
AT&T PRACTICE

Standard

AT&T 254-341-200
Issue 6, November 1986

P 4.

5.

6.

● 7.

MAINTENANCE AND FAULT RECOVERY

SOFTWARE SUBSYSTEM DESCRIPTION

AT&T 3B20D COMPUTER

CONTENTS PAGE

GENERAL

MAINTENANCE STRUCTURE

DEFERRABLEMAINTENANCE

A. Electronic Switching System Shell . .

B. Maintenance Input Request Adminis-
trator

c. Coordinator Spooler Output Process .

D. Diagnostic Monitor . .

E. Trouble-locating Procedure

NONDEFERRABLE MAINTENANCE

A. System Initialization . .

B. System Control Processes

c. Configuration Management

D. System Integrity Monitor

E. Overload Monitor . . .

ENHANCED TERMINAL ACCESS

MAINTENANCE INTERRUPT .

FAULT RECOVERY

A. limp Modes

B. Software Faults . . .

DISK RECOVERY IMPROVEMENTS

. . . .

. . . .

. . .

. . . .

. . . .

. . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . .

RECOVERY ON PREVIOUSLY ACTIVE DISKS

1

2

4

5

5

5

5

6

6

6

13

15

17

21

29

29

29

30

30

31

32

CONTENTS PAGE

10. GLOSSARY32

11. ABBREVIATIONS 33

Figures

1.

2.

3.

4.

5.

Tables

A.

B.

c.

UNIX RTR Operating System Maintenance

Structure3

Nondeferrable Maintenance 7

Operating System Initialization . . . 8

UNIX RTR System Initialization . . . 9

Configuration Management System . . 16

Initialization Levels 7

SIM Error Codes 22

SIM Supplementary Data 25

1. GENERAL

1.01 This document provides general information
relative to the maintenance and fault recovery

procedures provided by the UNIX’Q RTR operating
system.

1.02 This document is reissued to include informa-
tion about the Four Bit Essential Field Fea-

ture and the Disk Limp Mode Enhancement Feature
which applies to the UNIX RTR operating system
(release 1) and to update areas of the document
where changes and improvements have been made to
the system.-Revision arrows are used to emphasize

?-’
AT&T TECHNOLOGIES, INC. - PROPRIETARY

Printed in U.S.A.

‘\

‘\

Page 1

AT&T 254-341-200

the significant changes. The specific reasons for reis-
sue are listed below:

(a) Add paragraph 4.41 to incorporate informa-
tion on the Four Bit Essential Field Feature.

(b) Add paragraph 7.07 to incorporate informa-
tion on the Disk Limp Mode Enhancement

Feature.

The Equipment Test List is not affected.

2. MAINTENANCE STRUCTURE

2.o1 The maintenance structure as described
herein is influenced heavily by three different

sources

(a)

(b)

(c)

The self-checking maintenance philosophy of
the computer

The structure of the host operating system

Design experience with other computer
maintenance systems.

The UNIX RTR maintenance packages provide a reli-
able and flexible base for applications to build upon.

2.o2 Figure 1 illustrates the major centers of main-
tenance activity in the system and how they

relate to the 3-layer structure of UNIX RTR operat-
ing system.

2.03 Nondeferrable maintenance is associated with
the kernel. The functions associated with non-

deferrable maintenance are as follows

(a) System Initialization: System initializa-
tion includes computer initialization and boot-

strapping. Its function is to recover normal system
operation after a fault has been detected.

(b) Equipment Con figuration Data Base
Manager: The equipment configuration

data base (ECD) contains the current status of all
computer and peripheral hardware known to the
UNIX RTR operating system. The equipment con-
figuration data base manager (ECDMAN) sup-
plies access to this data base and other processes.

(c) System Control Process: The system con-
trol process provides basic maintenance re-

lated hardware access to both control units (CW)
in a system. It handles error interrupts and pro-
vides diagnostic access to the off-line CU.

(d) Configuration Management Library:
The configuration management makes recon-

figuration decisions based on the current status of
the hardware found in the ECD and fault condi-
tions reported by hardware drivers. One such decii-
sion might be to remove a faulty peripheral device
from service.

2.04 Deferrable maintenance is executed by the
UNIX RTR operating system. The processes

that fall in this category are listed below:

(a) Maintenance Input Request Administra-
tor (MIRA): The MIRA coordinates requests

for maintenance actions (most typically diagnos-
tics) that have been manually or automatically
requested.

(b) Diagnostic Monitor (DIAMON): The
DIAMON loads and executes a requested diag-

nostic.

(c) Trouble-Locating Procedures (TLPs):
The TLPs translate the results of a diagnostic

to a replacement pack list for the faulty unit.

(d) Coordinator Spooler Output Process
(CSOP): The CSOP coordinates output di-

rected to the maintenance teletypewriters (TTYs),

2.05 Maintenance functions appear at all levels of
the operating system. Also, there is a close re-

lationship between the structure of the UNIX RTR
operating system and the structure of the mainte-
nance functions themselves. That is, maintenance is
not a stand-alone package. Some of the reasons for
this structural integration follow:

(a) Maintenance functions tend to fall into differ-
ent categories depending on the desired

real-time response. For example, switching from
one CU to another is to be done in a minimum
amount of time and is therefore accomplished by
a kernel process running at the highest hardware
priority level. Diagnostics are a deferrable func-
tion that can be executed under the UNIX RTR
operating system.

‘--’l

‘n

.

‘n

.

“1
.

?.,

Page 2

1SS6, AT&T 254-341-200

.

.

●

KERNEL

/ ‘\

G
// \/

BOOTSTRAP

1’
I PROCESWM

I
INITIALIZATION

I

I 0I cO%:A:ON

\
DATA

MAMGER

‘<.

/

NONOEFERRASLE
\ MAINTENANCEFLJNCTIONS

\
\

\
\

\
\

\
\

‘\

O
\\\

PROCESSOR \
CONTROL
PROCESS

I
I

/
/

-__ .——— . ———— .. —-

u,JR

, ,.””-””.. s \
/

SUPERVISOR
\

/
/ \.

\

USER

f-’

/

\\

-+ /.—— ——— — ——— — ——— ———

Fig. l—UNIXRTR Operating S@em Maintenance Structure

Page 3

AT&T 254-341-200

(b) Some maintenance functions (such as comp-
uter initialization) do not assume that the

operating system is running.

(c) Some maintenance functions are not self-
sufficient but require the services provided by

the operating system. In general, the level of ser-
vice provided by the system improves in direct re-
lation to the separation from the kernel.
Therefore, it is reasonable to implement non-real-
time critical functions under the UNIX RTR oper-
ating system.

2.06 Maintenance Objectives: Some of the
maintenance objectives listed here apply to

the 3B20D computer system as a whole — including
hardware and software – while others apply specifi-
cally to the UNIX RTR operating system software
maintenance package. The maintenance objectives
are as follows:

(a) The expected amount of accumulated com-
puter downtime should not exceed 2 hours per

40-year period for a fully redundant system con-
figuration. This objective \vill be met with a bal-
anced approach in the following areas;

(1) Duplication and self-checked computer
hardware using high reliability components

(2) Adopting procedures which limit the
amount of time that a duplex configuration

must operate with one CU out of service

(3) Effectively handling memory faults
through the use of hamming error detection

and correction

(4) Extensive auditing of data

(5) Providing a reliable and rapid bootstrap
from disk facility

(6) Providing limp mode capabilities to keep
the system up when difficult error condi-

tions are encountered

(7) Providing dead-start capabilities and emer-
gency action capabilities for recovery from

extraordinary problems.

(h) .4Ithough some of the features provided by
[JNIX RTR operating system are internally

complex, application control interface for these
features is very straightforward. System primi-
tives are provided as necessary to control the
maintenance feature package at high level.

(c) Whenever feasible, high-level decisions will be
left in the hands of the application.

(d) In response to the trend towards remote main-
tenance operation, a common Switching Con-

trol Center System interface is provided with tie
capability to remote all control and display func-
tions.

3. DEFERRABLEMAINTENANCE

3.o1 Deferrable maintenance functions consist of
the computer and peripheral diagnostic and

diagnostic-related functions. Since diagnostics tend
to be background-type tasks, the UNIX RTR operat-
ing system provides a suitable environment for the
diagnostic control structure. The diagnostics are
written in UNIX RTR operating system user process-
es. Diagnostics inherently need access to critical
parts of the computer in order to thoroughly exercise
the circuitry. Being at the user level in the operating
system constrains the diagnostic access. Therefore,
the diagnostics communicate with a kernel-level pro-
cess and the computer control process maintenance
driver to gain the necessary access. A diagnostic pro-
cess under the UNIX RTR operating system consists
of three elements. The DIAMON controls the execu-
tion of the diagnostics and serves as an interface be-
tween the diagnostic and the rest of the system. The
2-element diagnostic consists of a control program
which interfaces with DIAMON and the diagnostic
phase which contains the actual tests to be per-
formed. Each phase is comprised of a collection of
functionally related tests. The size of each phase is to
some degree a function of the file system and thus
was chosen so as to allow the diagnostic to be a suffi-
ciently optimum structure under the file system.

3.02 Deferrable maintenance functions are exe-
cuted under the UNIX RTR operating system.

Most deferrable maintenance functions are related in
one way or another to th(, human interface of the sys-
tem. Some of the functions performed by the deferra-
ble maintenance have to do with TTY message
processing, fault analysis, and manipulation of diag-
nostic files. The processes that f:iil into this categorj
are listed below.

‘-’l

.

.

T

-)

.

4.

●

‘n a’

Page 4

,t- (a) Electronic Switching System Shell: “l’he
Electronic Switching System shell handles

input messages in the standard format common to
all Electronic Switching Systems.

,f-

.

.

.

,

(b) Maintenance Input Request Administra-
tor: The MIRA coordinates and schedules

requests for maintenance actions (most typically
diagnostic) that have been manually or automati-
cally requested.

(c) Coordinator Spooler Output Process: The
CSOP coordinates output directed to the main-

tenance TTY and the switching control center.

(d) Diagnostic Monitor: The DIAMON loads a
requested diagnostic. The diagnostic is typi-

cally executed by the diagnostic controller cooper-
ating with a kernel process (such as a device
driver) using a diagnostic data table and the diag-
nostic control block (DCB).

(e) Trouble-Locating Procedures: The TLPs
translate the results of a failing diagnostic to

a replacement pack list.

A. Electronic Switching System Shell

3.o3 The program documentation standard shell
(pdshl) process is created upon system initial-

ization or when the terminal comes on-line. The
“pdshl” serves as a “cftshl” command interpreter
that receives maintenance requests from the TTY. By
incorporating this shell, standard Electronic Switch-
ing System TTY formats may be used to invoke the
maintenance requests.

