ATTENUATION LOSSES AND TRANSMISSION CONSTANTS AT 1000 CYCLES
 OF OUTSIDE PLANT CARLE AND PAIRED CONDUCTOR FACILITIES

CONTENTS PAGE

1. GEMERAL 1
1.1 Scope of Data 1
1.2 Added Data 2
1.3 Revised Attenution Losses . . . 2
1.4 Data Superseded 2
1.5 Added and Revised Methods of
Computing Correotions 2
2. ATTENUATION LOSSES 2
2.1 Non-Quadded Exchange Area

Cable Facilities 2
2.2 Quadded Toll, Entrance and Intermediate Cable Facilities . 2
2.3 Carrier Loaded Facilities in Paper-Insulated Quadded Entrance and Intermediate Cables. 3
2.4 Entrance and Intermediate Cable Facilities for Type J Carrier Systems3
2.5 Miscellaneous Cable and Paired Conductor Facilities 4
3. DISTRIBUTED PRTMARY CONSTANTS 4
4. SECONDARY TRAISSMISSION CONSTANTS . . 4
5. IMPROVED METHOD OF APPROXIMATING

ATTENUATION LOSSES
4
5.1 Accuracy of Results Obtained By New Method6

5.2 Examples Illustrating Attenua
tion Loss Computations 6
6. VARIATIONS WITH TEMPERATURE 8
6.1 Resistance Changes 8

1. GENERAL

1.1 Soope of Data

For the types of circuit faoilities listed below, this Section provides the latest information as to the attenuation losses in $d b$ per unit length at 1000 cycles:
A. Non-quadded exohange area cable facilities.
B. Toll, entrance and intermediate facilities, including carrier losded entrance and intermediate facilities, in pa-per-insulated quadied cables.
C. Quadded submarine cable and quadded emergency cable facilities.
D. Disc-insulated spiral-four (16-gauge) and low capacitance paper-insulated paired (logauge) entrance and intermediate cable facilities for type J carrier systems.
E. Miscellaneous cable and paired conductor facilities.

The miscellaneous cables referred to in (B) above include non-quadded submarine cables, service cables and inside wiring cables. The miscellaneous paired conductors include the various types of U wire and drop wire, bridle wire, Al wire and station wires.

In addition to the foregoing data, this Section also provides the latest information as to the following further transmission constants at 1000 oycles of the types of facilities listed in (A) and in (E) above:

1. Distributed primary constants (resistance, inductance, capacitance and
leakage conductance) per unit length.
2. Secondary constants (propagation constant per unit length and characteristic impedance).

The non-quadded exchange area cable and the quadded toll cable facilities for which data are given herein include types at present standard, such older types as are still in rather common use, and several non-standard types which have been introduced into the plant in scattered cases as expedients in meeting special or temporary conditions. The data for the non-standard facilities are in
most cases approximate values, but are deemed satisfactory for use in cases involving short lengths of these facilities or under other conditions where a high degree of accuracy is not essential. All such approximate values are indicated in the tables by x.

1.2 Added Data

The data in previous issues of this Section have been confined to attenuation losses at 1000 cycles, and have covered only -
A. Non-quadded exchange area cable facilities.
B. Toll, entrance and intermediate facilities in paper-insulated quadded cables.
C. 22-gauge quadded emergency cable and 17-geuge U wire.

Of the information listed in 1.1 , all attenuation loss data for circuit facilities other than those above, and all of the data on primary and secondary transmission constants, have been added in this issue.

The attenuation losses of number of types of exchange area cable facilities not covered in previous issues have also been added. These include values for circuits in 26BST and $2 / 1$ DSM cables, and also for several loaded $26 A S T$ and $24 C S M$ facilities of types ordinarily encountered only where lengths of these finer gauges ocour in a predominately coarser gauge trunk route. All of these added values are so indicated in Table 1.

1.3 Revised Attenuation Losses

The attenuation losses for a few types of loaded exchange area cable facilities, and also for Udistribution wire, have been changed from the ralues shown in previous issues of this Seotion, and are so indicated in Tables l and 6 .

1.4 Data Superseded

The data given herein are based upon the latest information and, for transmission purposes, supersede all similar data previously published. In particular, they supersede the following data in other AB Sections:

1. The primary transmission constants of exchange area oable facilitiep in Table 7 supersede those in Table I, Page 15, of Section ABl42.026, Issue 1.
2. The secondary transmission constants of exohange area cable facilities in Table 8 supersede those in Table II, Page 16, of Section ABL2.026. Issue 1. Current values which differ from those superseded are 30 indicated in Table 8.
3. The data for non-loaded and loaded 0 distribution wire in Tables 6 and 7 supersede the values for the primary and secondary transmission constants and for the 1000-cycle attenuation losses of this wire given on Page 6 of Section AB22.082, Issue 1 .
1.5 Added and Revised Methods of Computing Corrections

A method of computing changes in resistence resulting from temperature changes has been added in this issue. This method is outlined in 6.1.

Also added in this issue is a method of approximating attenuation losses of facilities which differ in various respects from those covered by the data herein. This will permit ready determination of losses in such cases as, e.g., where average load spacings differ from standard or special loading arrangements are employed, or where temperature (and hence resistance) differs from that at which losses are given in the attached tables. This method is believed to be new, and is more accurate than approximate methods heretofore used. The more general applications of this method are discussed and illustrated in 5, and its application to determination of changes in losses resulting from temperature changes is discussed and illustrated in 6.2.

2. ATTENUATION LOSSES

The attenuation losses given herein for loaded facilities are based on the type of loading coils in most general use for each type of facility. Older or newer types of coils may result in values which differ slightly from those with the type most widely used, but these differences are insufficient to be of concern in transmission design.

2.1 Non-Quadded Exchange Area Cable Facilities

The attenuation losses of non-quadded exchange area cable facilities are given in Table l. In accordance with current practices for exchange area transmissior design these values are for a temperature of $68^{\circ} \mathrm{F}$. Where ralues at other temperatures may be required these can be determined from the values given by the method in 6.2.

As an aid in identifying the various types of exchange area cables, values of their distributed resistance and capacitance per unit length are shown in the colum headings of Table 1 , immediately below the code designations.

2.2 Quadded Toll, Entrance and Intermediate cable Facilities

The attenuation losses of quadded toll, entrance and intermediate cable facilities,
excrut carrier loaded facilities, are given in Tables 2 and 3. In accordance with current transmission design practices these values are for a temperature of $55^{\circ} \mathrm{F}$. Table 2 covers the types of facilities usually operated with pilot wire regulators; and, in addition to the attenuation losses at the mean temperature of $55^{\circ} \mathrm{F}$, this table also shows the variations from these mean values under the extremes of temperature changes customarily assumed in engineering aerial and underground circuits. In Table $2 A$ are given the losses of quadded submarine and emergency cables. Table 3 covers the types of facilities usually non-regulated, and also gives values for circuits in 22-gauge quadded emergency cable. Where the effects of temperature changes other than those included in Table 2 are required, these may be determined from the losses given by the method in 6.2.

The values for side and non-phantomed facilities in Tables 2 and 3 are based upon a distributed capacitance of .062 mf per mile, and may be applied to facilities in pairs of this capacitance in cables of other than quadded construction.
2.3 Carrier Loaded Facilities in Paper-Insulated Quadded Entrance and Intermediate Cablos

Attenuation losses for carrier loaded facilities in paper-insulated quadded entrance and intermediate cables are given in Table 4. All standard types of carrier loading are included except Type J loading, which is restricted to disc-insulated pairs in shielded apiral-four quads in cables developed for Type J carrier systems. Attenuation losses for these J system facilities are given in Table 5 and discussed in subdivision 2.4.

In general, the attenuation data in Ta ble 4 recognize two different average geographical coil spacings for each type of loading, viz., for "new" plant and for Hold plant installations, as discussed in Section AB45.030. It should be kept in mind in this connection that in general the aotual spacing for carrier loading is closer than the theoretical spacing in $.062 \mathrm{mf} / \mathrm{mi}$ cable, so as to permit precision capacitance building out adjustrents in all of the individual loading sections. The larger the capacitance building out the larger is the ratio of coil resistance to cable resistance and the greater the average attenuation per mile. Because of the various conditions to whioh these data apply, the notes should be carefully consulted in selecting values from Table 4.

If desired, attenuation values for average spacings different from those assumed in Table 4 may be estimated by interpolation or extrapolation of the attenuation data in Table 4. In such instances, seloot the attenuation value for the reference spacing that is closer to the actual average spacing for the faoility involved, and multiply this value by the ratio
of the selected reference average spacing to the actual average spacing.

All losses given in Table 4 are for a temperature of $55^{\circ} \mathrm{F}$. Dalues at other temperatures may be determined from those given by the method in 6.2.
2.4 Entrance and Intermediate Cable Facilities for Type J Carrier Systems

The attenuation data in Table 5 for 16gauge disc-insulated quads with side circuit loading are for theoretical full loading sections with zero building-out. These theoretical side circuit loading seotion lengths are stated in Note (1) below the table. The total attenuation in the cable circuits, sides and phantoms, may be obtained by multiplying the theoretical unit values by the number of theoretical full loading sections. In many installations this numeric multiplier is not a whole number because of the use of fractional section loading terminations with F-type loading units at one or both ends of the cable. An alternative prooedure is to derive the attenuation per mile in terms of the theoretical loading section lengths, and multiply this by the cable length in miles.

It is always necessary to build out the loaded side oircuits in order to conform to design theory, and consequently the average coil spacing will be below the theoretical spacing. The building-out apparatus is adjusted to provide the required capacitance in the side cirouits, but in the voice range it is deficient in resistance and inductance, and in consequerice the actual attenuation per loading section is somewhat less than the theoretical value given in Table 5. The side circuit loading coils provide a very light weight loading for the phantom. In built out cables the phantom circuit attenuation per loading seation is less than the cheoretical value, primarily because of capacitance and resistance deficiencies in the phantom circuit effects of the side circuit building-out apparatus. Approximate magnitudes of the changes in attenuation per loading section, sides and phantoms, are stated in Note (2) under Table 5 as a function of the amount of side circuit building-out. These correction factors are sufficiently exact for practical needs since the disc-insulated cables usually have only a fow loading sections, and very few loaded cables are as long as one mile.

The loss of the lo-gauge low capacitance peirs is for the shielded core group of four pairs in a cable layup having a total of $1 f_{4}$ pairs. Because of their lower mutual capaoitance the attenuation loss of the pairs in the outer layer group (located between the concentric shield and the sheath) is about 3 per cent. lower than the value shown in Table 5. The loss given is a preliminary
value based on the very limited amount of this type oi cable thus far manufactured.

All losses given in Table 5 are for a temperature of $55^{\circ} \mathrm{F}$. Values at other temperatures may be determined from those given by the method in 6.2.

2.5 Miscellaneous Cable and Paired Conductor Faoilitios

Attenuation losses for other types of cable and paired conductor facilities covered in this Section are given in Table 6. With the oxception of non-quadded submarine cable, for which values are at $55^{\circ} \mathrm{F}$, values for these facilities are at $68^{\circ} \mathrm{F}$. Losses shown are per unit length of one mile or of one kilofoot, depending upon whioh is the more convenient unit for dealing with the most common lengths of the particular facility. The unit of length and the temperature for which the loss of each faoility is given, and also, in cases where this is pertinent, whether the value is for dry or wet conditions, are specified in the first three columns of Table 6 . Values at other temperatures may be approximated from the losses given by the method in 6.2.

