP Restart.

acknowledgements time for the ACKDB feature.
Trapacksdb( ) will be called from ackudb( ), etc., 5.98 To back out of the changes, execute the field
instead of trapacks( ) when the UNIX Craft Shell update backout command, execute
has already done the acknowledgement for an input CLR:ACKDB, and kill the shells and DAP again via

r-’ message. the 103 page.t

Page 65



SECTION 254-341-120

6. GLOSSARY OF TERMS AND ACRONYMS example, a sentence can be parsed into words. Pars-
=%,

ing is an operation in the execution of terminal mes-

GLOSSARY OF TERMS sages.

6.01 A glossary of terms and acronyms is provided

to aid in the understanding of this document.

Audit —Validity checks that are performed to as-
sure the proper operation of the operating system
L,JL~.!the authenticity of its data structures.

Eaud —A unit of signaling speed expressed in the
nurnher of bits per second.

Daemon —In software, a process that controls in-
formation or other processes with unusual effective-
ness.

Delimiter —A type of token used to separate other
tokens or define fields within a message. For exam-
ple, the terminal message token “:” separates the
verb token from the first id token.

Firmware —Software instructions stored in read-
only memory.

Histogram —A graphical representation of param-
eters showing distribution, deviation, failure limits,
and sample size by means of rectangles whose widths
represent class intervals and whose heights repre-
sent corresponding frequencies.

Identifier (id) —A type of token used to represent

an object or specific hardware unit. For example, the
terminal message token “CU” represents a control

unit.

Maintenance Terminal —The terminal(s) used for

the exchange of maintenance information/

commands between the maintenance person and the
computer.

Off-line —A CC is off-line if it is not in control of
system configuration and execution although it may
be active (executing diagnostics).

On-1ine —A CU is on-line if it is actively executing.
More specifically for a 3B20D computer, the on-line
(XJ is that which is in active control of system config-
uration and execution.

Parse —To resolve data into a collection of prede-

fine tokens based on syntactical relationships. For

Poke —The activation of a virtual key that is a por-
tion of a virtual panel displayed on a maintenance ?,
terminal. A poke is performed via cursor position,
light pen, or menu mode keyboard input.

Process —The basic executable entity in DMERT or

UNIX RTR.

Queue —A waiting list usually consisting of pro-

cesses or tasks waiting for processor time to execute. ?,

Random-Access Memory—Memory that can be
written into and read from. Any element can be ac-
cessed with equal ease.

Read-Only Memory —Memory that cannot be
written into. The contents of read-only memory can
be read, but never destroyed via overwrite.

Receive-Only Printer —A terminal that is de-
signed for output only. The maintenance person can-
not originate input from a receive-only printer. This
type of terminal may be used to maintain a printed
record of the PDS/MML type 1/0 communication

associated with a maintenance terminal.

Sequenced-Mode Audits —A group of audits that
are performed in a particular sequence in order to
successfully complete tests and maximize their effi-
ciency.

Time-Out —A system action based upon the ab-
sence of an expected event during a prescribed time
interval.

m,
Token —A defined character or sequence of charac-

ters that represent a particular action, object, or a
type of delimiter. For the 3B20D computer, most
tokens are either verbs, identifiers, or delimiters.

Verb —A type of token that represents an action.
For example, the terminal message token “I)GN”
represents the request to diagnose.

‘?

ACRONYMS/ABBREVIATIONS

6.02 The following acronyms are used within this
section. -,

Page 66



#-
ACRONYMS

ACKDB

ACP

AIM

ASCII

. ASW

AUDMGR

cc

CFTSHL

CLREAI

CMON

CRON

CSOP

Cu

DAP

DFC

DMERT

DTIM

DUI

DUIC

EAEN

EAI

EAIMRF

ECD

WORDS

Acknowledgement Database

Alarm Control Process

Application Integrity Monitor

American Standard Code for In-
formation Interchange

All-Seems-Well

Audit Manager

Central Control

Craft Shell

Clear Emergency Action Interface

Craft Interface Integrity Monitor

Clock Daemon

Coordinator of the Spooler Output
Processor

Control Unit

Display Administration Process

Disk File Controller

Duplex Multienvironment Real-
Time

Disable Sanity Timer

Direct User Interface

Direct User Interface Controller

Emergency Action Enabled

Emergency Action Interface

EAI Maintenance Request Func-
tions

Equipment Configuration

Database

ACRONYMS

EFTBL

EIH

ESS

FBDP

FBDS

FOFL

FONL

FSMON

ID

IM

1/0

IOP

LED

LLA

MHD

MIRA

MML

MRF

MT

MTC

MTTYPC

OMDB

OPQAUD

OPQUEUE

OST

1SS 3, SECTION 254-341-120

WORDS

Enumeration File Table

Error Interrupt Handler

Electronic Switching System

Force Boot Device Primary

Force Boot Device Secondary

Forced Off-Line

Forced On-Line

File System Monitor

Identification

Input Manual

Input/Output

Input/Output Processor

Light Emitting Diode

Low Level Access

Moving Head Disk

Maintenance Input Request Ad-
ministrator

Man Machine Language

Maintenance Reset Function

Magnetic Tape

Magnetic Tape Controller

Maintenance Teletypewriter Pe-
ripheral Controller

Output Message Database

Operating Queue Audit

Operating Queue

Operating System Trap

Page 67



SECTION 254-341-120

ACRONYMS

PADL

PDF

PDS

PDSHL

PMS

PONL

PRM

RAM

ROM

ROS

RST

RTS

Scc

Sees

SC/SD

WORDS

Page Descriptor Language

Page Descriptor Files

Program Documentation Stan-

dards

Program Documentation Stan-

dards Shell

Plant Measurement System

Processor On-Line

Processor Recovery Message

Random-Access Memory

Read-Only Memory

Request Out-of-Service

Restored To Service

Real-Time Status

Switching Control Center

Switching Control Center System

Scanner/Signal Distributor

ACRONYMS

SDL

SDLC

SG

SIM

SIOF

SIP

SOP

TTY

UART

UCB

ULARP

WORDS

Synchronous Data Links

Synchronous Data Link Controller

System Generation

System Integrity Monitor

System Integrity output

Formatter

Spooler Input Processor

Spooler Output Processor

Teletypewriter

Universal Asynchronous Receiver
Transmitter

Unit Control Block

UNIX Level Automatic Restart
Process

Page 68

68 Pages


	General
	System Integrity
	Plant Measurements
	Craft Interface
	Central Output Mechanism Feature
	Glossary of Terms and Acronyms
	Table A
	Table B
	Table C
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