B. Maintenance Input Request Administrator

3.o4 The MIRA process is created upon system ini-
tialization and is a single-image process (i.e.,

only one instance of MIRA exists at any time). The
function of MIRA is to receive maintenance requests
from a TTY as well as other processes. Typical re-
quests are to remove or restore a unit as well as to
diagnose the unit. Requests entered on a TTY maybe
interpreted by the system shell. The system shell in-
vokes execution of an appropriate process which then
sends a message to MIRA to arrange a particular re-
quest. Many processes throughout the system may
need to communicate with the MIRA. These pro-
cesses may or may not be UNIX RTR operating sys-
tem processes. To allow the MIRA to be, in effect,

1SS6, AT&T 254-341-200
.

globally known to all processes, it is attached to a
system port. The DIAMON process was made a sepa-
rate process in order to provide a structure in which
a desirable amount of autonomy can exist. For effec-
tive scheduling of these tasks, there must be only one
MIRA. Automatic requests can also be provided in
this structure. An application-provided task could
reside at the same level in the operating system and
send messages via the port to MIRA at appropriate
times to make diagnostic requests. From this point,
the request can be the same as a request made from
a TTY.

C. Coordinator Spooler Output Process

3.o5 The CSOP is complimentary to MIRA in that
it formats and displays all maintenance out-

put messages directed to the maintenance TTY. As in
MIRA, the CSOP is a single-image process which is
globally accessible. Results of diagnostics are sent as
a message or via a common file to CSOP whenever
output is desired. This data will be properly format-
ted by CSOP for the TTY output. For restore and
remove nondiagnostic-type output messages,
DIAMON sends a message to CSOP causing it to out-
put the proper response. Other maintenance output
functions such as postmortem dumps are handled
similarly. Data is sent as a message as or a common
file to CSOP along with a format indicator to identify
the format in which the data is sent to be output.

D. Diagnostic Monitor

3.06 Upon creation by MIRA, it is the function of
DIAMON to carry out maintenance requests.

The DIAMON constructs a DCB which contains all
data relevant to the diagnostic; for example, which
phase was requested, the unit type, the member num-
ber, etc. Also contained in the DCB is various inde-
pendent data which is extracted from the ECD. The
DCB is constructed as a shared segment between
DIAMON and the diagnostic. Once the DCB is con-
structed, DIAMON creates the appropriate diagnos-
tic control (DIAGC) process beginning the actual
diagnostic. It is the function of the DIAGC process to
open the appropriate diagnostic files and execute the
diagnostic. It should be noted that since the diagnos-
tics are executing under an operating system they are
subject to being preempted by a higher priority task.
Therefore, if they are executing code which cannot
correctly perform a test if preempted during the test,
they must block interrupts during that time and re-
lease the block at the end of the time. The results of

Page 5

\

AT&T 254-341-200

the diagnostic are handled by the control process. At
the termination of the diagnostic, the test result is
sent via a message to CSOP, the appropriate indica-
tor is set in the DCB, and the process terminates. The
DIAMON then sends a message to MIRA to inform
that process that the request has been completed.
The DIAMON process then terminates. The structure
of the diagnostic system can be summarized as fol-
lows

(a) The MIRA process is the receiver and sched-
uler of maintenance requests.

(b) The CSOP provides the handling and format-
ting of maintenance output to the ‘M’Y.

(c) The DIAMON processes can be created by
MIRA to carry out the maintenance requests,

including creation of the diagnostic process.

(d) The DIAGC process carries out the actual exe-
cution of the diagnostic. The device orders are

handled by the device driver [disk or input/output
processor] or maintenance driver for the comput-
er.

E. Trouble-1ocating Procedure

3.o7 The TLP aids in locating a faulty circuit pack.
Upon request, the TLP wiIl analyze a diagnos-

tic failure and output a list of suspected circuit packs
ordered in such a way that the most probable pack is
listed first, etc. Each time a pack is replaced, the ap-
propriate diagnostic is rerun to determine if the re-
placement corrected the fault.

3.08 If the TLP option is specified on the diagnostic
request, appropriate data from the diagnostic

test results is saved by the DIAGC. After the diag-
nostic is executed, the trouble-location process
(TLPR) is spawned. The TLPR uses test results to
access a data base which associates failing tests with
lists of circuit packs (and other components).

3.o9 The interface of the TLPR to the diagnostic
control structure is flexible enough to allow

applications to use their own TLP or other TLPs if
desired. A high degree of accuracy is achieved by
combining techniques from the TLP of previous sys-
tems.

3.10 The major components of the TLP incorporate
portions of the diagnostics, processes, and

data. These are the fault signature, the tlpcall data
table command, the TLPR, and the trouble-location
data base (TLDB).

4. NONDEFERRABLE MAINTENANCE

4.o1 Maintenance functions that fall into the gen-
eral category of nondeferrable maintenance

have the following common characteristics

(a) They are closely related to the hardware.

(b) The real-time response is critical.

(c) The program modules must be locked in core
because they cannot assume that the operat-

ing system is operating proper} y or even exists.

4.02 The following stimuli cause nondeferrable
maintenance to take action:

(a) Recognition of a computer self-checking error
of the stop and switch class means that the on-

line CU has detected a fatal hardware error within
itself that requires a switch to the other CU.

(b) An error interrupt in the on-line CU can ei-
ther be hardware or software related or from

the standby CU (memory errors). The action taken
can be of varying degrees of severity.

(c) A peripheral device driver detects a change in
the device that compromises its effectiveness

and may require a reconfiguration.

(d) A manual request of a maintenance function
is requested, such as to switch CUS.

(e) An inconsistency is discovered by an audit
program.

4.03 The action taken by nondeferrable mainte-
nance will be system initialization, system

reconfiguration, and/or error report generation or
status messages. All of the possible inputs to nonde-
ferrable maintenance and resulting responses are
summarized in Fig. 2.

A. System Initialization

4.o4 A system initialization implies that both the
computer hardware and the operating system

are to be initialized. A UNIX RTR operating system

‘n

.

.

●

‘m’

Page 6

.

f-

r’-

.

.

(-

PROCESSOR
SELF-CHECKINGFAULTS

D

ERROR
INTERRUPTS

DNERTOR APPLICATION
MAINTENANCEREQUESTS

PERIPHERAL
DEVICE STATUS

MESSAGES

NONDEFERRABLE
MAINTENANCE

lSS6, AT&T 254-34 1-200

3’ AND REPORTS

RECONFIGURATION
OECISIONS

~ INITIALIZATION
ACTION

,—o STATUSINFORMATION

Fig. 2 —Nondeferrable Maintenance

application can completely initialize its own process-
ing without causing a system initialization. The
UNIX RTR operating system cannot distinguish ap-
placation initialization (or rollback action) from nor-
mal activities. However, when system initialization
occurs, the application is impacted.

Initialization Levels

4.o5 Four levels(l through 4) of initialization are
defined for UNIX RTR operating system (Ta-

ble A). Ateach such level, specific action is takento
recover from a software or hardware fault. The ini-
tialization levels are related to a level-of-severity
counter named initialization level (INITLVL). For
each initialization level (except level 4), the applica-

tion may define up to 15 levels of its own. The UNIX
RTR operating system will not distinguish between
application initialization levels other than to admin-
ister the level counter. On each initialization, the
application level counter will be incremented.

4.06 The need for system initialization arises when
a fault occurs of sufficient severity to prevent

normal processing from continuing from the point of
the fault occurrence. Initialization action can be as
severe as a bootstrap or as simple as the initialization
(or termination) of a single process. In real-time sys-
tems, it is important that the initialization action
taken be carefully matched to the severity of the
fault to prevent unnecessary loss of service. However,
if the initialization action taken on a particular ini-

TABLE A

INITIALIZATION LEVELS

LEVEL PROCESS ENTRY METHOD ACTION

o Application defined Application defined
1 Fault Minimal
2 Event fault Bootstrap
3 Event fault Bootstrap and reload ECD
4 Event fault (manual) Bootstrap, reload ECD, and clear memory

(’-

Page 7

‘\

AT&T 254-341-200

tialization is not successful and another initialization
occurs immediately, then the level of initialization
action must be escalated. This type of progressive ini-
tialization philosophy has been implemented for
UNIX RTR operating system.

4.o7 Figure 3 represents a general view of initial-
ization in an operating system environment.

The operating system coordinates the activities and
services requested from a set of processes that exe-
cute under the operating system. The operating sys-
tem has an initialization module to which control is
returned when a hardware or software fault is de-
tected. After appropriate initialization action has
been taken, control is returned to the operating sys-
tem for normal processing. The term initialization,
as it applies to process, means that the process is put
into a known initialization or rollback state. Achiev-
ing the initialization state is generalIy a cooperative
effort between the operating system and the process
being initialized.

FAULT

4.08 Assuming a progressive initialization philoaa-
phy in a real-time environment, several gen- 7

eral points concerning system initialization can be
made.

(a) Certain types of errors require more drastic ~
recovery actions than others. However, if

there is no differentiation between error types in
the hardware, there is no choice other than to take
the more drastic action.

(b) By its very nature, the progressive initializa-
tion philosophy requires that certain critical .

parameters concerning the nature of the
initializations (such as how many initializatians 7.
have occurred in the immediate past) be readily
available. These processes can then select the ap-
propriate initialization state.

(c) In a real-time environment, the set of pro-
cesses running under the operating system can

4

SOFTNARE
FAULT

+

I IlfZTIMIZAiti” I
HORULE

OPERATZNS
SYSTEM

EIEIEIEI
\ /

I
RELATED

PROCESSES

Elm:
~q

RELATED
PROCESSES

Fig. 3—Opefating SystemInitidzctkion

Page 8

,

p

.

.

‘ ,f+-

t“=

.

#-

usually be grouped in closely coupled subsets. If
one of the processes in a particular subset must be
initialized, then the whole subset must be initial-
ized.

4.09 The computer hardware and UNIX RTR oper-
ating system initialization software accounts

for all of the above considerations. Figure 4 illus-
trates the flow of initialization as it is implemented
for the UNIX RTR operating system. A hardware
fault detected by a self-checking circuit in a computer
normally leads to a stop and switch message being
sent to the off-line CU that causes it to initialize. The
internal signal generated in the off-line CU is re-
ferred to as a maintenance reset function (MRF). The
initialization of the off-line CU proceeds as follows:

(a) A microcode sequence initializes critical in-
ternal hardware registers. Depending on the

state of the system, the outcome of the microcode
initialization normally results in a transfer to
main store (MAS) code. (See A in Fig. 4.)

(b) The microcode initialization is followed by
additional hardware initialization (imple-

mented in MAS code). This includes initialization
of input/output channels, disabling of the off-line
CU (in case it is still active), and reenabling of
error check circuits.

(c) The operating system is initialized. The action
taken will depend upon the state of the system

upon entry into the initialization.

(d) Some or all of the application processes are
initialized. Actual creation of the initialized

processes may be required. The processes involved
are informed of the initialization via a fault entry.