3. DISTRIBUTED PRIMARY CONSTANTS

The distributed primary transmission constants - viz., the loop resiatance, inductance, leakage conductance and oapacitance per unit length - of all cable and paired conduotor froilities for which the attenuation losses are given in Tables 1 and 6, are shown in Table 7. These values are, of course, for the line conductors alone, i.e., exclusive of the lumped constants of loading coils. The resistances, inductances and capacitances are d-o values, but differences between these and 1000-cycle values are, for practical purposes, negligible. Leakage conduotances are specifically 1000 cycle values.

The unit of length for whioh the values for each type of facility are given is specified, and, in cases where this is pertinent, it is also stated whether the values are for dry or wet conditions. The resistances vary with the temperature, and the temperature at which each value is given is shown. This is, in every case, the same as the temperature at which the corresponding attenuation losses are given in Tables 1 and 6 . Resistances at other temperatures can be determined from those in Taole 7 by the method in 6.1.

4. SECONDARY TRATSMISSION CONSTANTS

Values at 1000 cycles of the propagation constant per unit length and of the characteristic impedance of the various miscellaneous cable and paired conductor facilities whose attenuation losses are covered in Table 6 are also given in that table. The first three columns specify the unit of length and the
temperature for whioh these secondary trans. mission constants are given, and also, in cases where this is pertinent, whether. the values are for dry or wot conditions.

In Table 8 are given the seoondary transmission constants of most of the types of exchange area oable facilities for which at tenuation losses are shown in Table 1. All of these are 1000-oyole values at $68^{\circ} \mathrm{F}$.

5. IMPROVED METHOD OF APPROXMMATNG ATTENUATION LOSSES

Due to the effeots of temperature variations upon resistance, or because of loading arrangements whioh dopart from standard oither in weight of coils or in average load spacing, or for other reasons, it is frequently required to determine the attenuation losses of oircuit facilities whose resistance, induotance or capacitance per unit length (either aingly or severally) depart from those of the facilities oovered in this Section. Attenuation losses at 1000 oyoles for suoh non-loaded or loaded facilities may be approximated quite closely from the data herein by the method outlined below and illustrated in subdivision 5.2 by several examples.

1. Let R_{x}, L_{x} and C_{x} denote the total: resistanco, inductance and oapacitance per unit length of the facility whose attenuation loss A_{x} per unit length is to be determined.

* Total introduced by line conductors, loading and building-out.

2. From the facilities whose attenuation losses are given herein, seleat as a reference facility the one whose corresponding transmission constants R_{r}, L_{r} and G_{r} are closest to those of the facility wnose attenuation loss is required. Let the attenuation loss given for this reference facility be denoted by A.
3. In accordanoe with the further explanation in (3B), compute the roquired loss A_{x} by the following formula after simplifying it as díscussed in (3A):$A_{x}=\frac{K_{x}}{K_{r}} \cdot \sqrt{\frac{L_{x}}{L_{r}}} \cdot \sqrt{\frac{C_{x}}{C_{r}}} \cdot A_{r}$
where the quantities K_{x} and K_{r} are as explaine in (3 Bb), and all other quantitios are as already designated in (1) and (2) above.
A. In applying formula (1) it is necessary to evaluate all three of the factors $K_{x} / K_{r}, \sqrt{\mathrm{~L}_{x}} / \mathrm{L}_{r}$ and $\sqrt{\mathrm{C}_{x} / \mathrm{C}_{r}}$ only in cases where R_{x}, I_{x} and C_{x} all differ from R_{r}, I_{r} and C_{r}-see Example 3 in 5.2. Under all other conditions one or more of the foregoing three factors

Page 4
become unity, as indioated below, and may, therefore, be ignored.
a. If the reference facility is so selected that $C_{x}=C_{r}$, then the factor $\sqrt{C_{x} / C_{r}}=1$ and need not be considered - see Example 4 in 5.2.
b. If the reforence facility is so selected that $L_{x}=L_{r}$, then the factor $\sqrt{L_{x} / L_{r}}=1$ and need not be considered - see Examples 1 and 2 in 5.2.
c. The factor K_{x} / K_{r} becomes unity if, and only if, both $R_{x}=R_{r}$ and $L_{x}=I_{r}$, i.e., in cases where the reference facility selected is such that it differs from the required facility only in that C differs from C_{x} - see Examplel in 5.2.
d. In particular, if $L_{x}=L_{r}$ and $C_{x}=C_{r}$, but R_{r} differs from R_{r}, as will ordinarily be the case in computing the effect of temperature variations upon attenuation losses, formula (1) simplifies to
$A_{x}=\frac{K_{x}}{K_{r}} \cdot A_{r} \quad d b /$ unit length
The use of formula (2) in computing the effects of temperature variations is discussed in subdivision 6.2.
B. The values of L, C and K in formulas (1) and (2) may be obtained as follows from the data given herein, or from other Bell System Practices:
a. Values of L and $C: ~-~ V a l u e s ~ o f ~$ the distributed inductance and mutual capacitance per unit length of the line conductors of exchange area cable facilities, and of various miscellaneous cable and paired conductor facilities, may be obtained from the attached $\mathrm{Ta}-$ ble 7. Similar values for the line conductors of other types of circuit facilities are given elsewhere in the $A B$ information. Load. ing coil inductances may be taken to be the nominal values. Build-ing-out capacitance will either be known or may be determined from other AB Sections. In these 1000cycle computations mutual capacitance introduced by loading coils may be neglected. The value of L_{x} should be for the same unit of length as the value of I_{r}, and the value of C_{n} should be for the same unit of length as the value of C_{r};
but values of L need not be for the same unit of length as values of C; 0.g., values. of C_{x} and C_{r} may be capacitance per mile, while L_{x} and L_{r} are inductance per load section.
b. Values of K: - It will be noted that, although attenuation losses obviously depend upon resistance, R_{x} and R_{r} do not appear as such in formulas (1) and (2). The effects of resistance are, however, taken into account by the quantities K_{x} and K_{r}. These quantities depend upon the ratio of the total resistance per unit length to the total inductive reactance per unit length, of the corresponding required and reference facilities; and the values of K for a wide range of the values of this ratio are tabulated in the attached Table lo. In order to read values of K_{x} and K_{r} from this table it is first necessary to compute the corresponding values of the foregoing ratio.

For this purpose values of the resistance per unit length of the line conductors of exchange area cable facilities, and of various miscollaneous cable and paircd conductor facilities, may be obtained from Table 7. Similar values for the line conductors of other types of circuit facilities are given elsewhere in the AB information. Values of the resistance at 1000 cycles introduced by loading coils, etc., may be obtained from Sections of the AB45 series.

Values of the inductive reactance at 1000 cycles for all loaded facilities cotered in Tables 1 to 6 are given in Table 9. These values include both the reactante of the lumped inductance of the loading, and that of the distributed inductance of the line conductors. The corresponding values of the inductive reactance due to the line conductors alone, i.e., for non-loaded facilities, are given in Note 2 under Table 9. Values of inductive reactance for other non-loaded and loaded facilities may be computed from the values of distributed inductance given in Table 7 or elsewhere in the $A B$ information, and from the nominal inductance of loading coils.

Where values of the above ratio fall between those tabulated in Table 10 the corresponding values of K may be obtained by linear interpolation between the tabulated values. To facilitate this, columns of tabuler differences have been includet in Table 10.

E.1 Accuracy of Results Obtained by New Method

Several examples illustrating the application of formula (1) are worked out in subdivision 5.2. The purpose for which this formula as herein presented is intended is, of oourse, for use in approximating the attenuation loss at 1000 cycles of cable and paired conductor facilities which differ in verious respects from those covered in this Section. In the first three of the examples just mentioned, however, the losses of 26 AST-B88, $24_{4} C S M-B 68$ and 24_{4} CSM-H88 are determined, using. 26BS"- B 88 as the reference facility. Inasmuch as the losses for all of the foregoing exchange area cable circuit facilities are given in Table l, these examples not only serve to illustrate the use of the formula, but they also demonstrate the accuracy of the approximations. The fourth example, in which the loss of 26BST-B88 is determined by using 26BST-NL as the reference, 111 ustrates the use and demonstrates the acuracy of the formula in computing the losses of loaded facilities from the losses of the corresponding non-loaded facilities.

The exactness with which the losses computed in these examples agree with their known values will likely raise a question as to why results obtained with formula (1) are referred to as approximate. They are so called because, from the theoretical standpoint, the formula itself is approximate: although it does yield quite accurate results in dealing with exchange area and quadied cable facilities, it may lead to less accurate results when applied to other types of facilities; and since a complete discussion of its limitations is beyond the scope 0° the present Section, losses computed with it should in all cases be regarded as approximate. Inasmuch, however, as the types of cable or paired conductor facilities for which losses computed by formula (1) may not be of high accuracy are types usually oc. curring only in relatively short lengths, the approximations obtained with this formula will generaliy be satisfactory for engineoring parposes.

Inasmuch as the form of formula (1) is that of a product of factors, values of losses satisfactory for most engineering uses can be rapidIy computed by slide rule, or, where groater precision is desired, by means of logarithms. The latter means of simplifying the computations is employed in the examples in subdivision 5.2.

It will be noted that in none of the examples e:cept Example 1 has the reference faoility been selected in accordance with the stipulation in Step 2 of the method outlined in subdivision 5. The purpose of stipulating that the reference facility should be as similar to the required facility as it can be selected is primarily to sare computing labor, as the examples will also illustrate. Whether or not it is complied with will usually have but little effect upon the accuracy of the results.

5.2 Examplos Illustrating Attenuation Loss Computations

The nature of the following examples, the features of formula (1) which they illustrate, and the computational means employed, have already been discussed in 5 and 5.1 .

Data Reguired in Examples

For convenience, the data required in the solutions of the following examples are tabulated in Table A. Ir this table are also collected all legarithms used in the solutions; and here, too, are determined the needed values of K.

Examples

Example 1

In this example the loss of 26AST-B88 will be determined, using 26BST-B88 as the reference facility, Referring to Table A, it will be seen that $R_{x}=R_{r}$ and $L_{x}=I_{r}$, and hence, also, $K_{x}=K_{r}$, so that, as pointed out in Step (3AC) of outline of method in 5, formula (1) simplifies to -

$$
A_{x}=\sqrt{\frac{C_{z}}{C_{r}}} \cdot A_{r}
$$

The solution, using the logarithms collected in Table A, is -

This result agrees exactly with the loss for 26AST-B88 in Table 1.