(e) Process initialization is followed by a post re-
covery phase during which various cleanup

operations are accomplished, such as signaling to
diagnose the off-line CU (faulty) circuit.

Bootsfrap

4.10 The bootstrap function is the last resort au-
tonomous capability of the computer initial-

ization procedure. Earlier actions in the
initialization sequence attempt to initialize the hard-
ware in the on-line CU or switch control to the off-
line CU. When these actions fail to recover system
sanity, the bootstrap function is called to reinitialize

1SS6, AT&T 254-341-200

MAINTENANCERESET FUNCTION (IIRF)

(1) I FIICROCOOEO
INITIALIZATION

I

(2)

(3)

I 1
A B c

v *
STOP
ANO BOOTSTRAP

SUITCH PROCEDURE

PROCESSOR
INITIALIZATION

4

e

F
OPERATING

SYSTEH
INITIALIZATION

(4)

Y

PROCESS
INITIALIZATION

c=POST
(5) RECOVERY

ACTIONS

NORMAL
OPERATION

Fig. 4— UNIX RTR

the memory. The entire

System Initialization

software system is recon-
structed by reloading programs into MAS from an-a-
uxiliary memory device. The lowest level bootstrap
preserves the ECD and the protected application seg-
ment. The next level reloads the ECD from the boot-
strap device. The protected application segment is

Page 9

‘\,_

AT&T 254-341-200

only cleared on power-up boots or, if manually re-
quested, through the emergency action interface
(EAI).

4.11

(a)

Bootstrap Procedure: Reconstructing the
software system memory is done in stages.

First, a microcode bootstrap function (micro
boot) is called to load a small software boot-

strap program and the volume table of contents
(VTOC) from the moving head disk (MHD) into
memory.

(b) Second, the small bootstrap program (little
boot) utilizes the VTOC to find the main boot-

strap program on the disk and load it into memory.

(c) Third, the computer initialization program
saves status information about the computers

for postmortem analysis and decides which CU
should be active.

(d) Fourth, the main bootstrap program loads
into memory the necessary program and data

required to reconstruct the operating system.

(e) Fifth, the kernel initialization program
[kernel boot (KBOOT)] restores the operating

system and creates all required processes.

4.12 Boot Devices: More than one auxiliary de-
vice is designated as a boot device. Micro boot

first attempts to load from the primary boot device
if both boot devices are active. If only one is active,
it will first attempt to load from the active boot de-
vice regardless of whether it is the primary or sec-
ondary boot device. If both boot devices are active
and it is unable to load from the primary boot device,
it will attempt to load from the secondary device.
Channel addresses and device numbers are fixed in
microcode. The EAI may be used to manually force
a specific configuration by setting either the PRI-
DISK or SEC-DISK EAI options along with forcing
the appropriate CU active. The secondary boot device
for one CU is the primary boot device for the other
CU. Contention problems (both CUS trying to boot
from the same device at the same time) are mini-
mized by delay timing within the micro boot.

4.13 Bootstrap Progress Display: Visual indi-
cation to the craft person of progression

through the bootstrap procedure is provided by the
EAI. Each major step in the initialization will output

at least one CU recovery message indicating either
successful completion or the detected failure condi-
tion. Separate indications for each CU reveal its
stage of recovery and failure encountered in the re-
covery attempt.

4.14 Micro Boot: Prior to micro boot being en-
tered, hardware checks and interrupts will be

blocked and the address translation buffer (ATB)
and cache are disabled. Micro boot is entered, and it
loads little boot from a partition on the system disk
to MAS. Micro boot is written in microcode and per-
forms the following functions

(a) It resets the sanity timer. The first and second
time-outs are set to occur 1.6 and 3.2 seconds

after the timer is reset.

(b) It continues initialization of the computer for
bootstrapping.

(c) It determines which device (primary or sec-
ondary) to use for the current boot attempt.

(d) It initializes the direct memory access (DMA).

(e) It sets all mask inhibit registers for DMA dual
serial channel (DSCH) connection to the pri-

mary (or secondary) boot device.

(f) It clears, interrupts, and services requests
pending in the DMA DSCH connected to the

primary (or secondary) boot device.

(g) It enables the DMA channel that connects to
the primary (or secondary) boot devices.

(h) It initializes the duplex dual serial bus selec-
tor (DDSBS) connected to boot devices being

used.

(i) It initializes the bus. interface controller (BIC).

(j) It initializes the peripheral interface control-
ler (PIC).

(k) It initializes the MAS controller (MASC).

(1) It uses the disk boot command to load the
VTOC on the disk into a temporary memory

location in the MAS.

?

7,

.

n,

?’

.

?,

Page 10

1SS6, AT&T 254-341-200

.

.

f--+

r’

.

/’=

?=

(m) It executes a delay loop waiting for the disk
file controller (DFC) to make data available.

If the timing interval times out, an access problem
is indicated.

(n) It loads writable microspore using the disk
boot command.

(o) It formats the disk boot command to load little
boot and sends it to the DFC.

(p) If little boot is successfully loaded, program
control is transfered to the starting address of

little boot specified in the VTOC entry.

If a failure is detected, an output indication is pro-
vided via the EAI which indicates the reason for the
failure.

4.15 Little Boot: Little boot is written in
C-language which means it must establish a

stand-alone environment since there is no operating
system in the computer at this time. Little boot then
performs the following functions:

(a) It initializes areas in core so that they will
have good parity for use by both little boot and

big boot.

(b) It determines which boot device is being used
by reading a general-purpose register that

was loaded with the boot device by microboot and
then initializes boot parameters that both pro-
grams will use.

(c) It moves part of the VTOC that was loaded by
micro boot into the initialization parameter

area of MAS so that it will not be overwritten by
big boot when it is loaded.

(d) It searches the VTOC for the big boot entry
partition on the disk. Normally, the current

version of big boot is loaded, but backup version
can be loaded if manually requested (backup root
EAI option).

(e) It initializes the page table and expanded de-
vice page table in the MAS.

(f) It initializes the direct memory access control-
ler (DMAC) random access memory (RAM) for

the boot device and then performs the DMAC set-
up.

(g) It formats the disk boot command to load the
big boot and sends it to the DFC.

(h) It waits for the job to complete.

(i) It determines whether the job was successfully
completed or not.

(j) If the job was successfully completed, it moves
some of the saved initialization parameter

data back to the initialization parameter area.

(k) If the job was not successfully completed, an
output indication is provided via the EAI

which indicates the reason for the failure.

(1) It passes control to the System Initialization
Program.

System Initialization Program

4.16 The System Initialization resides in physical
memory at a fixed address. The program is

entered only from little boot or MRF microcode. Its
function is to collect postmortem data, decide which
CU should be active, initialize the core of the CU, and
then pass control as quickly as possible to the kernel
(or the bootstrap program if a bootstrap is in prog-
ress).

4.17 After receiving control, the system initializa-
tion performs the following operations

(a) The registers of the CU in which the system
initialization is executing are initialized with

good parity data.

(b) The computer registers at the time of the ini-
tialization are saved in the postmortem data

area in the UNIX RTR operating system mainte-
nance data area. Postmortem data is collected for
the running computer. [This may later be over-
written. See (d).]

(c) On entry to the system initialization, both CUS
may be initializing simultaneously; however,

only one CU will go on-line. The following se-
quence of decisions is used to select the on-line CU:

(1) Is this CU forced on-line? If so, this CU goes
on-line. Being forced on-line is a manual

override state.

Page 11

“/
\

AT&T 254-341-200

(2)

(3)

(4)

Is this CU forced off-line? If so, this CU
goes off-line.

Was this CU on-line before the initializa-
tion? If so, this CU goes on-line.

Is the other CU stopped? If so, this CU goes
on-line. If not, this CU checks a FIRSTMRF

flag. If the flag is set, it goes on-line. If the flag
is not set, the CU sets the flag and goes off-line.

(d) If a CU switch occurred, the postmortem data
area is overwritten by data obtained from the

CU that was previously running.

(e) The UNIX RTR operating system and applica-
tion initialization levels are set to reflect the

initialization level.

(f) An ATB base register is initialized to point at
the kernel segment table. Control is passed to

a specific point in the kernel with virtual address-
ing enabled for the nonbootstrap case. Control is
passed to big boot for the bootstrap case.

4.18 l?ig 1300t: Big boot is also written in
C-language, so it too must establish a stand-

alone environment in which to operate. Then big boot
performs the following operations

(a)

(b)

(c)

(d)

(e)

ed,

It initializes a pointer to the DFC status word
area.

It initializes a pointer to the boot parameter
save area initialized by little boot.

It initializes a page table and an expanded de-
vice page table.

It initializes the BIC and the PIC.

It searches the VTOC for the root file to be
loaded. Normally, the current generic is load-

but a backu~ version can be loaded if it is man-
ually requested.

(1) It uses the VTOC address entry obtained
from the previous call that is used for block

O of the file system.

(2) It loads the boot header.

Page 12

(3) It waits until either the job is completed or
a time-out occurs. -,

(4) It initializes the initialization parameter
area with data from the boot file header.

(5) It adjusts the boot file segment table ad- ‘“
dress entries. The segment table immedi-

ately follows the boot header, and the number
of entries in it is specified in the boot header. ,

(6) It verifies the file size that is determined
from the boot file i-node, checking with the

.

file size in the boot header. ?

(7) It starts loading the boot file read, write,
and execute (rwx) segments starting after

the physical protected application segment
(PAS). The boot file is loaded one segment at a
time, and the segment table entry specifies the
number of pages in that segment.

(8) After a segment is loaded, the page table
entries are loaded for that segment with the

physical addresses.

(9) For a level 4 bootstrap, which must be initi-
ated manually, the PAS is cleared.

(10) The last rwx segment is the ECD that is
part of the boot file. The EDC that is in the

root file is a dummy. The VTOC is searched for
ECD partition and the ECD is loaded. The boot
time date data base (such as the plant measure-
ment data base) is also loaded from the appro-
priate disk partition specified in the boot
header.

(f) The boot file requires a certain number of =
pages that are not loaded with disk data. The

pages that are read/write only must be initialized.

(g) It initializes the rest of MAS so that it has
good parity and enables the cache if one exists

and if a manual request to run without the cache
has not been made. n,

(h) It loads the last word address for the MAS
that is minimally equipped [whether it is in

CU O or CU 1 for the system initialization].

1SS6, AT&T 254-341-200

,F (i) It provides an output System Recovery Mes-
sage indication that either big boot detects

failure or that it has successfully concluded.

(j) Control is transferred to kboot by a “change
state.”

If a failure is detected, an output System Recovery
. Message indication is provided via the EAI which

indicates the reason for the failure.

. 4.19 Kernel Boot: Big boot transfers control to
KBOOT which allocates a data area for the

memory manager data and kernel stack and sets up
a temporary memory map to reflect the boot image
and data. The KBOOT enables interrupts and starts
the highest priority process that is in the boot image
followed by lower priority processes. Typically, pro-
cesses are started in the following order:

(a) System control process Error Interrupt Han-
dler

(b) System integrity monitor (SIM)

P“
(c) Disk driver

(d) File manager

(e)

(f)

Special processes such as the scheduler, the
memory manager, or the capability manager

Supervisory processes such as the UNIX RTR
operating system boot or the process manager.

If there are process creation entries in the system
generation specification file, KBOOT sends messages
to the process manager to start these processes.

P
B. System Control Processes

.
4.20 The system control process modules of the

operating system have responsibility for han-
dling error interrupts, implementing CU reconfigu-
ration, conducting system status audits, and
providing maintenance access and control to the off-
line CU. The system control process modules are im-
plemented as operating system kernel processes.

(a) The system control process error interrupt
handler is responsible for handling error in-

terrupts and reconfiguring the CUS.

(b) The system control process maintenance
driver is responsible for maintenance access

and control to the off-line CU.

(c) The system control process audit is responsi-
ble for monitoring system status in both CUS.

System Error Interrupt Handler

4.21 Error interrupts can be caused by an error
condition either in the on-line CU or off-line

CU in a duplex configuration. Three types of error
interrupts are on-line hardware, off-line hardware,
and on-line software. All interrupts are handled by
the on-line CU.

4.22 It should be noted that an error interrupt is
distinct from the type of interruption caused

by either a stop and switch or an MRF. The distinc-
tion is that an error interrupt maybe graceful in the
sense that execution can be resumed at the point of
the interrupt after the error source has been cleared.
When either a stop and switch or an MRF occurs, a
hardware initialization follows with no possibility of
returning to the point of the interrupt. The action
required when an error interrupt occurs can be any-
where from benign to severe depending on the type
of error and the system state at the time of the error.

4.23 When an error interrupt occurs, system con-
trol process error interrupt handler will take

the following steps:

(a) It will classify the error by examining the
error register in the CU or interrupting chan-

nel.

(b) It will increment an error counter by calling
a configuration management error reporting

function. This function will test to determine if the
threshold has been exceeded. The error counts are
contained in the unit control blocks for the appro-
priate unit controlled by system control process
error interrupt handler [central control (CC),
store, DMAC, or channel].

4.24 The actions taken on the error may be one of
the following

(a) Device may be removed if request is received
from CONFIG (via a fault message). This

would result in a CU switch if the remove request
was for the on-line CU.

Page 13

AT&T 254-341-200

(b) Error information may be passed to other pro-
cesses affected by the error.

(c) An initialization maybe requested on certain
error interrupts associated with the DMAC.

4.25 Hard Switch and Soft Switch Function:
The system control process error interrupt

handler will accept messages from CONFIG or any
ether process to accomplish the following

(a) To cause an emergency or hard switch of CUS
followed by a system initialization of the

newly on-line CU.

(b) To cause a graceful or soft switch of the CUS.
The function of the soft switch is to allow ei-

ther CU in a duplex configuration to be used with-
out the need for a system initialization.

The system initialization required for a hard switch
is disruptive to activity in the system. A soft switch
is transparent.

4.26 The following actions are taken during a soft
switch:

(a) A soft switch message request is received by
system control process error interrupt han-

dler. If the off-line CU is not standby, send a fail-
ure response. If the off-line CU is standby,
proceed.

(b) Block interrupts and freeze DMA activity.

(c) Enable input/output in the off-line CU over
the maintenance channel to avoid missing any

interrupts.

(d) Save the state of the CC registers, channel
registers, DMAC RAM, and the interrupt

stack in memory.

(e) Start the off-line CU over the maintenance
channel.

(f) Complete the shutdown of the currently on-
line CU. Terminate its activity with a HALT

instruction.

(g) Continue execution in the newly on-line CU by
restoring the state of the items saved in (d).

Channel interrupt registers must be ORed with

the value saved in memory to prevent the loss of
interrupts that occur while the switch is in prog-

?,ress.

(h) Enable the DMAC and interrupts.

(i) Send success response message to the system
?

integrity monitor.

4.27 Handling of Memory Faults: The com-
puter has hamming error correction and de-

tection. Multiple bit memory errors will result in a
hardware error interrupt. Single bit errors will also
result in an error interrupt being generated. The sys- ~,,
tern control process error interrupt handler will then
perform the following actions:

(a)

(b)

(c)

(d)

It will record failing address and syndrome
bits in memory.

It will correct data in memory by reading and
rewriting failing location.

It will call configuration management rou-
tines to increment error counts.

It will call the recovery message formatter to
format the error data in memory and output

it to the memory logfile.

If the error threshold in the ECD is exceeded, the
configuration management routines will request a
switch.

System Maintenance Driver

4.28 Processes in the system need to have special-
purpose access to a particular CU for various

reasons. Therefore, it is logical to group all of these
special-purpose functions within the confines of one
process, the system control process maintenance
driver. The system control process maintenance
driver provides an interface between the off-line CU
and higher level programs. The system control pro-
cess maintenance driver handles maintenance access
to the off-line CU over the maintenance channel and

‘T

the memory update unit. The system control pracess
maintenance driver will deny access to the off-line
CU when it is in the standby state.

‘T

Page 14

1SS6, AT&T 254-341-200

4.29 The following functions are performed by the
system control process maintenance driver:

(a) It executes a series of maintenance channel
orders over the maintenance channel to the

other CU. The on-line CU has access to the
microcontrol unit of the off-line CU via the main-
tenance channel. A maintenance channel order
can cause a single microinstruction to be executed
in the off-line CU.

(b) It copies to or from the off-line CU memory.
The on-line addressing mode is virtual, and

the off-line addressing mode is physical. The most
common use for this function is to copy diagnostics
to the off-line CU and to copy results back.

(c) It updates a block of physical memory in the
off-line CU of a duplex pair by performing a

direct memory copy over the memory update unit.
This function would be used when restoring the
off-line CU to service.

(d) It initiates execution in the off-line CU at a
specified physical address. This function is

required to initiate a diagnostic that executes in
the off-line CU.

(e) Same as (d) except it first blocks all peripheral
interrupts and freezes DMAC in the on-line

CU. Execution time is limited to 3 milliseconds. At
the end of this period, it allows peripheral inter-
rupts and releases DMAC.

(f) It initializes the off-line CU; that is, it puts it
in a known state so that an off-line program

can execute or so that the computer can be re-
stored to service. This function is required be-
tween phases of the CU diagnostics.

P
4.3o An important point concerning the philosophy

embodied in paragraph 4.29 (a) through (f) is
. that misuse of the maintenance functions can cause

complete system insanity. However, it is not intended
to include elaborate safeguards or checks in the sys-
tem control process maintenance driver that could
potentially overrule an application maintenance re-

P quest in this process.

System Control Process Audit

P
4.31 The system control process audit provides a

periodic verification of the CU hardware sta-

tus. Its main function is to provide a useful CU hard-
ware configuration.

4.32 The system control process audit monitors the
duplex configuration. Inconsistent hardware

status and unacceptable hardware configurations are
corrected where possible. This test should run period-
ically approximately once every 20 seconds.

4.33 The system control process audit does not
audit all hardware in the CU complex. The in-

terface with the EAI hardware is audited by a sepa-
rate EAI audit. The DMA channel inhibit/enable
flags are audited by the drivers via periodic “pie”
commands over all DMA channels under their juris-
diction.

4.34 The status information in the system status
registers and the ECD are checked for consis-

tency and validity. A maintenance channel failure
and a read off-line store failure are considered to be
caused by the powered down state of the other CU.
The audit does not fail any test because the other CU
is powered down if the other CU is not marked AC-
TIVE or STANDBY. The backup maintenance chan-
nel bits in the hardware status register of the on-line
CU are checked. The sequence in which these tests
are performed is important. Some tests depend upon
conclusions of previous tests.

C. Configuration Management

4.35 The Configuration Management System (Fig.
5) is responsible for the nondeferrable portion

of configuration management of the computer. Fol-
lowing are the main components of the Configuration
Management System:

(a) Equipment Configuration Data Base :
The ECD contains the attributes and current

status of computer hardware units.

(b) Equipment Configuration Data Base
Function: The ECD function (ECDFUNC) is

a collection of library functions that provide ker-
nel access to the ECD.

(c) Equipment Configuration Data Base
Manager: The ECDMAN is a collection of

library functions that provide nonkernel access
to the ECD.

Page 15

AT&T 254-341-200

nDRIVER

I

/

SUPERVISOR
LEVEL

USER
LEVEL

Pig. 5—Configuration Management System

(d) Configuration Control: The configuration
control (CONFIG) is the central software en-

tity responsible for configuration of the system.

The Configuration Management System interfaces to
the automatic diagnostic process (ADP) and indi-
rectly to the MIRA process in order to initiate diag-
nostics.

Configuration Control

4.36 The CONFIG is the central software entity
that is responsible for system configuration.

Generally, the functions of CONFIG are as follows:

(a) Deciding whether or not to honor a conditional
remove unit request.

t(b) Deciding whether or not to honor a manual
remove unit request.~

(c) Maintaining the error counters in the ECD.

(d) Changing the major state of a unit and in-
forming other processes of the changed state.

The actual state change is done by the driver re-
sponsible for the unit.

4.37 Although CONFIG is responsible for system
configuration, it can be overridden by several

sources. These sources are as follows:

(a) Hardware initialization and reconfiguration
sequencers which cause MRFs and bootstrap

when critical faults are detected

(b) Manual intervention from the EAI

(c) Unconditional remove, restore, and switch
commands from the terminal or application

programs.

4.38 The CONFIG uses information from driver
processes and the ECD to determine reconfig-

uration actions. All conditional requests for removal

‘n

Page 16

1SS6, AT&T 254-341 -2!00

(from the terminal or application programs) are sent
to the appropriate device driver. The driver then
sends the request to CONFIG. The CONFIG accesses
the ECD to determine current configuration and sta-
tus of the unit and any associated backup, redundant,
or spare units. If the reconfiguration is allowable,
CONFIG sends the device driver a message affirming
the action. Whenever CONFIG allows a conditional
removal due to errors, a message is sent to ADP to

.
initiate a diagnostic of the removed unit.

4.39 The CONFIG will not allow a conditional re-
moval to occur if the unit is essential and does

not have an available replacement. In this case,
CONFIG will request a reinitialization of the hard-
ware and continue to use the unit. Also, if several
units connected to the same higher unit are failing,
CONFIG will determine if the higher unit can be
removed.

4.4o The ECD contains error counters for each
hardware unit. When a driver discovers an

error in one of its units, it reports the error to
CONFIG. The CONFIG will record the error in the
appropriate error counter in the ECD and will deter-
mine if the error rate is excessive. If the error rate

F
is excessive, the unit is deemed faulty and CONFIG
will determine if the unit can be removed.