Example 2

The loss of 2łCSM-B88 will be determined, using $26 B S T-B 88$ as the reference facility. In this case, as may be seen by referring to Table $A, L_{x}=L_{r}$; but R_{n} and C_{x} differ from R_{r} and C_{r}. As pointed out in Step (3 Ab) of outline of method in 5, formula (1) therefore simplifies to -

$$
A_{z}=\frac{K_{x}}{K_{r}} \cdot \sqrt{\frac{C_{x}}{C_{r}}} \cdot A_{r}
$$

Page 6

TABLE A

							Deta From
		M	B8B	B88	B88	H88	
A	(db per mf)	2.86	1.39	-	-	-	Table 1
Load Coil	$\begin{aligned} & \text { (Code No. } \\ & \text { (Nom. L (hen) } \\ & \text { (Rat } 1000 \text { oycles (ohms) } \end{aligned}$	9	$\begin{array}{r} 622 \\ .088 \\ 9.6 \end{array}$	$\begin{array}{r} 622 \\ .088 \\ 9.6 \end{array}$	$\begin{array}{r} 622 \\ .088 \\ 9.6 \end{array}$	$\left.\begin{array}{l}622 \\ .088 \\ 9.6\end{array}\right\}$ AB4	serios
Cond. R / mi	((ohms)	440	440 16.9	440 16.9	274 16.9	$\begin{gathered} 274 \\ \quad 8.4 \\ \hline \end{gathered}$	Table 7 Above
Total R/mi	-	440	456.9	456.9	290.9	282.4	Add
Cond. L / mi Coil L / mi Total L / mi	i $\begin{gathered}\text { (hen) } \\ n \\ n\end{gathered}$	$\begin{array}{r}.001 \\ \hline .001\end{array}$	$\begin{aligned} & .001 \\ & .1549 \\ & .1559 \end{aligned}$	$\begin{aligned} & .001 \\ & .1549 \\ & .1559 \end{aligned}$	$\begin{aligned} & .001 \\ & .1549 \\ & .1559 \end{aligned}$	$\begin{aligned} & .001 \\ & .07744 \\ & .07844 \end{aligned}$	Table 7 Above Add
c / mi	(mf)	. 079	. 079	. 069	. 072	.072	Table 7
$\omega \mathrm{L} / \mathrm{mi}$	(ohms)	6.3	979	-	979	493	Table 9
$\begin{aligned} & \log \left(R / m^{\prime}\right) \\ & \log (\omega L / m \dot{m i}) \\ & \log (R / \omega L) \end{aligned}$		2.64345 .79934 .64411	$12.65982-10$ 2.99078 $9.66984-10$	-	$12.46374-10$ 2.99078 $9.47296-10$	$\begin{aligned} & 12.45086-10 \\ & \frac{2.69285}{9.75801-10} \end{aligned}$	Above Above Subtract
${ }_{\mathbf{R} / \mathrm{LL}}$		$\begin{gathered} 69.84_{4} \\ 8.311_{4} \end{gathered}$	$\begin{aligned} & .4667 \\ & .3246 \end{aligned}$	-	$\begin{aligned} & .2971 \\ & .2108 \end{aligned}$	$\begin{aligned} & .5728 \\ & .3933 \end{aligned}$	Above Tablelo
$\log R$ $\log (\mathrm{~L} / \mathrm{mi})$ $\log (\mathrm{C} / \mathrm{mi})$ $\log (\mathrm{A} / \mathrm{mi})$.91981 $.00000-10$.45637	$9.51135-10$ $9.19285-10$ $8.89763-10$.14301	8.83885-10	$9.32387-10$ $8.85733-10$	$9.59472-10$ $8.89454-10$ $8.85733-10$.	Above

The solution, carried out with logarithms given in Table A, is as follows -

Rounded off to two significant figures, this, result is .86, whereas the loss for 24CSM-B88 is given as . 87 in Table l. The latter value, however, is .867 rounded off.

Example 3

Again using 26BST-B88 as the reference facility, the loss of $24 C S M-H 88$ will be determined. As may be seen by referring to Table A, R_{x}, L_{x} and C_{x} all differ from R_{r}, L_{r} and C_{r}, so that, as discussed in Step (3A) of outline of method in 5, no simplification of formula (1)
occurs in this case. The required solutior. by logarithms is -

This result agrees exactly with the loss for 24CSM-H88 in Table 1.

Example 4
In this example the loss of $26 \mathrm{BS}^{3}-\mathrm{B} 88$ is determined, using the oorresponding non-loaded facility, i.e., $26 \mathrm{BST}-\mathrm{NL}$, as the reference facility. Since $C_{x}=C_{r}$, then, as pointed out in Step (3 AR) of outline of method in 5, formula (1) simplifies to -

$$
A_{x}=\frac{K_{x}}{Z_{r}} \cdot \sqrt{\frac{L_{m}}{L_{r}}} \cdot A_{r}
$$

The solution by logarithms is

This result agroes exactly with the loss for $26 \mathrm{BST}-\mathrm{BO8} \mathrm{~g}$: ven in Table 1.
6. VARIATIONS WITH TEMPERATURE

Resistanoes and attenuation losses at temperatures other than those for which values are given horein may be determined from the date in this Section by the methods expleined below.

6.1 Resistance Changes

The resistance F_{7} at any Fahrenheit temperature T may be determined from the velues given herein for the resistance R_{∞} at $68^{\circ} \mathrm{F}$ or for the resistance R_{m} at $55^{\circ} \mathrm{F}$ by the followinc formulas:

$$
\begin{equation*}
R_{r}=\frac{395+T}{403} \cdot R_{\infty} \quad \text { Ohma } \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{T}=\frac{395+T}{450} \cdot R_{\text {ef }} \quad \text { ohner } \tag{4}
\end{equation*}
$$

6.2 Changes in Attenuation Losses

The l000-cyole attenuation loss A_{s} at any Pahronheit temperature T_{x} may be apprcaimatad from the values given heroin by the following method:

1. In acoordance with the discussion under item (3 Bb) of the outline in subdivision 5, determine -
A. The value of the total resistance in ohms per mile for the giren facility at the temperature $T_{r} \quad\left(68^{\circ}\right.$ or 55°) at which its attenuation loss A_{r} is given herein.
B. The value of the total inductive reactance of the giren facility in
ohms per mile.

- Total introduced by line oonduotors. ioading and building-out.
C. The ratio of the total resistance ortained in (A) to the total inductive renctance found in (B).

2. Multiply the ratio obtained in (1C) above by the factor

$$
\frac{395+T_{x}}{395+T_{r}}
$$

thus obtaining the value of the corresponding ratio at the required temperaturs I_{x}
3. From Table 10 obtain the two following values of the quantity K_{s}
A. The value \mathbb{K}_{r} corresponding to the ratio foumd in (1C) above.
B. The velue X_{x} corresponding to the ratio found in (2) above.
4. The raquired attenuation loss A_{2} at temperature T_{a} is then determined by substituting into formula (2) - see Step (3Ad) of outline of method in 5 - the known loss A_{r} at temperature T_{r}, and the values of K_{r} and K_{z} obtained in (3A) and (3B) above.

In sovoral oases the temperature variation correotions shown in Table 2 differ slightly from values oomputed for those cases by the foregoing mothod. This is due to tre fact that the figures in Table 2 are averages of the positive and negative variations determined by more exaci methods.

Example

To illustrate the foregoing mathod of determining attenuation losses at temperatures other than those for which values ere giver herein, the loss of 26 BST-B88 at $110^{\circ} \mathrm{F}$ will be ocmputed from the value at $68^{\circ} \mathrm{F}$ given in Tabie 1. The required daca are shown in Table A.

1. From Table A -
A. The total resiatance of 26 BST-B88 at $T_{r}=68^{\circ} \mathrm{F}$ at whicr the loss $A_{r}=1.39 \mathrm{db}$ per mile is given in Table A, is 456.9 ohms per mile.
B. The total inductive reactance of 26 BST-B88 is 979 ohms per mile.
C. Carrying out this step by logarithms, as in Table A.

$$
\begin{aligned}
\log R_{r} & =12.65982-10 \\
\log \omega I_{r} & =\frac{2.99078}{9.66904-10} \\
\log \left(R_{r} / \omega L_{r}\right) & =\frac{1}{9.4667} \\
R_{r} / \omega L_{r} & =\frac{1}{.4} \text { Subtract }
\end{aligned}
$$

2. The reference temperature $T_{r}=68^{\circ}$ and the required temperature $\mathrm{T}_{\mathrm{x}}=110^{\circ}$, so that

$$
\frac{395+T_{z}}{395+T_{r}}=\frac{395+110}{395+65}=\frac{505}{463}
$$

Completing this step by logarithms

3. From Table 10 , the needed values of K are -
A. The value of K corresponding to the 68° ratio, $R_{r} / \omega L_{4}=.4667$. obtsined in (1C) is $K_{\square}=.3246$.
B. The value of K oorresponding to the 110° ratio, $R_{z} / \omega L_{x}=.5090$, found in (2) is $K_{n}=.3528$.
4. The lenown 1088 at temperature $T_{r}=$ $68^{\circ} \mathrm{F}$ is $\mathrm{A}_{\mathrm{r}}=1.39 \mathrm{db}$ per mile. The value of $K_{r}=.32 l_{4} 6$, from (3A); and the value of $K_{2}=.3528$, from (3B) above. Carrying out the solution of formula (2) by logarithms -

$\left.\log K_{r}=9.51135-10\right)$
$\log \left(K_{\pi} / K_{r}\right)=-03618$ \{Add
$\log A_{r}=. .14301$
$\log A_{2}=.17919$
$A_{m}=1.51 \mathrm{db} / \mathrm{mi}$

INDEX OF ATTACHED TABLES

Type of Faoilitios

Hon-Quadded Exchange Area Cable
Paper-Insulated Quadded Cable
Toll, Entrance and Intermediate
Faoilities Usually Regulated
Facilities Usually Non-Reguleted
Carrior Loaded Entrance and Intermediate

Amorgency Cable (22-gauge)
Quadded Submarine and Fmergency Cables
Fatrance and Intermediate Cable Facilities for Type J Carrier Systoms

Miscellanoous Cable and Paired Conductors

Inductive Reaotance of Cable Facilities and of U Wire

Attenuation Correotion Factors

Attenuation	Transmi	Constants
Losses	Primary	Secondary
	10. (Page	
1(101)	7(107)	$8\binom{108}{109}$
2(102)	-	-
3(103)	-	-
$4(104)$	-	-
$3(103)$	-	-
2A(102)	-	-
5(105)	-	-
6(106)	7(107)	6(106)

Table 9. Page 110
Taple 10, Page 111

Attached:

Tables 1 to 10.

TABLE
attenuation losses of non-quadoed exchange. area cable facilities
AT 1000 CYCLES

gauge cable		26		24			22				19		16	13
TYPE OF CABLE		$\begin{array}{r} S T \\ \text { AST } \end{array}$	BST*	$\begin{array}{r} \text { M } \\ \text { SM } \\ \text { ASM } \\ \text { CSM } \end{array}$	DSM*	NM	$\begin{aligned} & \text { SA } \\ & \text { ASA } \\ & \text { BSA } \\ & \text { CSA } \end{aligned}$	$\begin{gathered} \text { NA } \\ \text { ANA } \end{gathered}$	TA	TS	$\begin{aligned} & \text { BNB } \\ & \text { CNB } \end{aligned}$	TB ANB DNB	TH	TJ
R, ohms per Mile at 68° f C, mf Per Mile		$\begin{array}{r} 440 \\ .069 \end{array}$	$\begin{array}{r} 440 \\ .079 \end{array}$	$\begin{array}{r} 274 \\ .072 \end{array}$	$\begin{array}{r} 274 \\ .084 \end{array}$	$\begin{array}{r} 274 \\ .065 \end{array}$	$\begin{array}{r} 171 \\ .082 \end{array}$	$\begin{array}{r} 171 \\ .073 \end{array}$	$\begin{array}{r} 171 \\ .062 \end{array}$	$\begin{array}{r} 171 \\ .068 \end{array}$	$\begin{array}{r} 85 \\ .084 \end{array}$	$\begin{array}{r} 85 \\ .066 \end{array}$	$\begin{array}{r} 42 \\ .066 \end{array}$	$\begin{aligned} & 21.4 \\ & .066 \end{aligned}$
LOADING	LOAD SPACING (FEET)	decibels per mile at $68^{\circ} \mathrm{F}$												
B-175	3,000	.94*	1.01*	. 63	.68*	-	. 44.6	-	-	-.	. 25	. 22	.14	-
B-135	"	1.05*	1.12*	.69*	.75*	-	.48	-	-	-	. 26	.24	.14	-
B- 88	"	1.30*	1.39*	.876	.94*	-	. 60	-	-	-	. 34	. 30	.18	-
D-175	4,500	1.12*	1.20*	.74*	.80*	-	. 51	. 49	-	-	. 28	. 25	.15	-
D-135	"	1.25*	1.33*	.82*	.88*	-	. 56	-	-	-	. 30	. 27	-	-
D- 88	n	1.52*	1.62*	1.01	1.09*	-	.70	-	-	-	. 38	. 34	-	-
H-250	6,000	-	-	-	-	-	-	-	-	-	-	.26	.17	.11
H-175	"	-	-	-	-	-	-	-	-	-	. 31	. 27	.15	.10
H-135	"	1.40*	1.50\%	.92*	1.00*	-	. 63	. 60	-	-	. 34	. 30	.16	-
H-88	n	1.696	1.80\%	1.146	1.23*	-	. 79	-	-	-	. 42	. 38	.21	-
H-44	"	2.06	2.21*	1.46	1.58*	-	1.04	-	-	-	.56	. 50	.27	-
M-175	9,000	-	-	-	-	-	-	.65	. 60	.63	-	. 33	.17	.11
, M-135	n	1.63*	1.75*	1.09ф	1.18*	1.14	.756	. 73	-	-	. 41	. 36	. 20	-
M- 88	"	1.91*	2.04*	1.31	1.42*	1.25	. 92	. 87	-	-	. 49	. 44	. 24	.14
R-133	11,600	-	-	-	-	-	-	-	.76	. 80	-	.41	. 21	.12
Non-loadeo	-	2.67	2.86\%	2.14	2.31*	2.04	1.79	1.69	1.55	1.63	1.26	1.11	.75	. 50
* Added	values mot	ncluded	IN Prev	us iss					\ldots VAL	chano	from	vicus	SUE.	