4.41 ~Four Bit Essential Field Feature: This
feature is effective with UNIX RTR operating

system (release 1). With this feature, CONFIG will
not allow a manual removal request to occur if the
unit to be removed is the last unit in service. The au-
tomatic removal of units by the REX process and the
existing fault recovery processes of the drivers are
not affected by this feature.t

D. System Integrity Monitor

P
4.42 The System Integrity Monitor (SIM) is re-

sponsible for the software integrity of the
UNIX RTR operating system. It is also responsible
for scheduling and dispatching all audits. Hardware
integrity is the responsibility of fault recovery. The
SIM performs the following functions:

P
(a) It ensures the integrity of system bootstrap

initializations and generates boot progress
system recovery messages.

(b) It administers the 3B20D computer hardware

P sanity timers and application sanity timers.

(c) It monitors integrity processes.

(d) It monitors overload conditions.

(e) It provides an interface between UNIX RTR
operating system and the application integrity

monitor (AIM).

System Integrity Monitor Initialization

4.43 The SIM is a kernel boot process, which is ini-
tiated by the kernel immediately after the sys-

tem control processes error interrupt handler is
activated. The SIM executes at priority level 13,
which is the highest priority process excluding the
system control processes error interrupt handler,
test utility system (TUS), generic access package
(GRASP), and the processes executing in a critical
region. These latter processes execute at levels 14 and
15.

UNIX RTR Operating System Interfaces

4.44 The main function of SIM is to receive soft-
ware integrity exception data (information

regarding software faults) from operating system
programs and report them to the application and to
the craft.

4.45 The UNIX RTR operating system-owned au-
dits, overload detection checks, some boot pro-

cesses, and other processes detect software integrity
faults and report them to SIM.

4.46 Interface to UNIX RTR Operating Sys-
tem-Owned Audits: All audit information

(success or failure) is handled by the SIM. The SIM
is responsible for the management of failure data
and failure thresholds for all audits. When a failure
threshold for a particular audit is exceeded, the SIM
detects the failure and makes corrections. Audit fail-
ures which can be corrected are recorded in a system
error file. The corrective action taken by SIM de-
pends on the process that caused the failure.

4.47 Interface to UNIX RTR Operating Sys-
tem Boot Processes: The SIM is responsible

for verifying the successful creation of the following
operating system boot processes

● File manager

● Disk driver

Page 17

AT&T 254-341-200

●

●

●

●

●

●

Process manager

Error interrupt handler

Capability manager

Scheduler

Utility manager

Memory manager.

4.48 When a system initialization starts, the SIM
is notified via an event by the kernel. The

above boot processes are then expected to send the
SIM an initialization status message (i.e., success or
failure) within 30 seconds. Also, these boot processes
will inform the SIM of any integrity faults encoun-
tered during initialization.

4.49 If the SIM does not receive initialization sta-
tus messages from all boot processes within 30

seconds, the SIM will request another system initial-
ization. No prior notification of this initialization
will be given to the applications. Thus, basic sanity
can be defined as the reception of all expected suc-
cessful initialization status messages from UNIX
RTR operating system boot processes by the SIM.

4.SO In addition to the boot processes listed in
paragraph 4.47, two other processes may send

initialization status messages to SIM but are not re-
quired to do so. These processes are the IOP driver
and the AIM.

4.51 Each initialization status message contains
the identity of the reporting process and an

EAI output message. The SIM computes the EAI boot
step number based on the process identity. The SIM
then forwards the EAI output message along with
the boot step number to the EAI.

4.52 As each successful initialization status mes-
sage is received by the SIM, the output mes-

sage sent by SIM to the EAI is displayed on the
maintenance terminal as a success system recovery
message.

4.53 If a boot process cannot successfully initialize,
a failure initialization status message is sent

to notify the SIM of system error. The appropriate
information is sent to the EAI to be displayed on the
maintenance terminal as a failure system recovery

message, and the SIM requests another system ini-
tialization.

4.54 The SIM does not determine the scheduling of
the boot processes. The application should

ensure that the boot processes are not suspended
from running by their own processes.

4.55 Other Interfaces: The SIM also interfaces
to portions of the craft interface subsystem

for the exchange of integrity information with tihe
applications and craft persons. Since these UNIX
RTR operating system interfaces are involved in the
application interfaces, they are described in para-
graphs 4.57 through 4.61.

Application Interfaces

4.56 The SIM serves as the main interface for the
exchange of integrity information between

the operating system and all application integrity
processes. The SIM will process applications, re-
quests, and instructions. Most messages sent to ap-
plications will be handled by the SIM. The SIM
interface to the application is via the AIM. The AIM
is a kernel process running at the same priority as
SIM. In addition, the SIM will handle messages from
the maintenance terminal via the craft interface sub-
system.

4.57 Interface to the Overload Monitor: When
the SIM receives an overload fault or message

from a UNIX RTR operating system process (para-
graphs 4.77 through 4.98), the SIM will inform the
AIM of the overload condition (paragraphs 4.89 and
4.90).

4.58 System Initialization Message
(SYSIMSG) Status: Both UNIX RTR oper-

ating system and application processes may obtain
information about the most recent system initializa-
tion that has occurred by sending SIM a system ini-
tialization status message. The SYSIMSG is a
memory resident data structure that is built by vari-
ous initialization processes during initialization. The
SYSIMSG contains the following items:

(a) The initialization source (manual, hardware,
or software request)

(b) Initialization request parameters, including
the requested UNIX RTR operating system

and application initialization levels

Page 18

(c)

(d)

(e)

The UNIX RTR operating system and applica-
tion initialization levels that were executed

The configuration options selected on the EAI
terminal

The inhibit options selected on the EAI termi-
nal.

On a phase level O, SIM reads various areas in low
core in order to construct this information for use
when an SYSIMSG request of this type is received.
On phase levels 1 through 4, the SYSIMSG is ob-
tained from the postmortem dump area where it was
stored by the system initialization programs.

4.59 Whenever the audit terminates, SIM prints an
error message and sends an event to the AIM.

Sanity Timer

4.60 Application Sanity Timer: The SIM pro-
vides a software sanity timer for use by AIM

to ensure that application processes are sane and are
being scheduled by the operating system. The timer
is activated whenever AIM sends SIM a message.
Once the application sanity timer has been activated,
AIM must send SIM an event at least once in every
time-out interval. If SIM fails to receive this event
during any time-out interval, it will invoke the
PHASE OST. The craft may inhibit the phase by set-
ting INH_SFT_CHK on the EAI terminal when the
system is bootstrapped.

4.61 It is the responsibility of the application pro-
cess to activate the application sanity timer

after a system is bootstrapped. The SIM will ensure
that it does not time out during a phase 1. The AIM
must ensure that it does not time out during a phase
O.The SIM will not deactivate the application sanity
timer after either a phase O or 1.

4.62 Hardware Sanity Timer: The SIM is re-
sponsible for administering the hardware

sanity timer in both the on-line and off-line CUS dur-
ing normal system operation. During the system ini-
tialization sequence (before SIM is created),
bootstrap programs and the kernel are responsible
for administering the sanity timers.

4.63 The SIM resets the on-line CU sanity timer to
time out in 1000 milliseconds and the off-line

CU sanity timer to time out in 1600 milliseconds. If

1SS6, AT&T 254-341-200

a sanity timer times out, a stop and switch signal will
be generated by the hardware unless that signal has
been disabled manually by selection of the “lNH-
TIMER” option on the emergency action page. This
inhibit only disables the stop and switch; it does not
stop the sanity timer from counting. If the stop and
switch has not been inhibited, it will result in a sys-
tem initialization.

4.64 The SIM requests a time-out event every 800
milliseconds to administer the sanity timers.

This provides a 200-millisecond “cushion” before the
on-line CU sanity timer will time out. This cushion
partially defines system insanity; more than 200
milliseconds of continuous activity at or above the
SIM execution level (level 13) is deemed to be system
insanity and may be detected by the sanity timer tim-
ing out.

4.65 The SIM will always administer the on-line
CU sanity timer. Administration of the off-

line CU sanity timer is complicated by potential in-
terference with diagnostic testing of the off-line CU,
by potential maintenance channel failures, and by
use of the backup maintenance channel. The follow-
ing summarizes the administration of the off-line CU
sanity timer:

(a) If the sanity timers are inhibited from gener-
ating MRFs, the off-line CU sanity timer will

not be reset. This provides a way for extraordinary
diagnostic testing to be performed with no inter-
ference from SIM.

(b) When the sanity timer inhibit is eventually
turned off, the off-line CU sanity timer will

generate an MRF in the off-line CU because the
sanity timer will have timed out. To clean up after
this MRF, SIM will send a success system recovery
message with step number C to extinguish the “re-
covery” light on the EAI terminal.

(c) When using the maintenance channel to reset
the off-line CU sanity timer, SIM will first ini-

tialize the maintenance channel hardware and
then check for normal returns from all mainte-
nance channel commands to determine if the
maintenance channel is working properly. If a
maintenance channel failure is indicated, the
backup maintenance channel will be used to reset
the off-line CU sanity timer.

Page 19

AT&T 254-341-200

Creation of Integrity Processes

4.66 The SIM is responsible for the creation and
subsequent restart (in case of termination) of

critical UNIX RTR operating system processes.
These processes include the user level automatic re-
start process (ULARP). The user process monitor is
used to monitor UNIX RTR operating system and
application-user processes.

User Level Automatic Restart Process

4.67 The SIM is responsible for
integrity and the creation

software system
of ULARP. The

ULARP is a user level process whose functions are to
create and monitor critical user processes and to re-
start automatically any monitored processes which
terminate.

4.68 Initialization of the ULARP Processes:
During a bootstrap procedure, SIM will create

the UNIX RTR operating system supervision. In the
“pcreate” message sent to the process manager, the
field will be set to BOOTCHAN. Which will indicate
to the UNIX RTR operating system that this is a
bootstrap procedure. At this time, the UNIX RTR
operating system “init” function will execute the
ULARP process. When SIM receives the acknowledg-
ment message on the successful creation of the UNIX
RTR operating system, SIM will log the process iden-
tification and wait for the start-up event from
ULARP. This event will cause SIM to send ULARP
a start-up message. This message will contain
SIMBOOT in the message text indicating a bootstrap
procedure as well as other system information
needed for a successful ULARP start-up.

4.69 Once ULARP has completed execution of the
run command file, it will send a message to

SIM. This message will inform SIM of the status (ei-
ther success or fail) of the execution of the run com-
mand file. That status will be given to ULARP
whenever it is necessary to restart ULARP and
whenever ULARP is instructed to reread its process
name file.

4.70 ULARP Termination: The SIM will receive
a “death-of-child” message on the ULARP

process if either of the following conditions exist

(a) The UNIX RTR operating system “init” se-
quence fails to create ULARP.

(b) The ULARP dies.

4.71 Under most circumstances, when the “death-
T

of-child” message is received, SIM will assume
that ULARP was prematurely terminated and will
attempt to restart it. There are, however, two condi-
tions under which ULARP will not be restarted by ~,
SIM:

(a) The termination message is received before .
the start-up event from ULARP indicating a

UNIX RTR operating system failure to success-
fully execute ULARP.

(b) An event is received by SIM prior to the termi- ~
nation message indicating a ULARP failure to

initially access the process name file.

If ULARP is not restarted, SIM will display a system
recovery message on the maintenance terminal to
indicate the reason for the ULARP failure.

4.72 Restarting the ULARP Process: Follow-
ing are three conditions under which SIM will

attempt to restart the ULARP process

(a) The ULARP is prematurely terminated, such
as during a phase level 1. In this case, SIM will ~,

receive a “death-of-child” message and will imme-
diately attempt to restart ULARP.

(b) The PDS shell command “INIT:ULARP!” is
entered on the EAI terminal. When this com-

mand is entered, the event is sent to SIM. When
this event is received, SIM will check the ULARP
process identification. If it is running, a message
will be sent to ULARP instructing ULARP to read
its process name file and attempt to start all moni-
tored processes which are not executing at that
time. If ULARP is not running, SIM will attempt
to restart it. ?,

(c) The craft initialization selection is entered on
the EAI terminal. This selection will cause the

EAI handler to send SIM a fault. Upon receiving
this fault, SIM will terminate all craft processes.
If ULARP is running, SIM will send it a message.
If ULARP is not running, SIM will restart
ULARP. ?,

For each ULARP restart, SIM will first attempt to
create the ULARP process. When SIM receives the
start-up event from the new ULARP process, it will

T

Page 20

1SS6, AT&T 254-341-200

,n terminate all craft processes and then send ULARP
a start-up message. If ULARP is not successfully cre-
ated, the craft processes are not terminated.

t-
Error Logging and Reporting

4.73 The SIM reports error conditions to the main-
tenance terminal via the EAI or the output

spooler. The SIM error logging strategy uses the craft
interface output spooler to record all integrity error
conditions.

n 4.74 EAI: During system initialization, the SIM
reports error conditions using system recov-

ery messages via the EAI.

4.75 Output Spooler Interface: The SIM sends
output error messages to the maintenance ter-

minal, the read-only printer, and the switching con-
trol center data link via the output spooler. The SIM
error message has the format

REPTSIMCHK a b

where a is the SIM error code and b is supplementary
‘n data. The SIM error codes are listed in Table B. The

supplementary data is binary information that may
be examined to provide additional information. The
optional binary data is described in Table C. The oc-
currence of this message (and any supplementary
data) is recorded in the SIM log file.

4.76 Error Logging: All system error conditions
are recorded by SIM in the SIM log file. The

overload monitor process also records errors in the
SIM log file. The entries in the SIM log file areas fol-
lows:

C
● SIMER: SIM error conditions

● O VLDER: Overload system error condi-
tions.

E. Overload Monitor

4.77 Overload Monitor: The UNIX RTR operat-
ing system overload monitor is a subfunction

of the SIM. Its primary function is to receive reports
of overload conditions from other operating system
processes and inform the application program and
craft persons that these conditions exist.

4.78 Overload Detection: The detection of over-
load conditions, with only a few exceptions, is

not the responsibility of the overload monitor. The
overload monitor does not routinely query system
resources seeking overload conditions. Frequent que-
ries would simply add to overload situations, while
infrequent queries would not detect overload in time
to be of practical use. For this reason, overload detec-
tion is done through the use of code embedded in op-
erating system processes which control resources
being utilized. As resources are allocated to UNIX
RTR operating system processes, checks are made for
overload conditions. As overload is detected, notifica-
tion is made to the overload monitor. When the over-
load condition has been cleared, the overload monitor
is again notified. The overload monitor has no work
unless the system is in overload or is recovering from
overload.

4.79 Reporting Overload Condition to SZM
and the Application: All overload condi-

tions except file system overflow are reported to SIM
through the use of fault codes in the range 81 to af,
hexadecimal. A unique fault code is used to report
each level of overload and each time an overload con-
dition is cleared. File system overflow conditions are
reported using messages because detection of file sys-
tem overflow is done partially by a user-level pro-
gram.

4.80 The SIM reports all overload conditions to
AIM using the application port. Whenever an

overload fault or message is received by SIM, it is for-
warded to the process that is attached to the applica-
tion port.

4.81 Reporting Overload Condition to the
Craft: Whenever SIM receives an overload

fault, an “REPTSIMCHK” output message is
printed with error code 602 followed by the overload
fault code. Whenever SIM receives a file system over-
flow message, an “REPT FS” output message is
printed giving the name of the affected file system.

4.82 The following two mechanisms report over-
load conditions to the craft:

(a) For every overload condition reported to the
overload monitor, an REPT:SIMCHK output

message is generated. The error code and data
field of that message indicate the type of overload
fault that was received.

Page 21

AT&T 254-341-200

TABLE B

SIM ERROR CODES

CODE MEANING

*1 System initialization failure.

2 System initialization status message received with unknown pro-
cess number.

*12 Unexpected fault received by SIM.

101 Audit control subsystem initialization failure.

102 Audit record initialization error.

103 The System Integrity Output Formatter (SIOF) program is not
running. Some output messages were lost.

104 Routine audit scheduling was not allowed.

121 Failure to get an audit record from the Equipment Configuration
Data Base (ECD) using its record ID.

122 Failure to update an audit record in the ECD.

123 Failure to open a keyed sequence of audit records in the ECD.

124 Failure to get a record in a sequence of audit records.

125 Failure to get an audit record using the audit name and member
number.

126 Failure to read the SIM control record.

127 Failure to update the SIM control record.

128 Failure to open a sequence of audit instance records in the ECD.

129 Failure to get a record in a sequence of audit instance records.

130 Failure to get an audit instance record using its record id.

131 Failure to update an audit instance record in the ECD.

132 Failure to get an audit instance record using its instance name and
the RID of the associated audit record.

*Indicates conditions that may result in a system initialization phase, unless
software checks are inhibited.

n,

Page 22

1SS6, AT&T 254-341-200

.

,n

TABLE B (Contd)

SIM ERROR CODES

CODE MEANING

141 Audit marked active in its ECD record when it is not running.

142 Invalid message received from the process manager or the utility
manager regarding an audit process.

143 Audit reply received from an inactive audit.

144 Timeout occurred for an inactive audit.

145 Invalid reply received from an active audit.

146 SIOF output buffer overflow; some audit output messages were
lost.

147 Failure to find one and only one audit process for the specified
utility id.

148 Audit error report received from an inactive audit.

149 Invalid request to inform an audit process when the audit’s ECD
record is modified.

150 Invalid request to run or stop an audit.

151 Audit blocking condition cleared because it was invalid.

152 Failure to create a transient audit process.

153 Unable to take recovery action for an audit faihwe.

154 Audit inhibited by SIM because it could not be run, timed out,
died, or was faulted while correcting errors,

155 Routine audit scheduling malfunctioned and is being reinitialized.
All routine audits are temporarily inhibited.

156 Failure to reinitialize routine audit scheduling after it had malfunc-
tioned.

157 Routine audit scheduling has been temporarily inhibited because
SIOF is not running.

158 Failure to reinitialize routine audit scheduling after SIOF stopped
running.

181 Failure to access an audit record in the plant measurements data
base.

Page 23

AT&T 254-341-200

TABLE B (Contd)

SIM ERROR CODES

CODE MEANING

182 Failure to create an audit record in the plant measurements data
base.

183 Failure to open the plan measurements data base.

“200 Failure of the application integrity monitor (AIM) process to reset
the application sanity timer within the timeout interval.

201 Failure to activate or deactivate the application sanity timer.

202 AIM was not connected to port PT-AIM when a PHASE O was
requested.

206 AIM not connected to port PT_AIM for reception of overload
faults.

207 AIM not connected to port PT_AIM for soft-switch request.

208 AIM not connected to port PT-AIM for notification of CU switch
completion.

300 Unrecognized acknowledgement message received by SIM.

301 Unrecognized USRACK message received by SIM.

306 Message with invalid type received by SIM.

307 Unrecognized MSFAULT message received by SIM.

310 Unrecognized OST entry received by SIM.

401 Failure to respond to a request from another process for informa-
tion about the most recent system initialization.

602 Overload status change.

605 Kernel-level overload monitor process failed to initialize.

606 Supervisor-level overload monitor process failed to initialize.

(b) All output messages generated by the over- tions have been implemented for all of the following
load monitor are also logged in the system in- overload conditions

tegrity log file from which they may be retrieved
by the craft through use of the OP:LOG spooler ●

utility command.

●

4.83 Detection of UNIX RTR Operating Sys-
tem Overload Conditions: Overload detec- ●

tion occurs within the operating system as operating
system resources are allocated. These overload detec- ●

Message buffer

Memory manager

Insufficient swap space on disk

Segment descriptor table

“?

Page 24

1SS6, AT&T 254-341-200

P

r-

.

TABLE C

SIM SUPPLEMENTARY DATA

ERROR
CODE BINARY DATA

1 If a boot process indicator message is received from a kernel
process, the appropriate byte is set to 1; otherwise the byte remains
at O.

Boot progress indicators, from left to right:

BYTE PROCESS

o File Manager
1 Disk Driver
2 Process Manager
3 Error Interrupt Handler
4 Capability Manager
5 Scheduler
6 Utility Manager
7 Memory Manager

2 Process number of process sending the message.

12 Fault code, followed by the virtual address within SIM at which
the fault occurred.

102 ECD record id (RID) of the audit record that was not initialized.

121 RID used in attempt to get an audit record from the ECD.

122 RID used in attempt to update an audit record in the ECD.

126 RID of the SIM control record (as specified in the ECDORG
record).

127 RID of the SIM control record (as specified in the ECDORG
record).

128 If not zero, the RID of the audit record for which a sequence of
instance records could not be opened.

130 RID used in attempt to get an audit instance record from the ECD.

131 RID used in attempt to update an audit instance record in the ECD.

132 RID of the audit record for which an associated instance record
could not be gotten from the ECD.

141 RID of the audit record in error.

142 RID returned in the message.

143 RID of the audit record, as specified in the reply.

144 RID of the audit record, as specified in the timeout identification.

Page 25

blT&T254-341-200

TABLE C (Contd)

SIM SUPPLEMENTARY DATA

ERROR
CODE BINARY DATA

145 RID of the audit record, as specified in the reply.

147 Utility ID (pcode) of the process, as specified in the audit record.

148 RID of the audit record, as specified in the error report.

149 RID of the audit record, as specified in the request, followed by the
process number from which the request was received.

150 RID of the audit record, as specified in the request.

151 RID of the audit instance record process number of the blocking
process, and the elapsed time in milliseconds since the audit
instance was blocked.

152 RID of the audit record for which the audit process was not
created.

153 RID of the recovery audit that could not be run.

154 RID of the audit that was inhibited.

300 Message identity

306 Message type

307 The fault code specified in the message.

310 The invalid OST number, followed by the process number of the
calling process.

602 Overload fault code:

AE — Message buffer 90Y0 full.