TABLE 2
attenuation losses of quadded toll cable circuits at 1000 cycles FACILITIES USUALLY REGULATED o

gauge cable		19			16		
LOADING	SPACING FT.	- DECIBELS PER MILE					
		LOSS AT	$\begin{aligned} & \text { VARIATIONS FROM } \\ & 55^{\circ} \text { MEAN } \end{aligned}$		$\begin{gathered} \text { LOSS AT } \\ 55^{\circ} \mathrm{F} . \end{gathered}$	$\begin{aligned} & \text { VARIATIONS FROM } \\ & 55^{\circ} \text { MEAN } \end{aligned}$	
		$55^{\circ} \mathrm{F}$.	AERIAL CABLE :	U.G. CABLEM:		AER IAL CABLE *	U.G. CABLE**
$B-88-50-S$ $B-88-50-P$	3000 3000	.28 .23	$\pm \begin{aligned} & \pm .031 \\ & \pm .026\end{aligned}$	$\pm .011$ $\pm .009$. 16	$\pm .018$ $\pm .015$	$\pm \begin{aligned} & \pm .006 \\ & \pm .005\end{aligned}$
B- 22-N	3000	. 45	$\pm .052$	$\pm .017$. 24	$\pm .028$	$\pm .009$
$\begin{aligned} & \mathrm{H}-174-106-\mathrm{S} \\ & \mathrm{H}-174-106-\mathrm{P} \end{aligned}$	$\begin{aligned} & 6000 \\ & 6000 \end{aligned}$	$\begin{array}{r} .28 \\ .22 \end{array}$	+ $\pm .032$ $\pm .025$	$\pm .011$.16 .13	$\pm .017$ $\pm .013$	$\begin{array}{r}\text { + } \\ \pm .006 \\ \hline .004\end{array}$
$\begin{aligned} & \mathrm{H}-172-63-\mathrm{S} \\ & \mathrm{H}-172-63-\mathrm{P} \end{aligned}$	6000 6000	.27 .28	$\pm .031$ $\pm .032$	$\pm .010$.16 .16	$\pm .018$ $\pm .018$	$\pm \begin{aligned} & \pm .006 \\ & \pm .006\end{aligned}$
H- 88- $50-\mathrm{S}$ $\mathrm{H}-88-50-\mathrm{P}$	6000 6000	. 35	$\pm \begin{aligned} & \pm .041 \\ & \pm .035\end{aligned}$	$\pm \begin{aligned} & \pm .014 \\ & \pm .012\end{aligned}$	19 .16	+.022	$\pm .007$
$\mathrm{H}-4.4-25-5$ $\mathrm{H}-4 \mathrm{H}-25-\mathrm{P}$	6000 6000	.47 .39	+.055	($\pm .018$ $\pm .015$.25 .21	$\pm \begin{aligned} & \pm .029 \\ & \pm .024\end{aligned}$	+.010 $\pm .008$
H- 22-0-S	6000	$.62 \times$	$\pm .071 \times$	$\pm .024 \times$. 32	$\pm .037$	$\pm .012$

\therefore TEMPERATURE RANGE, $\pm 54^{\circ}$ F.; RESISTANCE VARIATION, $\pm 12 \%$ 。
\therefore TEmperature range, $\pm 188^{\circ}$ F.; RESISTANCE variation, $\pm 4 \%$
x Approximate palues.
6 SEE Table 3 for quadded toll and incidental cable circuit facilities USUALLY NON-REGULATED, AND SEE TABLE 4 FOR CARRIER LOADED ENTRANCE AND INTERMEDIATE QUAODED CIROUIT FACILITIES.

TABLE 2A\#
ATtENUATION LOSSES OF QUADDED SUBMARINE AND EMERGENCY CABLES AT 1000 CYCLES

TYPE OF FACILITY	VALUES SHOWN ARE			ATTENUATION LOSS
	Per Unit Length Of	AT TEMP OF F°	DRY OR WET	Decibels Per Unit LENGTH
SUBIAARINE CABLES - QUADDED	Same as for quaddeo Toll Cables			
EMERGENCY CABLES - QUADDED				
$22 \text { GAUGE } \because \quad\left\{\begin{array}{l} \text { SIDE } \\ \text { PHANTOM } \end{array}\right.$	Kilofoot	$\begin{gathered} 55^{\circ} \\ \prime \prime \end{gathered}$		$\begin{aligned} & .29 \\ & .26 \end{aligned}$
19 Gauge CL Trpe $\quad\left\{\begin{array}{l}\text { Side } \\ \text { Phantom }\end{array}\right.$	"	"	$\begin{aligned} & \left\{\begin{array}{l} \text { DRY } \\ \text { WET } \end{array}\right. \\ & \left\{\begin{array}{l} \text { DRY } \\ \text { WET } \end{array}\right. \end{aligned}$	$\begin{aligned} & .28 \\ & .32 \\ & .30 \\ & .32 \end{aligned}$

\#
All data in this table, except losses of 22-gauge emergency cable, are adoed information not included in previous issues of this SECTION.

* See table 3 for losses of loaded 22-gauge emergency cable fácilities

TABLE 3
mTENUATICN LOSSES OF QUADDED TOLL AND INCIDENTAL CABLE rircuits at 1000 CyCles FACILITIES USUALLY NON－REGULATED＊

gauge of cable		22б	19	16	$14 \varnothing \varnothing$	13	10
LOADING	$\begin{gathered} \text { SPACING } \\ \text { FT. } \end{gathered}$	DECIBELS PER MILE AT $55^{\circ} \mathrm{F}$ ．					
$B-88-50-S$ $B-88-50-F$	$\begin{aligned} & 3000 \\ & 3000 \end{aligned}$	． 50		230れ それ＊＊			
$E-28-16-S$ $E-28-16-P$	5575 5575		$.57$	$\begin{aligned} & .29 \\ & .24 \end{aligned}$.16 .14	.081 .068
$\mathrm{H}=28-16-\mathrm{S}$ $\mathrm{H}=28-16-\mathrm{P}$	$\begin{aligned} & 6000 \\ & 6000 \end{aligned}$		． 59	.30 .25		.17 .14	$\begin{aligned} & .086 \\ & .073 \end{aligned}$
$\mathrm{H}-31-18-\mathrm{S}$ $\mathrm{H}-31-18-\mathrm{P}$	6000 6000	1.08 .90	． 55	.28 .24		$\begin{aligned} & .16 \\ & .13 \end{aligned}$	
$\mathrm{H}-4.4-25-5$ $\mathrm{H}-44-25-\mathrm{P}$	$\begin{aligned} & 6000 \\ & 6000 \end{aligned}$.92 .77	\＃	\＃ $2 * *$ $\# \# * *$			
$\mathrm{H}-88-50-\mathrm{S}$ $\mathrm{H}-88-50-\mathrm{P}$	$\begin{aligned} & 6000 \\ & 6000 \end{aligned}$	． 66		\＃ 2% $\# \# \%$			
$\left.\begin{array}{l} H-172-63 \\ H-174-63 \\ H-172-63 \\ H=174-63 \end{array}\right\}-\mathrm{S}$	6000 6000	.49 .51	\＃＊＊＊	\＃\＃＊＊			
$\begin{aligned} & H-174-106-S \\ & H-174-106-P \end{aligned}$	$\begin{aligned} & 6000 \\ & 6000 \end{aligned}$. .40	（\％x－	\＃\＃＊＊ ＊＊＊＊		.101 .084	
$\mathrm{H}-245-\mathrm{N} * *$	6000		． $27 \times$.17	.12	.11	
$\left.\begin{array}{l} H-245-155 \\ H-248-154 \end{array}\right\}-S$	6000	． 44	． 26	.16		.104	． 079
$\left.\begin{array}{l} H-245-155 \\ H-248-154 \end{array}\right\}-P$	6000	． 35	． 20	． 12		． 083	． 062
K－200－N＊	7400					． 080 x	
$\begin{aligned} & K-200-130-S \\ & K-200-130-P \end{aligned}$	7400 7400	$.51$				$.083$	$\begin{aligned} & .049 \\ & .039 \end{aligned}$
$M-4.4-25-S$ $M-4 L_{t}-25-P$	8770 8770		． 55	$\begin{aligned} & .28 \\ & .23 \end{aligned}$.148 .126	.079 .068
M－135－N＊＊	8770	.64					
$\begin{aligned} & M-174-106-S \\ & M-174=106-P \end{aligned}$	$\begin{aligned} & 8770 \\ & 8770 \end{aligned}$		$\begin{aligned} & 22 \\ & .25 \end{aligned}$	$\begin{aligned} & .17 \\ & .15 \end{aligned}$		$\begin{aligned} & .094 \\ & .078 \end{aligned}$	$\begin{aligned} & .059 \\ & .050 \end{aligned}$
$\begin{aligned} & s=44-25-s \\ & s=44-25-P \end{aligned}$	$\begin{aligned} & 12000 \\ & 12000 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 1.06 \end{aligned}$					
$\begin{array}{ll} \text { NON-LOADED } & S \\ \text { NON-LOADED } & P \end{array}$	－	1.54 1.37	1.07 .95	． 72	． 51	． 48	.30 .24