AD — Message buffer 70’%0full.

AC — Message buffer overload cleared.

A9 — Kernel process memory overflow. Swappable main memory
is at minimum size.

A8 — Kernel process memory has grown to within 1/4 megabyte
of its maximum size. This has reduced the size of swappable
memory to within 1/4 megabyte of its minimum size.

A7 — Memory overload cleared.

A6 — Disk swap space 80’XOfull.

A5 — Disk swap space overload cleared.

Pago 26

‘-n

1

1SS6, AT&T 254-341-200

.

.

,fm

TABLE C (Contd)

SIM SUPPLEMENTARY DATA

ERROR
CODE BINARY DATA

602 A4 — Segment descriptor table overflow.

(Contd) A3 — SDE table nearly full.

A2 — SDE table overload cleared.

Al — Dispatcher control table overflow.

AO — DCT table 70% full.

9F — DCT table overload cleared.

9A — Kernel level process lockout.

99 — Kernel level lockout cleared.

98 — Kernel process timed entries.

97 — Timed entry overload cleared.

96 — Supervisor/user level process lockout.

95 — Supervisor/user level lockout cleared.

92 — File manager overloaded. .
91 — File manager overload cleared.

90 — A disk file controller is overloaded.

8F — Overload cleared on one DFC.

● Dispatcher control table The thresholds for the detection of these overload

● Kernel process timed events and
lockup

● Supervisor/user level lockout

● File manager

● Insufficient file system space

● Disk driver

● IOP driver

● Data link input/output

● Output spooler.

conditions are fixed.

system
4.84 Message Buffer: The kernel monitors the

number of message buffers currently allocat-
ed. When the number of messages allocated reaches
70, 90, or 100 percent, the kernel sends a fault to the
overload monitor. A different fault is used for each
level.

4.85 The operating system tries to prevent message
buffer overload conditions from occurring by

protecting itself against “message hogs.” The pro-
cesses that have the highest probability of becoming
message hogs are low-priority receiving processes to
which kernel processes are sending messages.

4.86 Memory Manager: The memory manager
has a limit to the amount of main memory

Page 27

ATL’AT’254-341-200

that czn be filled with nonswappable processes.
When creation of a new kernel process is requested,
thk? ~emory manager first checks that the allocation
of memory to that process will not exceed the limit.
The memory manager will monitor the amount of
nonswappable main memory currently allocated.
When the amount allocated reaches 80 percent of the
maximum, the memory manager sends a fault to
SIM.

$.87 I.nsufficient Swap Space on Disk: The
amount of swap space on disk currently in use

will be monitored to detect overload. When the
amount used reaches 80 percent of the total space al-
located, the memory manager sends a fault to SIM.

4.88 Segment Descriptor Table Entry: The
creation of any new process requires a mini-

mum of three entries in the segment descriptor table
(SDT). The maximum number of SDT entries re-
quired by a process is 128; however, most processes
use less than six. The number of entries in the SDT
table Wiil be monitored to detect overload. When the
number of free entries in the SDT table falls below
50, the memory manager sends a fault to SIM.

.
4.89 Dispatcher Control Table Entry: The ker-

nel monitors the number of entries in the dis-
patcher control table (DCT); when this number
reaches 70 percent, the kernel sends a fault to the
overload monitor. When the DCT entries are 100 per-
cent allocated, the kernel sends another fault to the
overload monitor.

4.QO Kernel Process Timed Events and System
Lockup: To ensure that timed events are re-

ceiving adequzte response from the kernel, a low-
level nonkillable kernel process has been imple-
mented to monitor timed events. This process will
repeatedly call for a single 5-second time-out. If the
time-out is not received within 5.2 seconds three con-
secutive times, a fault is sent to the overload monitor.

4.91 This same kernel process is used to check for
lockup of the system by a kernel process below

the level of SIM. If a kernel process between levels 3
and 12 gets into an infinite loop, SIM will continue to
administer the sanity timer. In order to detect this,
the low-level kernel monitor process is required to
send an event to SIM every time it is entered. If that
event is not received at least once every 10 seconds,
a fault is sent to the AIM.

4.92 Supervisor/User Level Lockout: To en-
sure that supervisor and supervisor/user level

programs do not remain locked out of execution by ~
system overload, a nonkillable supervisor process has
been implemented. The execution priority of this pro-
cess has been set to a level that is below the priority
of standard UNIX RTR operating system user pro-
cesses. If this process gets executed periodically, it
will be certain that all normal UNIX RTR operating
system user processes are also being executed. If any
AIM wishes to execute processes at a lower priority
so that they run only when the system is idle, the
overload monitor will not be triggered when those
processes fail to run.

4.93 It is the responsibility of the nonkillable su-
fl.,

pervisor process to send an event to SIM every
minute. If this event is not received at least once in
5 minutes, the operating system will be considered to
have locked out supervisor/user level programs and
a fault will be sent to the AIM for corrective action.

4.94 File Manager: The file manager has a lim-
ited number of blocks in its internal task ta-

ble. It is designed to use the system message buffers
as a holding area for incoming requests. Whenever it
has resources available to handle a new request, it
dequeues a new message.

4.95 The file manager monitors the number of
message buffers on its input queue. When the

length of its input message and queue equals 20 times
the number of its internal task blocks, it sends a fault
to the overload monitor.

4.96 Insufficient File System Space: The file
system overload is a much trickier problem to

monitor than file manager task queue overload. The
number of free blocks needed in a particular file sys-
tem depends entirely upon the use of that file system.
A file system into which little or no data is written “?,
can be almost full all the time without any harm to
the operating system. On the other hand, the file sys-
tem into which the error logs are written will tend to
fill up if it is not frequently purged of old data. When
this happens, critical error data may be lost.

4.97

(a)

The following capabilities are required in
order to solve file system overload conditions: n .,,

A monitor program has been implemented
that will periodically record the number of

free blocks in every mounted file system. This pro-

Page 28

1SS6, AT&T 254-341-200

gram attempts to predict file system overflow in
advance based upon the rate at which free blocks
are being consumed.

(b) Whenever the file manager detects that a file
system has run out of either i-nodes or blocks

of free space, it will send a message to SIM identi-
fying the file system. OThe monitor program re-
peats the message to SIM every monitoring period
in which a lack of free blocks is detected.q

(c) Craft interface commands are provided for the
general maintenance of UNIX RTR operating

system file systems.

4.98 Disk Driver: The disk driver administers a
separate job queue for each DFC in the sys-

tem. Therefore, each controller is subject to its own
overload conditions. Overload on a DFC depends on
the number of jobs waiting for the controller and also
on the size of these jobs. Two criteria are used to de-
termine when a DFC is overloaded:

(a) A DFC will be considered overloaded if its in-
ternal queue of 64 jobs becomes completely

full.

(b) A DFC will also be considered overloaded if
incoming jobs are required to wait too long

because pending jobs are too big.

The disk driver will send a fault to the overload moni-
tor whenever either of the above conditions occur on
a DFC.

5. ENHANCED TERMINALACCESS

5.01 This feature decreases the likelihood of a ter-
minal suspend (inability to communicate with

the system) weakening the system.

5.02 The various activities included in this feature
will add or enhance four categories of system

capability: Prevention, Detection, Recovery and Data
Reporting.

● Prevention -The prevention mechanisms
insure that should a requested service be re-
quired to be completed (in order to prevent a
suspend from occurring), the requested ser-
vice either in fact completes or the resultant
suspension is broken within a reasonable
period of time.

●

●

●

Detection -Detection techniques determine
when a process is in a “permanent” sus-
pended mode.

Recovery -Once permanent suspensions are
detected, recovery aims at getting processes
out of their suspended states without taking
a system reboot. Phase 1 and other limited
process reinitialization techniques can be
used.

Data Reporting -This technique captures
and reports conditions suspended to lead to
terminal suspends.

5.03 This feature is present in all new releases and
effort is being made to incorporate it into ear-

lier generics. Also, it plays a very important role in
the system because it eliminates some terminal sus-
pends.

6. MAINTENANCE INTERRUPT

6.01 A level 1 that is hardware initiated and does
not involve a memory copy will be called a

maintenance interrupt. A level 1 that is software ini-
tiated and does not involve a memory copy will be
called a phase or an interrupt. If the UNIX RTR oper-
ating system initiates it (a utility identification <
0X400), this will be called an interrupt. If the applica-
tion initiates it and the application uses the PHASE
WOP OST call, the application can specify whether
it is to be termed a phase or a maintenance interrupt.

7. FAULT RECOVERY

7.01 The function of fault recovery, as the name
implies, is to recover the system frdm a fault

that has been recognized by the self-checking hard-
ware circuits of the 3B20D computer. Fault recovery
includes system initialization and bootstrapping.
System initialization and bootstrapping occur auto-
matically based on the progressive initialization phi-
losophy implemented for UNIX RTR operating
system. In progressive initialization, an unsuccessful
initialization attempt followed by another initializa-
tion escalates the initialization level. When the ini-
tialization levels have been escalated to the full
range, manual actions must be initiated via EAI. If
manual actions are also unsuccessful, support com-
puter diagnostics may have to be run to locate the
trouble.

Page 29

AT&T 254-341-200

7.02 For nonbootstrap initializations, after it has
initialized the computer, system initialization

enables virtual addressing and passes control to the
kernel. The system initialization is never reentered
unless another system initialization occurs. The fol-
lowing actions are taken by UNIX RTR operating
system:

(a) Every kernel process must be faulted since
input/output in progress is interrupted by an

initialization. Also, the suspension process that
was running (when the initialization occurred) is
faulted. The kernel interrupt stack in the cache is
lost on every initialization.

(b) The System Control Process Error Interrupt
Handler is dispatched since it is the highest

priority process. The system control process error
interrupt handled initializes the channel hard-
ware and sets up the kernel interrupt attach table
(via OST call).

(c) The SIM sends a detailed message concerning
the initialization to a port dedicated to the

application. The process attached to this port con-
trols the application initialization procedure as
appropriate.

(d) The UNIX RTR operating system and the ap-
plication initialization level counters are

cleared at the end of the initialization interval.

7.03 Operating System to Application Inter-
face: Associated with each initialization are

an operating system initialization level and an appli-
cation initialization level. The initialization actions
performed by the operating system are controlled
solely by the operating system initialization level.
The operating system will either fault or reinitialize
the application processes depending on the operating
system initialization level. When an initialization
occurs, an application can request a message contain-
ing various details about the initialization including
both the operating system and the application ini-
tialization levels. The process attached to this port
adjusts the response of the application to the initial-
ization depending on the contents of the message.

7.04 Application to Operating System Inter-
face: The application specifies the number of

application levels for each of the operating system
initialization levels and defines what actions applica-
tion code will perform for each operating system ini-

tialization level. Also provided is an operating
system primitive called phase that allows an operat- ‘?,
ing system process as well as an application to cause
an initialization. The operating system initialization
level Oallows the application to perform an initializa-
tion without the operating system performing any
initialization functions.