[^0]TABLE 4
attenuation losses of carrier loaded facilities in paper-ins ulated quadded entrance and intermediate cables at iono cycles

gauge cable					19	16	13
LOADING SYSTEM	circuit	$\begin{gathered} \text { FOR } \\ \text { CONNECTION } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { COIL } \\ & \text { SPACING } \\ & \text { FT. } \end{aligned}$	SEE NOTES	decibels per mile at $55^{\circ} \mathrm{F}$.		
c-4.8-0	$\begin{aligned} & S_{*}^{*} \\ & S_{*} \end{aligned}$	$\begin{aligned} & \curvearrowleft \\ & \stackrel{n}{3} \\ & \frac{\alpha}{0} \end{aligned}$	$\begin{array}{r} 800 \\ 685 \end{array}$	$\left(\begin{array}{l}1-A \\ (1-8)\end{array}\right.$.66 .68	$\begin{array}{r} 39 \\ \hline 41 \end{array}$	$.27 \times$
c-4.1-0	$\begin{aligned} & S_{*}^{*} \\ & S_{*} \end{aligned}$		$\begin{aligned} & 800 \\ & 685 \end{aligned}$	$\left(\begin{array}{l}1-A) \\ (1-B)\end{array}\right.$	$.71 \times$. $43 \times$.27
CF-4.8-7.1	$\left\{\begin{array}{l}\text { S } \\ \text { P } \\ \text { S } \\ \text { P }\end{array}\right.$		$\begin{array}{r} 800 \\ 2400 \\ 685 \\ 2055 \\ \hline \end{array}$	$\begin{aligned} & (1-A) \\ & (1-B) \end{aligned}$	$\begin{aligned} & .68 \\ & .57 \\ & .71 \\ & .59 \\ & \hline \end{aligned}$	$\begin{array}{r} 41 \\ .34 \\ .43 \\ .36 \\ \hline \end{array}$	-
CF-4.1-6.3	$\left\{\begin{array}{l}\text { S } \\ P \\ S \\ \text { P }\end{array}\right.$		$\begin{array}{r} 800 \\ 2400 \\ 685 \\ 2055 \\ \hline \end{array}$	$\begin{aligned} & (1-A) \\ & (i-B) \end{aligned}$	-	-	.27 .23 .30 .25
CE -4.8-12.8	$\left\{\begin{array}{l}\text { S } \\ \text { P } \\ S \\ \text { P }\end{array}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \text { E } \end{aligned}$	$\begin{array}{r} 800 \\ 4800 \\ 685 \\ 4110 \\ \hline \end{array}$	$\begin{aligned} & (1-A) \\ & (1-f) \end{aligned}$	$\begin{array}{r} .68 \\ .60 \\ .71 \\ .62 \\ \hline \end{array}$	41 .36 .43 .38	- $28 \times$
CE-4.1-12.8	$\left\{\begin{array}{l}S \\ P \\ S \\ P\end{array}\right.$		$\begin{array}{r} 800 \\ 4800 \\ 685 \\ 4110 \\ \hline \end{array}$	$\begin{aligned} & (1-A) \\ & (1-B) \end{aligned}$	$\begin{aligned} & .72 x \\ & .62 \mathrm{x} \\ & \hline \end{aligned}$	$\begin{array}{r}.44 \times \\ .38 \times \\ \hline\end{array}$.27 .23 .30 .25
$\left.\begin{array}{l} B H-15-15 \\ B H-15-16 \end{array}\right\}$	$\left\{\begin{array}{l}\text { S } \\ P \\ S \\ \text { P }\end{array}\right.$		$\begin{aligned} & 3000 \\ & 6000 \\ & 2800 \\ & 5600 \end{aligned}$	$\begin{gathered} (3) \\ (1-A) \end{gathered}$	$\begin{aligned} & .63 \\ & .53 \\ & .64 \\ & .54 \end{aligned}$.36 .30 .37 .31	. $.24 \times$ $.20 \times$
A-3.0	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$		$\begin{aligned} & 600 \\ & 500 \end{aligned}$	$(1-A)$ $(1-B)$	$\begin{aligned} & .72 \\ & .76 \end{aligned}$	43 47	$.32 \times$
A-2.7	$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \end{aligned}$		$\begin{aligned} & 600 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & (1-A) \\ & (1-B) \end{aligned}$	$.77 \times$	4.45	. 30
c-4.8	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & 800 \\ & 685 \\ & \hline \end{aligned}$	$(1-A)$ $(1-B),(2-A)$	$\begin{array}{r} .67 \\ .70 \\ \hline \end{array}$	$.41 \times$. $28 \times$
c-4.1	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$		$\begin{aligned} & 800 \\ & 685 \\ & 800 \\ & 685 \\ & 685 \\ & 685 \end{aligned}$	$\begin{aligned} & \left(\begin{array}{l} 1-A) \\ 1-B) \\ (1-A),(2-A) \\ (1-B)=(2-B) \\ (1-B),(2-C) \end{array}\right. \end{aligned}$	$\begin{aligned} & \text { i }^{2} \times \\ & = \\ & = \\ & = \end{aligned}$	$\begin{aligned} & \frac{41}{43} \\ & -2 \\ & .49 \end{aligned}$	$\begin{array}{r} .28 \\ .30 \\ .34 \\ \hline \end{array}$
$x-2.7-0$	$\left\{\begin{array}{l}\text { S } \\ \text { P }\end{array}\right.$	OFFICE CABLE LOADING SYSTEMS ON SHORT ENTRANCE ANO INTERMEDIATE CABLES	680	(3)	. $84 \times$	$\begin{array}{r}.58 x \\ .62 \times \\ \hline\end{array}$. $4.44 \times$
Y-9-0	$\left\{\begin{array}{l}\text { S } \\ P\end{array}\right.$		2130	(3)	.84 .82	.58 .62	$\begin{array}{r} .44 \\ .50 \end{array}$

NOTES:-

- Values for phantoms of these stetems may ec taken to ec the game ab those oiven in table 3 fon PHANTOME OF NON-LOADED QNOUPE. THE ATTEMUATIOM LOSEEA AT IOOO CYOLES IM THE WON-LOADED PHAMTOMS OF CARMIEA LOADED SICE CIACUITE DO MOT DIFFER FROM THOAC IM TME PMANTOMS OF MON-LOADEO SIDES OF LIEE QAUOE EY AMOUNTS EHICH, FOR THE LENGTMS OF OARRIER LOADED EMTAAMOE AMO IMTEMMEDRTE CAELE CIROUITE OROIMARILY ENCOUNTERED, ARE SUFFICIEMT TO JUSTIFY TME UBE OF BEPARATE VALUEE. SIDE CIRCUIT COILS INCREABE TME RESIBTAMCE AMO THEIR LEAKAGE INDUCTAMOE ADOB IMOUCTAMCE TO PME PMAMTOM
 MORE THAM OFFBET THE IMOREASED RESIETAMCE, BUT IM THE CAEE OF COAREEG CAVOE PMANTOMS THE INCAEASE IM DESISTANCE TEMDS TO BE TME DOWI NANT PACTOM.

X APPROXIMATE VALUEs BATIBFACTORY FOR THE BHORT LEMGTMS OF TMESE MOM-STAMDARG FACILITIES WORMALLY. EMCOUNTERED ON A SIMGLE COMNECTION.

(A) THEAE VALUEE ARE FOR THE APPAOXIMATE AVERAQE APACIMES EMCOUNTEAEO IM INBTALLATIOMS EHERE CORRECTION FOR MAMUFACTUAINE DEVIATIOMS IM CABLE CAPACITAMOE IS TME PRINCIPAL PROBLEM.
(B) TMESE VALUES ARE FOR TME APPROXIMATE AVERAEE SPAOIMO OBTAIMIME IM IMETALLATIONA IM OLE UNDEROROUND PLANT EHERE RELATIVELY LARGE OEOGAAPHICAL IRREGULARITIES IN MAMHOLE EPACINES MAT ET EMCOUMTERED.
(2) ThEsE attemuation losses apply to entramee cablet ifth the "Cogpaceop loadime ammanachents, descaibeo
 PROVIDISO O-3I RO. TRAMEMIBSION.
(A) THESE VALUES IMGLUDE THE EFFEOT OF MOOIFIED OAPACITAMOE UUILOING-OUT.
(B) THIB VALUE INOLUDES TME EFTECT OF OPTIMUM RESISTAMCE EUILDINE-OUT.
(C) THIB VALUE IMOLUEES TME EFFECTE OF NODIFIED OAPACITAMCE EUILOIMO-OUT AMO OPTIMUM解istance EUILeIme-ouT.
 ALL OTHER VALUES IM TABLE 4 ARE BASED ON BPACIMGS SHORTER TMAN THEORETICAL - IEE PAMACRAPM I.OL or TEXT.

TABLE $5^{\#}$

ATTENUATION LOSSES AT 1000 CYCLES OF CABLE FACILITIES DEVELOPED FOR USE AS INCIDENTAL CABLES IN TYPE J OPEN-WIRE CARRIER SYSTEMS

Type Cable	Type Loading	Type Circuit	$\begin{gathered} \text { ATTENUATION } \\ \text { LOSS DB } \\ \text { PER SECTION AT } \\ 55^{\circ} \mathrm{F} \end{gathered}$
16-gauge, shielded SPIRAL FOUR, DISC insulated	None J-O.72 ON SIDES $\mathrm{J}=0.85$ ON SIOES $\mathrm{J}=0.94$ ON SIOES	SIDE Phantom Side Phantom SIDE Phantom SIDE Phantom	$\begin{aligned} & 0.083(1) \\ & 0.091(1) \\ & 0.041(1),(2) \\ & 0.055(1),(2) \\ & 0.041(1),(2) \\ & 0.056(1),(2) \\ & 0.041(1),(2) \\ & 0.056(1),(2) \end{aligned}$
10-Gauge PAPER insulated	None	$\begin{gathered} \text { NON-QUADDED } \\ \text { PAIRS } \end{gathered}$	0.052 (1)*

Notes: (I) These attenuation losses are for 1000-ft. lengths of non-loaded cable, and for (side circuit) full-loading SECTION LENGTHS WITH ZERO BUILDING-OUT IN THE CARRIER loaded D.i. cable. These theoretical lengths are 633 FT. FOR J-0.72 LOADING aND 648 ft. FOR J-0. 85 and m0.94 loading.
(2) EfFECTS of building out: The attenuation per builtOUT SIDE CIRCUIT LOADING SECTION IS APPROXIMATELY 0.5P per cent. below the theoretical attenuation, Where P is the side circuit builoing-out percentage. IN THE PHANTOM CIRCUITS THE ATTENUATION PER LOADING SECTION IS APPROXIMATELY O. BP beLOW THE THEORETICAL VALIJ FOR ZERO BUILDING OUT.