A. limp Modes

7.OS In the face of certain multiple faults, a limp
mode may recover a useful but degraded leveI

of performance. The following limp modes may be
initiated manually via the EAI:

“7,
● Hardware checks blocked

● Error interrupt blocked

● Cache disabled

● Software error checks inhibited.

7.06 Effective with UNIX RTR operating system
(release 1), the disk limp mode feature allows

the system to run (with limitations) without disk ac-
cess, thus reducing system outages. This prevents a
total system outage when an essential disk pair is
lost. The disk driver determines when disk limp mode
is necessary and initiates actions to enter disk limp
mode. When essential disks are repaired, a manual
bootstrap is required to configure the disks back into
the system.

7.07 bDisk Limp Mode Enhancement Feature:
This feature provides two enhancements to

the disk limp mode capability of the UNIX RTR oper-
ating system (release 1). The first enhancement elim-
inates the need for a manual bootstrap [load disk
from tape (LDFT)] by allowing the system disks to be
restored from tape(s) while in the disk limp mode. ?
This decreases system downtime by eliminating the
system downtime that accompanies the I.DFT
method to restore disk from tape(s). The second en-
hancement allows in-core database to be preserved
when coming out of disk limp mode. A good, current,
in-core database is provided by the limp mode ECD
recovery when coming out of disk limp mode.~

B. Software Faults

7.08 Some software faults within a process will be
discovered by the kernel and will result in the

Page 30

1SS6, AT&T 254-341-200

,m

.

.

.

process being faulted by the kernel. Other software
faults will be discovered by the process itself. A rec-
ommended response to the discovery of software
faults is to notify SIM via a message specifying an
appropriate action to be taken by SIM. If the soft-
ware problem cannot be corrected by one means, SIM
will resort to other more drastic actions to clear it.

8. DISK RECOVERY IMPROVEMENTS

8.01 This feature seeks to improve the reliability of
the disk subsystem which is done partly by

reducing the amount of time the system is vulnerable
to an outage (due to a single fault in the active MHD
or DFC) and by reducing that outage time if one oc-
curs. This feature consists of the following improve-
ments

(a)

(b)

(c)

(d)

(e)

8.02

It provides for reduction of simplex time for
routine maintenance

It reduces occurrences of extended vulnerabil-
ity caused by read errors on the active MHD

[t makes faster repair of data on the disks

It makes faster auditing and correction of disk
data while the disk is active

It reduces outage recovery time.

The following improvements make up the disk
recovery feature:

● Short Term Improvements

● Medium Term Improvements

8.03 Inhibit Routine Exerciser (REX) DFCS
and MHDs — This improvement will reduce

the vulnerability time by eliminating unnecessary
routine diagnosis and restorals. Whereas active
MHDs were being diagnosed daily, manually initi-
ated diagnosis of both (MHDs and DFCS) are per-
formed monthly. Due to the hardware and firmware
being used constantly, errors and failures in most of
the hardware are found operationally when they oc-
cur.

8.04 One Block Retry Of MHD Restore Read
Job Failure – This improvement provides

valuable information about the location of the read
failure. It is expected that with this improvement the

number of occurrences of read errors causing MHD
restorals to abort will drop significantly. Also, when
the restore does abort, the information provided will
reduce the repair time needed to obtain duplex MHD
operation.

8.05 Invalidate VTOC To Preclude Booting
Only On Active Partitions — The purpose

of this improvement is to reduce the system outage
time by providing a manually initiated capability to
bootstrap on a disk that quite likely has good inactive
partitions. One big advantage of this capability is
that it can be invoked remotely via the switching con-
trol center (SCC) link for an unattended office,
greatly reducing outage time in these cases. Another
advantage is that it allows for recovering on inactive
partitions rather than going to a “shelf copy” or tape,
which typically is more out of date than the inactive
partitions.

8.06 Alarm Disk Exerciser Error Messages —
This improvement is to reduce the number of

occurrences of extended vulnerability by alerting
craft to repair disk data errors when they are first
detected. A number of disk exerciser errors must
occur before the disk will automatically be removed
from service. If the data errors go unrepaired, they
may cause an MHD restore to abort at some later
time and put the system in an extended vulnerability
situation.

8.07 Disk Compare Command — This command
[See Input Manual (IM)] provides for detec-

tion of read problems under much more desirable cir-
cumstances than when the restore process finds the
read problems (namely, both MHDs are active).
When the read problem is found, the repair time will
be much less, due to the fact that the MHD with the
read problem can be removed from service,
reinitiated, and restored while the other disk is ac-
tive. There will be no period of extended vulnerability
as there is when the restore aborts due to read errors.
This procedure does not require any assistance from
a support center because it is performed manually. It
is done when read problems are found operationally
by Unix RTR operating system.

8.o8 The compare feature will also provide for de-
tection and correction of data mismatches be-

tween duplexed disks. Mismatch problems arise
occasionally in the field and are not easily detected.
This command provides for periodic detection of mis-
matches and permits manually initiated correction

Page 31

.

for situations where the mismatch is long lived. Sup-
port center assistance is required to determine which
disk has the correct value. With the aid of the
“mount” and the “OP:FNAME” commands, partition
numbers and block numbers can be translated into
filenames for mismatched data in partitions which
contain file systems.

8.09 Modify PDT to Backup Application
Disks on Tape – This modification, along

with the existing 3B20D computer resident
“makedisk” program, will provide a general tape
backup capability for all disks.

9. RECOVERY ON PREVIOUSLY ACTIVE DISKS

9.01 This feature helps guarantee that in any re-
covery sequence the disks that are brought

into service would be the disks that were in service
before the recovery began. This minimizes the prob-
lem of recovering valuable data from out-of-service
disks after initializations when initialization was not
caused by faulty disks.

9.02 This feature interacts with an application pro-
cess before starting a disk restore — This will

allow the application to determine if valuable data is
about to be overwritten (by the disk restore process)
and abort the restore. The application can then take
action to recover the data.

9.o3 The application using this feature will be re-
sponsible for the processes to communicate

with the Unix RTR operating system port. Also, it
will determine if valuable data exists on an 00S disk,
recover the data, and initiate the disk restore (if it
was aborted for this reason). These processes can be
at user level and should be monitored by ULARP.

10. GLOSSARY

10.01 The following terms are used in this section

Automatic Diagnostic Process: A UNIX RTR
operating system that generates automatic diag-
nostic requests. When a “unit removed” message
is received from CONFIG, this process will send a
“diagnose unit” message to MIRA to initiate a di-
agnostic. This process also schedules routine diag-
nostics for all units.

Block: 512 contiguous bytes.

Bootstrap: A technique used by a computer to
bring itself into a desired state by means of its own
action.

Cache: A limited capacity, very fast semiconduc-
tor memory which can be used in combination with
lower cost but slower large capacity memory giv- =,
ing the effect of a larger and faster memory.

C-Language: A general-purpose programming
language closely associated with the UNIX RTR

#

operating system.

Deferrable Maintenance: Those functions exe-
cuted by the UNIX RTR operating system. Y

File: An organized collection of information di-
rected toward some purpose.

I-list: A list of i-nodes.

I-node: A 64-byte structure that defines and spec-
ifies a file.

Interrupt: A break in the normal flow of a system
or program occurring in such a way that the flow
can be resumed from that point at a later time.

Nondeferrable Maintenance: Those functions
associated with the UNIX RTR operating system
kernel that cannot be swapped to the disk.

Off-Line: A CU is off-line when it is not in the
active state and is not controlling the system. The
off-line CU is the unit which is nt}t in active con-
trol of the system configuration and execution but
which may be running (executing diagnostics for
example) or performing off-line functions.

On-Line: A CU is on-line if it is in the actiw state
in which it can execute code. More specifically, for
a duplex computer, the on-line CU is in act iIw con-
trol of the system configuration and execut ion; its

.

mate CU, the off-line CU, may be running (twecut-
ing diagnostics), but it is not in control.

Real-Time: The actual time during which a physi- ,-
cal process operates.

Re@”ster: A hardware entity that contains 32 bits
of data.

.f-

.

,P

,p

.

.

Stack: A portion of memory for temporary stor-
age that often operates on a last-in, first-out prin-
ciple and contains process-save states.

11. ABBREVIATIONS

1I .01 The following is a list of abbreviations used
in this section.

ABBREVIATION

ADP

AIM

ATB

BTC

cc

CONFIG

CSOP

Cu

DCB

DCT

DDSBS

DFC

DIAGC

DIAMON

DMA

DMAC

DSCH

EAI

ECD

ECDFUNC

TERM

Automatic Diagnostic Process

Application Integrity Monitor

Address Translation Buffer

Bus Interface Controller

Central Control

Configuration Control

Coordinator Spooler Output Pro-
cess

Control Unit

Diagnostic Control Block

Dispatcher Control Table

Duplex Dual Serial Bus Selector

Disk File Controller

Diagnostic Control

Diagnostic Monitor

Direct Memory Access

Direct Memory Access Controller

Dual Serial Channel

Emergency Action Interface

Equipment Configuration Data
Base

ECD Function

ABBREVIATION

ECDMAN

GRASP

INITLVL

IM

IOP

KBOOT

LDFT

MAS

MASC

MHD

MIRA

MRF

00s

OVLDER

PAS

PDS

PIC

RAM

RID

rwx

Scc

SDE

SIM

SIMER

1SS6, AT&T 254-341-200

TERM

Equipment Configuration Data
Base Manager

Generic Access Package

Initialization Level

Input Manual

Input/Output Processor

Kernel Boot

Load Disk From Tape

Main Store

Main Store Controller

Moving Head Disk

Maintenance Input Request Ad-
ministrator

Maintenance Reset Function

Out-of-service

Overload System Error Condi-
tions

Protected Application Segment

Program Documentation Stan-
dard

Peripheral Interface Controller

Random Access Memory

Record Identification

Read, Write, and Execute

Switch Control Center

Segment Descriptor Table

System Integrity Monitor

SIM Error Conditions

Page 33

AT&7 254-34MlNJ

ASSREVIA-

SIOF System Integrity output
Formatter

SYSIMSG System Initialization Message

TLDB Trouble-Location Data Base

TLP Trouble-Locating Procedures

TLPR Trouble-Location Process

TTY Teletypewriter

tam

TUS Test W@ System

ULARP User Levd hbrrmt.ic W&art
Process

VTOC Volume Table of Contents

#

.

.

?

	General
	Maintenance Structure
	Deferrable Maintenance
	Nondeferrable Maintenance
	Enhanced Terminal Access
	Maintenance Interrupt
	Fault Recovery
	Disk Recovery Improvements
	Recovery on Previously Active Disks
	Glossary
	Abbreviations
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table A
	Table B
	Table C