* Preliminary value based on the very limited length of this type of cable thus far manufactured.
\# All data in this table are adoeo information not ingluded in previous issues of this Section.
attenuation losses and secondary constants of miscellaneous cable and paired conouctor facilities

AT 1000 CYCLES

type of facility	Values shown are			$\begin{aligned} & \text { PROPAGATION } \\ & \text { CONSTANT } \\ & \text { PER UMIT LENATM } \end{aligned}$	Characteristic IMPEDANCE	ATTENUATION LOSS Decieele PER UNIT LENeTH
	Pen Unit Leneth of		$\begin{gathered} \text { ORr on } \\ \text { Wet } \end{gathered}$			
submarine cables - non-quadded						
(24. Gaver	Mile	55°	-	. 2326 + j. 2372	$8 0 1 \longdiv { 4 4 . 2 } { } ^ { \circ }$	2.02
Sinale papte insulation $\{22$ "	"	"	-	. $1945+j .2012$	$594{\overleftarrow{43.8}{ }^{\circ}}^{\circ}$	1.69
19 "	n	"	-	$.1376+j .1478$	$4 1 2 \longdiv { 4 2 . 7 } { } ^ { \circ }$	1.20
2h oauer	n	π	-	. $2412+j .2460$	$7 7 2 \longdiv { 4 4 . 2 ^ { \circ } }$	2.10
$22 \quad *$	*	"	-	. $2009+j .2078$	$575 \overleftarrow{43.8}^{\circ}$	1.75
dousle papta imaulation $\{19$ (9	"	n	-	. $1419+j .1525$	$3 9 9 \longdiv { 4 2 . 7 ^ { \circ } }$	1.23
16	"	"	-	. $08564+j .09939$	$3 1 6 \longdiv { 4 0 . 5 ^ { \circ } }$. 74
17 gauge u wire U Briole wine	Kilofoot	68°	Wet	. $0257+3.0314$	$2 6 0 \longdiv { 3 9 ^ { \circ } }$. 22
$\left.\begin{array}{l} U \\ U A \end{array}\right\} \begin{gathered} \text { Digrnieution Wire } \\ (\text { Bunico }) \end{gathered}$	Mile		n	$\left\{\begin{array}{l}.137+j .153(A)\end{array}\right.$	$2 6 5 \longdiv { 3 9 ^ { \circ } } (1)$	1.19**(A)
				$\{.143+j .161(8)$	$2 5 5 \longdiv { 3 9 } { } ^ { \circ }$ (0)	1.25 (1)
			"	$\left\{\begin{array}{l}.0667+j .391(A)\end{array}\right.$	$5 3 0 \longdiv { 7 ^ { \circ } * (4) }$. 58 **(A)
OROP WIRES						
18 gaues	Kilofoot	68°	Wet	. $0809+j .0831$	$4 4 0 \longdiv { 4 4 ^ { \circ } }$. 70
	"	"	"	.0749 + j.0770	$4 7 5 \longdiv { 4 4 ^ { \circ } }$. 65
17 gaver	"	"	"	. $0579+j .0608$	$3 3 5 \longdiv { 4 4 ^ { \circ } }$. 50
	"	"	*		"	*
14 gauer \quad HC Trre	- "	"	"	. 0218 + j.0292	$1 4 0 \longdiv { 3 6 ^ { \circ } }$	- 19
miscellaneous wires ano cables						
imsior winime carle 22 gauar	Kiloroot	68°	-	. $05299+j .05484$	$4 8 5 \longdiv { 4 4 . 0 } { } ^ { \circ }$. 46
	n	"	-	. $04708+j .04938$	$5 4 3 \longdiv { 4 3 . 7 ^ { \circ } }$. 41
	n	"	-	"	n	"
	n	"	-	π		*
	n	\%	-	n		n
al winc 14 gauae	"	"	Wet	. $0191+j .0272$	$1 6 0 \longdiv { 3 5 ^ { \circ } }$	- 17
Bnigle wint 20	"	"	n	. $0467+j .0508$	$3 0 5 \longdiv { 4 3 ^ { \circ } }$. 41
Duct Wire wire DU Station Wire 22	"	"	"	. $0569+j .0601$	$4 0 0 \longdiv { 4 3 ^ { \circ } }$. 49
gn station wine 22 n	"	"	n	. 0686 + j.0725	$3 3 0 \longdiv { 4 3 ^ { \circ } }$. 60

- L-L L LoADing, 8000-foot spacina.
- Miomegotion iterative impedance.
* Value ehanged from previous issue.
(a) initial values after one day soaking in mater.
(a) Estimateo values after five to ten rears in ghouno, OEPENDINE UPON MOIITURE CONDITIONS IN SOIL.
\# All data in this table, except attenuation losses of U distribution wire under condition (a), are adoed information not includeo in previous issues of THIE SECTION.
table t
primary oistributed constants of cable and miscellaneous paired conductor facilities

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{type of facility} \& \multicolumn{3}{|c|}{values shown are} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { R } \\
(\text { Loop }) \\
\text { OM1 } \\
\text { (00) } \\
\hline
\end{gathered}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
L \\
hemrte
\end{tabular}} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { C } \\
\text { raraoz }
\end{gathered}
\]} \& \multirow[t]{2}{*}{\(\frac{0}{C}\)} \\
\hline \& \[
\begin{aligned}
\& \text { PER UNit } \\
\& \text { LENETH OF }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { AT } \\
\& \text { TEup } \\
\& \text { OEF F }^{2} \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\text { Dny On } \\
\text { WET }
\end{gathered}
\] \& \& \& \& \& \\
\hline Non-Quadoed exchange area cables
\[
26 \text { Gaver } \quad \begin{cases}\text { ST } \& \begin{array}{l}
\text { AST } \\
\text { BST }
\end{array}\end{cases}
\] \& Milit \& 68 \({ }^{\circ}\) \& - \& \(4{ }^{4} 0\) \& -001 \& \[
\begin{gathered}
\left(\times 10^{-6}\right) \\
\\
1.8 \\
2.1
\end{gathered}
\] \& \[
\begin{aligned}
\& \left(\times 10^{-6}\right) \\
\& .069 \\
\& .079
\end{aligned}
\] \& 26 \\
\hline \(2{ }^{2}\) Gaver \(\left\{\begin{array}{llll}M \& \text { SM ASM } \& \text { CSM } \\ \text { CSM } \\ \text { NM }\end{array}\right.\) \& n \& " \& : \& \[
274
\] \& " \& 1.9
2.2
1.7 \& .072
.084
.065 \& n \\
\hline \[
22 \text { Gaver }\left\{\begin{array}{cccc}
\text { SA } \& \text { ASA } \& \text { GSA } \& \text { CSA } \\
\& \& \text { NA } \& \begin{array}{c}
\text { ANA } \\
\text { TA }
\end{array} \\
\& \& \& \text { TS }
\end{array}\right.
\] \& n' \& n \& E \& 171
11
\(n\) \& n \& 2.1
1.9
1.6
1.7 \& .082
.083
.062
.068 \& " \\
\hline 19 Gauer \(\left\{\begin{array}{lll} \& \begin{array}{ll}\text { BNB } \& \text { CNB } \\ \text { ANB }\end{array} \\ \text { DNB }\end{array}\right.\) \& " \& " \& - \& 85 \& " \& 2.2 \& . .084 \& " \\
\hline \begin{tabular}{lll}
16 gauere \& TH \& NH \\
13 gaver \& \& TJ
\end{tabular} \& \& \& \& \begin{tabular}{l}
42 \\
21.4
\end{tabular} \& \& " \& " \& " \\
\hline submarine cables - non quadded Sinele paper ineulation \(\left\{\begin{array}{l}24 \text { gayee } \\ 22 \\ 19\end{array}\right.\) \& Mine \& 55

\square \& E \& 266
166
83 \& $\stackrel{.001}{n}$ \& 1.7
1.9
2.0 \& .066
.075
.078 \& 26
n
n

\hline Dousle paptr insulation $\begin{cases}24 & \text { gayae } \\ 22 & n \\ 10 & n \\ 16 & n\end{cases}$ \& " \& n
n
n \& : \& 266
166
83
41 \& " \& 1.8
2.1
2.2
1.7 \& .071
.080
.083
.066 \& "
\square
n

\hline | 17 gauge u wire |
| :--- |
| ubride wire |
| un distribution wine (bunieo) | \& \[

\left\{$$
\begin{array}{c}
\text { Kilofoot } \\
\text { KILOFOOT } \\
\text { MILE }
\end{array}
$$\right.

\] \& \[

68^{\circ}

\] \& WET \& \[

$$
\begin{gathered}
10.3 \\
n \\
54
\end{gathered}
$$

\] \& | .00033 |
| :--- |
| .00027 |
| .0014 | \& \[

$$
\begin{array}{r}
7.6 \\
40.0
\end{array}
$$

\] \& \[

\left($$
\begin{array}{l}
.025 \\
(.023(A) \\
.026(0) \\
(122(A) \\
.135(B)
\end{array}
$$\right.

\] \& \[

$$
\begin{aligned}
& 328(A) \\
& 296(\mathrm{~A}) \\
& 328(\mathrm{a}) \\
& 296(\mathrm{~B})
\end{aligned}
$$
\]

\hline DROP WIRES 18 gaver $\quad\left\{\begin{array}{l}\text { TP Trpe } \\ \text { TR }\end{array}\right.$ \& KiLofoiot \& 68° \& WET \& 51 \& $$
\begin{array}{r}
.00021 \\
.00023
\end{array}
$$ \& * \& . 042 \& -

\hline 17 Gaver $\quad\left\{\begin{array}{l}\text { BP Trpe } \\ 88\end{array}\right.$ \& " \& " \& " \& 28 \& . 000022 \& * \& . 040 \& -

\hline 14 gaves HC trpe \& n \& n \& " \& 5 \& . 00025 \& * \& . 041 \& -

\hline miscellaneous wires ano cables inside wiring cable - 22 gauqe Senvice cables - 22 gauee $\left\{\begin{array}{cc}\text { CR } & \text { Type } \\ \text { R } & n \\ \text { LR } & n \\ \text { TR } & n\end{array}\right.$ \& \& \[
68^{\circ}

\] \& \& \[

37
\]

\[
37 *

\] \& | .00020 |
| :--- |
| .00027** | \& * \& | .025 |
| :--- |
| .020** | \& -

\hline | Al Wine | 14 gauee |
| :--- | :--- |
| Briole wine | 20 gauae | \& " \& " \& พยт \& \[

$$
\begin{array}{r}
5 \\
21
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& .00029 \\
& .00028
\end{aligned}
$$

\] \& * \& \[

$$
\begin{aligned}
& .033 \\
& .036
\end{aligned}
$$
\] \&

\hline \& " \& " \& " \& 33 \& .00030\% \& * \& $$
\begin{aligned}
& .033 \\
& .048
\end{aligned}
$$ \& -

\hline
\end{tabular}

[^1]table
seconoary constants of exchamee area cable facilities at 1000 crCles

cable		LOADINS	Propagation constant at $68^{\circ} \mathrm{F}$		CHARACTEAISTIC IMPEDANCE Ar 68° F
Gaver	Coot		Pen Mile	Pea Kiloroot	
26	$\begin{array}{r} \text { ST } \\ \text { AST } \end{array}$	$\begin{aligned} & \mathrm{ML} \\ & \mathrm{~B}-175 \\ & \mathrm{~B}-135 \\ & \mathrm{~B}-88 \\ & \hline \mathrm{O}-175 \\ & \mathrm{D}-135 \\ & \mathrm{D}-88 \\ & \mathrm{H}-135 \\ & \hline \mathrm{H}-88 \\ & \mathrm{H}-4 \mathrm{H} \\ & \mathrm{M}-135 \\ & \mathrm{M}-88 \end{aligned}$	$.3072+j$. .3105 $.1084+j$ $.1207+j$. .9354 $.1492+j$ $.1286+j$ $.1434+j$.6713 $.1747+j$ $.1615+j$.6824 $.1940+j$ $.2375+j$ $.1880+j$.5030 $.2196+j$.5062 .4153	$.05818+j .05881$ $.02053+j .1772$ $.02286+j .1557$ $.02826+j .1271$ $.02436+j .1466$ $.02716+j .129$ $.03309+j .1069$ $.03059+j .1142$ $.03674+j .09563$ $.04498+j .07693$ $.03561+j .09759$ $.04159+j .08579$	$718-j 706$ $=1007 \sqrt{44.5^{6}}$ $2204-j 251$ $=2218 \sqrt{6.5^{\circ}}$ $1929-j 281$ $=1949 \sqrt{8.5^{\circ}}$ $1567-j 744$ $=1604 \sqrt{12.4^{8}}$ $1848-j 299$ $=1872 \sqrt{9.2^{6}}$ $1618-j 352$ $=1552 \sqrt{11.6^{\circ}}$ $1325-j 403$ $=1385 \sqrt{16.9^{8}}$ $1440-j 383$ $=1490 \sqrt{14.9^{\circ}}$ $1192-j 453$ $=1275 \sqrt{20.8^{\delta}}$ $949-j 552$ $=1098 \sqrt{30.2^{8}}$ $1257-j 460$ $=1338 \sqrt{20.1^{8}}$ $1057-j 525$ $=1180 \sqrt{26.4^{\circ}}$
	BST	$\begin{aligned} & \mathrm{NL} \\ & B-175 \\ & B-135 \\ & B-88 \\ & \hline 0-175 \\ & \mathrm{D}-135 \\ & \mathrm{D}-88 \\ & \mathrm{H}-135 \\ & \hline \mathrm{H}-88 \\ & \mathrm{H}-44 \\ & \mathrm{M}-135 \\ & \mathrm{M}-88 \end{aligned}$	$.3287+j$.3322 $.1160+j$ 1.0009 $.1292+j$.8799 $.1596+j$.7183 $.1576+j$ $.828!$ $.1534+j$.7302 $.1869+j$.6039 $.1726+j$.6452 $.2076+j$.5403 $.2541+j$.4346 $.2012+j$.5514 $.2350+j$.4734	$.06225+j .06292$ $.02197+j .1896$ $.02447+j .1666$ $.03023+j .1360$ $.02606+j .1568$ $.02905+j .1383$ $.03540+j .1144$ $.03273+j .1222$ $.0393+j .1023$ $.04813+j .08231$ $.03811+j .1044$ $.04451+j .08966$	$672-j 660$ $=942 \sqrt{44.5^{\delta}}$ $2060-j 235$ $=2073 \sqrt{6.5^{\delta}}$ $1802-j 263$ $=1821 \sqrt{8.3^{\delta}}$ $1464-j 322$ $=1499 \sqrt{12.4^{\delta}}$ $1727-j 280$ $=1750 \sqrt{9.2^{\delta}}$ $1512-j 310$ $=1544 \sqrt{11.6^{\circ}}$ $1238-j 376$ $=1294 \sqrt{16.9^{6}}$ $1346-j 358$ $=1393 \sqrt{14.9^{\circ}}$ $1114-j 423$ $=1192 \sqrt{20.8^{\delta}}$ $887-j 516$ $=1026 \sqrt{30.2^{6}}$ $1174-j 430$ $=1250 \sqrt{20.1^{\delta}}$ $988-j 490$ $=1103 \sqrt{26.4^{\delta}}$
24	$\begin{array}{r} M \\ \operatorname{sim} \\ \text { ASM } \\ \text { CSSM } \end{array}$	$\begin{aligned} & \mathrm{NL} \\ & 8-175 \\ & B-135 \\ & B-88 \\ & \hline \mathrm{D}-175 \\ & \mathrm{O}-135 \\ & \mathrm{O}-88 \\ & \mathrm{H}-135 \\ & \hline \mathrm{H}-88 \\ & \mathrm{H}-44 \\ & \mathrm{M}-135 \\ & \mathrm{M}-88 \end{aligned}$	$.2467+j$.2513 $.0722+j$.9504 $.079+j$.8344 $.0998+j$.6757 $.0949+j$.7844 $.0941+j$.6887 $.1165+j$.5613 $.1063+j$.6035 $.1309+j$.4945 $.1682+j$.5763 $.1254+j$.5066 $.1513+j$.4212	$.04672+j .04759$ $.01367+j .1800$ $.01504+j .1580$ $.01890+j .1280$ $.01608+j .1486$ $.01782+j .1304$ $.02206+j .1063$ $.02013+j .1143$ $.02479+j .09366$ $.03185+j .07127$ $.02375+j .09595$ $.02866+j .07977$	$558-j 542$ $=778 \sqrt{44.2^{\circ}}$ $2155-j 155$ $=2161 \sqrt{4.1^{\circ}}$ $1880-j 171$ $=1888 \sqrt{5.2^{\delta}}$ $1515-j 216$ $=1530 \sqrt{8 .}$ $1800-j 186$ $=1810 \sqrt{5 . j^{\circ}}$ $1566-j 209$ $=1580 \sqrt{7.6^{\circ}}$ $1264-j 257$ $=1290 \sqrt{11.5^{\circ}}$ $1386-j 239$ $=1407 \sqrt{9.8^{\circ}}$ $1123-j 392$ $=1160 \sqrt{14.6^{\circ}}$ $844-j 572$ $=922 \sqrt{23.8^{\circ}}$ $1187-j 294$ $=1223 \sqrt{13.9^{\circ}}$ $968-j 345$ $=1028 \sqrt{19.6^{\circ}}$
24	DSW	$\begin{aligned} & N L \\ & B-175 \\ & B-135 \\ & B-88 \\ & \hline D-175 \\ & D-135 \\ & D-88 \\ & H-135 \\ & \hline H-88 \\ & H-44 \\ & M-135 \\ & M-88 \end{aligned}$	$.2664+j$ $.0780+j 1.0266$ $.0858+j$ $.1078+j$.9013 $.0917+j$.1098 $.1016+j$ $.1258+j 73$ $.1148+j$.6063 $.1414+j$ $.1817+j$.5341 $.1354+j$ $.1634+j$.	$.05045+j .05142$ $.01477+j .1914$ $.01625+j .1707$ $.02042+j .1382$ $.01757+j .1605$ $.01924+j .1409$ $.02383+j .1148$ $.02174+j .1235$ $.02678+j .1012$ $.03441+j .07699$ $.02564+j .1036$ $.03095+j .08617$	$517-j 503$ $=721 \sqrt{44.2^{\circ}}$ $1996-j 143$ $=2001 \sqrt{4.1^{\circ}}$ $1741-j 158$ $=1748 \sqrt{5.2^{\circ}}$ $1402-j 200$ $=1416 \sqrt{8.1^{\circ}}$ $1667-j 172=1676 \sqrt{5.9^{\circ}}$ $1450-j 193=1463 \sqrt{7.6^{6}}$ $1170-j 238=1194 \sqrt{11.5^{\circ}}$ $1284-j 222=1303 \sqrt{9.8^{\circ}}$ $1039-j 271=1074 \sqrt{14.6^{\circ}}$ $781-j x 45=854 \sqrt{23.8^{\circ}}$ $1099-j 272=1132 \sqrt{13.9^{\circ}}$ $897-j 319=952 \sqrt{19.6^{\circ}}$
24	M	NL	.23142 ${ }^{\text {j }}$. 2388	.04436 + j . 044522	$588-572=820 \sqrt{44.2^{\circ}}$
THIS TABLE CONTINUED ON NEXT ShEET.					

[^2]tABLE 8月 (Comtimued)
SECONOARY CONSTANTS OF EXCHANGE AREA CABLE FACILITIES AT 1000 CYCLES

CABLE		LOADING	propagation constant at $68{ }^{\circ} \mathrm{F}$		Chiracteristic impedance$\text { AT } 68^{\circ} \mathrm{F}$
gaver	Code		Per mile	Per Kilotoot	
22		NL	. 2065 + j . 2134	.03911 + j .04042	416-j399 = $576 \sqrt{43.8^{\circ}}$
		B-175	. $0503+j 1.0155$. $00953+j .1923$	2025-j $9 2 = 2 0 2 7 \longdiv { 2 . 6 0 }$
		B-135	. 0549 + j . 8900 *	. $01040+j .1686$	$1762-j 102=1765 \sqrt{3.3^{\circ}}$
		B-88	. $0689+$ j . 7177	. $01305+j .1359$	$1414-j 130=1420 \quad \sqrt{5.3^{\circ}}$
	SA	D-175	. $0583+$ j . 8365	. $01104+j .1584 *$	$1 6 9 4 - j 1 1 3 = 1 6 9 8 \longdiv { 3 . 8 ^ { \circ } }$
	ASA	D-135	. $0647+j .7325$ *	. $01225+j .1387 *$	1465-j $1 2 5 = 1 4 7 0 \longdiv { 4 . 9 ^ { \circ } }$
	BSA	0-88	. $0808+j .5922$. $01530+j .1122$	1170-j156 = 1180 7 7.60
	CSA	H-135	. $0729+j .6402$. $01381+j .1213$	1298 - j 144 $= 1 3 0 6 \longdiv { 6 . 3 ^ { \circ } }$
		H-88	. $0907+j .5185 *$. 01718 + j . 09820 \#	$1036-j 177=1051$ 9.7 ${ }^{\circ}$
		H-44	. $1199+j .3796$. 02271 + j .07189*	$748-j 233=783 \sqrt{17.3^{\circ}}$
		M-1 35	. $0863+\mathrm{j}$. 5333	. $01634+j .1010$	1109-j $178=1123 \Gamma 9.1^{\circ}$
		M-88	. $1060+j .4341$. 02008 + j .08222	$879-j 214=905 \sqrt{13.7}{ }^{\circ}$
22	ANA	NL	. 1946 + j . 2012	.03686 + j . 03811	$442-j 424=612 \sqrt{43.8^{\circ}}$ *
22	TA	NL	$.1792+j .1853$. $03394+j .03509$	$4 7 9 - j 4 6 0 = 6 6 4 \longdiv { 4 3 . 8 ^ { \circ } }$
22	TS	NL	. $1882+j .1945$. $03564+j .03684$	$457-j 438=633 \sqrt{43.8}{ }^{\circ}$
19	$\begin{aligned} & \text { BNB } \\ & \text { CNB } \end{aligned}$	NL	.1446+j. 1551	. $02739+$ j . 02938	$295-j 273=402512.8^{\circ}$
		B-135	. $0304+j$. 900	. 00576 + j . 1705 *	$1 7 4 1 - j 5 2 = 1 7 4 2 \longdiv { 1 . 7 ^ { \circ } }$
		B-88	$.0386+j .725$. $00731+j .1373$	$1393-j 69=1395 \Gamma 2: 8^{\circ}$
		D-175	$.0321+j .3457$. $00608+j .1602$	$1676-j 58=1677-2.0^{\circ}$
		D-135	$.0349+j .740$. $00661+j .1402 *$	$1448-j 63=1449 \Gamma 2.5^{\circ}{ }^{\circ}$
		D-88	. $0439+j .5957$. $00831+$ j . 1128	$1155-j 81=1158$ 4.0 ${ }^{\text {o }}$
		H-135	$.0388+j .6455$. $000735+j .1223$	$1281-j 74=1283$ - 3.3°
		H-88	. $0487+j .5194$. $00922+$ j . 09857	1013-j 92 $=10175$ 5.30
		H-44	$.0645+j .3701$. $01222+$ j . 07009 *	713-j122 $=723 \Gamma^{9.7^{\circ}}$
		M-88	. $0568+j .1+302$. $01076+j .08148$	$8 5 4 - j 1 1 1 = 8 6 1 \longdiv { 7 . 4 ^ { \circ } }$ *
	TBANBDNB	NL	$.1282+j .1375$.02428 + j . 02604	$333-j 308=453$ 「2. ${ }^{\circ}$
		B-175	. $0254+j .908$.00481 + j . 1720	2237-j $54=2238-1.4^{\circ}$
		B-135	$.0270+j .795$. $00511+j .1506$	$1951-j 61=1952-1.8^{\circ}$
		8-88	.0342 + j . 641	.006L8 + j. 1214	- $1563-576=1565 \Gamma 2.8^{0}$
		D-175	$.0282+j .7461$. $00534+j .1413$	1862-j $65=1863-\frac{1}{2.0^{0}}$
		D-135	$.0310+j .653$. $00587+j .1237$	$1 6 1 8 - j 7 1 = 1 6 2 0 \longdiv { 2 . 5 ^ { \circ } }$
19		$0-88$.0390 + j . 5269	. $00739+j .09979$	1292-j $91=1295 \quad 4.0^{\circ}$
		H-175	. $0315+j .6507$. 00597 + j. 1232	$1643-j 75=1645 \Gamma 2.6^{\circ}$
		H-135	$.0345+j .5694$. $00653+j .1078$	$1423-j 82=1425{ }^{\text {a }}$ - 3.3°
		H-88	$.0432+j .4590$	$.00818+j .08693$	$1132-j 103=113755.2^{0}$
		H-44	. $0571+j .3282$. $01081+j .06216 *$	$799-j 138=8119^{9.8}{ }^{\circ}$
		M-8B	. $0505+j .3796$.00956 + j .07189*	$948-j 123=956 \Gamma 7.4^{\circ}$
16	$\begin{aligned} & \text { TH } \\ & \mathrm{NN} \end{aligned}$	NL	. $0868+j .1004$. $01644+j .01902 *$	$243-j 208=320 \times 40.6^{\circ}$
		8-175	. $0156+j .908$. $00295+j .1720$	$2 2 3 8 - j 3 0 = 2 2 3 8 \longdiv { 0 . 8 ^ { \circ } }$
		B-135	.0158 + j . 795	. $00299+j .1506$	$1 9 5 1 - j 3 1 = 1 9 5 1 \longdiv { 0 . 9 ^ { \circ } }$
		$8-88$. $0203+j .641$.00384 + j. 1214	$1564-j 44=1565-1.6^{\circ}$
		D-175	. $0168+j .765$. $00318+j .1449$	$1824-j 64=1825 \sqrt{2.0^{\circ}}$
		H-175	. $0178+j .6503$. $00337+j .1232$	$1 6 4 8 - j 4 1 = 1 6 4 9 \longdiv { 1 . 4 ^ { \circ } }$
		H-135	. $0188+j .5687$	$.00356+j .1097$	$1 4 1 9 - j 4 2 = 1 4 2 0 \longdiv { 1 . 7 ^ { \circ } }$
		H-88	$.0238+j .4577$. $00451+j .08669$	$1129-j 55=1130 \Gamma 2.8^{\circ}$
		$\mathrm{H}_{\mathrm{H}} \mathrm{L} 4 \mathrm{H}_{4}$. $0307+j .324 . ?$. $00581+j .06153 *$	$7 9 1 - \mathrm { j } 7 2 = 7 9 4 \longdiv { 5 . 2 ^ { \circ } }$
		M-88	. 0271 + j .37i3	.00513+j.07146	$934-$ j $7 5 = 9 3 7 \longdiv { 4 . 6 ^ { \circ } }$

[^3]TABLE $9^{\#}$
inductive reactance of loaded facilities
OHMS PER MILE AT 1000 CYCLES

$\begin{gathered} \text { TYPE } \\ \text { LOADING } \end{gathered}$	$\begin{aligned} & \text { TYPE } \\ & \text { CKT. } \end{aligned}$	$\begin{aligned} & \text { LOAD } \\ & \text { SPACING } \\ & \text { FEET } \end{aligned}$	$\begin{gathered} \omega L \\ \text { OHMS PER } \\ \text { MILE AT } \\ 1000 \text { CYCLES } \end{gathered}$
	(1)		(2)
$\begin{aligned} & A-3 \\ & A-2.7 \end{aligned}$	S	$\left\{\begin{array}{l}500 \% \\ 600 \% \\ 500 \% \\ 600 \%\end{array}\right.$	205 172 185 156
B-175	S	3,000	1,942
B-135	S	"	1.499
B-88	S	",	979
$B-50$ $8-22$	P	7	557 250
			184
	$\int s$	$\left\{\begin{array}{l}2,800 \% \\ 3,000\end{array}\right.$	184
B- 15	P	$\left\{\begin{array}{l}\text { 2,800\% }\end{array}\right.$	182
		3,000	170
C- 4.8	S	$\left\{\begin{array}{l}685 \%\end{array}\right.$	239
0-4.8		800%	205
C- 4.1	S	685% 800%	205
D-175	S	4,500	1,296
D-135	S		1,002
D- 88	S	"	655
E- 28	S	5,575	173
E- 16	P		99.6
E- 12.8	P	$\left\{\begin{array}{l}4,110 \% \\ 4,800 \%\end{array}\right.$	108
F- 12.8	p	\{ 2,055\%	$211{ }^{9}$
F-12.8	P	\{2,400*	181
$F=7.1$	P	$\left\{\begin{array}{l}2,055 * \\ 2,00 \%\end{array}\right.$	119
		$\{2,055 *$	106
F- 6.3	P	2,400\%	91.5
$\mathrm{H}-250$	S	6,000	1,389
H-248	S	"	1,378
$\mathrm{H}-245$	S	n	1,361
$\mathrm{H}-175$	S		
$\mathrm{H}-174$	S	"	968
$\mathrm{H}-172$	S	"	957

$\begin{gathered} \text { TYPE } \\ \text { LOADING } \end{gathered}$	TYPE CKT.	LOAD SPACING FEET	ωL OHMS PER MILE AT 1000 CYCLES
	(1)		(2)
H-155	P	6,000	861
H-154	P		856
H-135	S	"	753
$\mathrm{H}-106$	P	"	590
H-88	S	"	493
H-63	P	"	353
H-50	P	"	281
$\mathrm{H}-\mathrm{HL}_{4}$	S	"	250
$\mathrm{H}-31$	S	,	178
H-28	S	"	161
H-25	P	"	143
H- 22	S	"	128
H-18	P		104
H- 16	P	\{ $5,600 *$	99.2
		6,000	92.9
		\{5,600*	85.2
H- 15		\{6,000	. 89.2
	P	5,600* 6,000	83.3 87.3
J- 0.94	S	6488*	60.3 (2c)
J= 0.85	S		55.7 (20)
J- 0.72	S	630\%	49.9(20)
K-200	S	7,400	903
K-i30	P		587
L- 44	S	8,000	191 (20)
M-175	S	9.000	651
M-174	5		648
M-135	S	"	504
M-106	P	"	395
M-88	S	"	331
M- 4	S	"	169
M- 25	P	"	96.6
R-133	S	11,600	387
$\mathrm{S}-\mathrm{HL}_{4}$	S	12,000	128
S-25	P		$73 \cdot 5$
$x-2.7$	S	680	138
$Y-9$	S	2,130	146

* These are modified spacimgs on camaier loaded entrance and intermediate Quadded cable circuits - see Table 4 and notes (i) and (2) thereunder.
* These are theoretical spacings on carrier loaded entrance and intermediate IG-gauge disc-insulated spiral-four cable circuits - see table 5 and note (I) thereunder.
(1) The letter j is used to desighate both physical cinnu:-s ano side circuits. The Lettë́t P designates phat!ton circuits.
(2) These values include the following reactances introduceo ey the distributed inductance of the conductors:
(A) For al.b circuits oesignated S - except J-0.94, J.0. 85 and J-0. 72 which are covered by (C) below, ano L-hly whieh is covereo by (D) below -, an inductive reactance of 6.3 ohias per mile.
(B) For all circuits designated p, an inductive reactance of 4.4 ohms PER MILE.
(C) The values for J-0.94, J-0.85 ano J-0.72. These values are for 'IG-gavge disc-insulated spiral-four cabl: and ivclude an inouctive reactance of 12.2 ohims per mile.
(D) the value for l-4山. This value is for loaded u wire and includes an inductive reactance of 8.8 ohms per mile.
\# All data in this table are added information not included in previous eissues OF THIS SECTION.

TABLE 10\#
ATTENUATION CORRECTION FACTORS

${ }^{R} / \omega \mathrm{L}$	k	ΔK^{*}	$\mathrm{R} / \omega \mathrm{L}$	K	ΔK^{*}	${ }^{R} / \omega \mathrm{L}$	K	ΔK^{*}	R/wL	K	ΔK^{*}	$\mathrm{R} /{ }_{\omega} \mathrm{L}$	K	ΔK^{*}
. 001	. 002154		. 01	. 00956		. 1	. 0735		1	. 647		10	3.015	
		. .01052			. 00725			. 0701			. 468			1.356
. 002	. 003206		. 02	. 01681		. 2	.1436		2	1.115		20	4.371	
		. 000906			. 00715			. 0692			. 360			1.027
. 003	.004112		. 03	. 02396		. 3	. 2128		3	1.475		30	5.398	
		. 000843			. 00711			. 0677			. 297			. 861
. 004	. 004955		. 04	.03,107		. 4	. 2805		4	1.772		40	6.259	
		. 000806			. 00709			. 0661			. 258			. 756
. 005	. 005761		. 05	. 03816		. 5	.3466		5	2.030		50	7.015	
		. 000783			. 00708			. 0641			. 230			. 683
. 006	.006544		. 06	. 04524		. 6	.4107		6	2.260		60	7.698	
		. 000768			. 00707			. 0621			.210			.626
. 007	. 007312		. 07	. 05231		. 7	. 4728		7	2.470		70	8.324	
		. 000756			. 00707			. 0601			.194			. 583
. 008	. 008068		. 08	. 05938		. 8	. 5×29		8	2.664		80	8.907	
		. 000749			. 00706			. 0579			. 182			. 547
. 209	. 008817		. 09	.06644		. 9	. 5908		9	2.846		90	9.454	
,		. 000742			. 00705			. 0560			.169			.517
. 010	. 009559		. 10	. 07349		1.0	.6468		10	3.015		100	9.971	

[^4]
[^0]: ＊See table 2 for quadded toll circuit facilities usually regulated，and see table 4 for carrier loaded entrance and intermediate quadoed cable circuit facilities．
 \＃NON－PHANTOM OR SIDE CIRCUITS OF GROUPS HAVING NON－LOADED PHANTOMS．
 why Values for these facilities are given in table 2.
 －22－bauge quadoed emergency cable．
 क力 NON－QUADDED CABLE．
 X APPROXIMATE VALUE SATISFACTORY＝OR SHORT LENGTH OF fACILITY．

[^1]: * LEAKAGE CONOUCTANCE AT 1000 CYCLES IS NEBLIGIDLE AS COMPARED EITM CAPACITIVE SUSCEPTANCE.
 - THESE VALUES ARE SATISFACTORY FOR PAIRS, TRIPLES OR QUADE.
 * These values may ee applied to both one amo two palr oablese
 (a) INITIAL values after one oar soakine in water.
 (B$)$ Eatimateo values after five to ten years in eround, depending upom MOISTUAE CONDITIONS IN SOIL.
 \# ALL DATA IN this table are added information mot inoludeo im RREIOUS ISBUES OF THIE SECTIOM.

[^2]: - Vacue onamaco fiom that im abli2.026, issue I.
 - Mio-sECTIOM ITEAATIVE ImpEDANOE IM OASE OF LOADED FAOILITIEE.
 - Abl data in thit tasec anc adoco imponmation mot inolvoes in PREvious iseure of TMIS sectiem.

[^3]: * Value changeo from that in ably2.026, Issue I.
 - MIO-SECTION ITERATIVE IMPEDANCE IN CASE OF LOADEO FACILITIES.
 \# Abl DATA IN THIS TABLE ARE ADDED INFORMATION NOT INCLUDED IN previous issues of this Section.

[^4]: * The values of Δ K are tabular differences, and have been provided to facilitate interpolation between the tabulated values of the correcticn factor K.
 \# This table provides adoeo data not included in previous issues of this Section.

