EQUIPMENT LOSSES AT 1000 CYCLES

 HYBRIDS AND 4-WIRE TERMINATING CIRCUITS
1. GENERAL

1.01 This section is reissued to provide the latest information on Circuit Layout Codes and transmission losses for hybrid coils and 4 -wire terminating sets. Similar information for 173 -type hybrid repeating coils is given in Sections 304-204-102, 304-204-103 and 304-204-104.

type of hybrid or terminating circuit	$\begin{aligned} & \text { CIRCUIT } \\ & \text { LAYOUT } \\ & \text { CODE } \end{aligned}$	Loss in di (NOTE 1)		note
		trans.	REC.	
82 C or 124 A coils and adjustable receiving pad, not associated with a 30 A - or 31 A - ringer	$4 \mathrm{~T}^{*}$	4.0	4.0	2
82 C or 124 A coils and adjustable receiving pad, associated with a 30A- or 31A- ringer	$4 \mathrm{~T}^{*}$	4.0	5.5	2
82 C or 124 A coils and plug-in transmitting and receiving pads	4TM	4.0	4.0	
82A coils and adjustable receiving pad, not associated with a 30 A - or 31 A - ringer	4T*	4.5	4.5	2,3
82A coils and adjustable receiving pad, associated with a 30 A - or 31 A - ringer	$4 \mathrm{~T}^{*}$	4.5	6.0	2, 3
151B coil, plug-in type transmitting and receiving pads, 3 db impedance improving pad in transmitting path	4TP	7.0	3.4	4
Resistance hybrid, disassociated type	4TR	10.7	10.7	
Resistance hybrid, built-in type for N , O , or ON carrier channel terminals	4TRN	16.0	2.0	$5 \leftarrow$
Miniature set (SD-95137-01)	4TT	3.4	5.6	
Miniature set (modified per SD-95144-01 Fig. 9, Note 9.00)	4TTM	3.4	8.2	
Reading type (W309 or 65A coil)	$4 \mathrm{~T}^{*}$	3.8	3.8	3
82 C or 124 A coils, for telephoto, with 10 db pad in transmitting path and filter in receiving path	4 TCP	14.0	4.3	6
Hybrid coil, type H or older type C carrier channel, built-in type, when used for 2 -wire termination of channel	4T*	3.5	3.5	3

[^0]| type of hybrid or terminating circuit | $\begin{aligned} & \text { CIRCUIT } \\ & \text { LAYOUT } \\ & \text { CODE } \end{aligned}$ | LOSS IN DB(NOTE 1$)$ | | NOTE |
| :---: | :---: | :---: | :---: | :---: |
| | | trans. | rec. | |
| 120N coils, 600-ohm nominal 2 -wire impedance: | | | | |
| SD-56055-01 | 120NH | $3.7{ }^{(1)}$ | $3.7{ }^{(1)}$ | |
| SD-56056-01 | 120NH | $3.7{ }^{(2)}$ | $3.7{ }^{(2)}$ | |
| SD-56181-01 | 120NH | 3.6 | 3.6 | |
| SD-56209-01 | 120NH | $3.7{ }^{(3)}$ | $3.7{ }^{(3)}$ | |
| SD-56210-01 | 120NH | 3.6 | 3.6 | |
| SD-56211-01 | 120NH | $3.7{ }^{(4)}$ | $3.7{ }^{(4)}$ | |
| SD-96463-01, Fig. 2 | 120NH | 3.6 | 3.6 | |
| SD-96463-01, Fig. 9 | 120NH | 3.7 | 3.7 | |
| SD-56094-01 | 120NH | 3.6 | 3.6 | |
| SD-56095-01 | 120 NH | 3.6 | 3.6 | |
| 120P coils, 900-ohm nominal 2-wire impedance: | | | | |
| SD-55273-01, Option Z | 120 PHZ | 3.4 | 3.4 | 7 |
| SD-25943-01 | 120PH | 3.7 | 3.7 | |
| SD-27016-01 | 120PH | 3.7 | 3.7 | |
| SD-95443-01, Option S | 120 PHS | 3.6 | 3.6 | 8 |
| SD-95489-01 | 120PHW | 3.6 | 3.6 | |
| SD-96463, Fig. 1, Option W | 120PHW | 3.6 | 3.6 | |
| SD-96463, Fig. 1, Option ZX | 120PHZX | 4.2 | 4.2 | |
| SD-96463, Fig. 7, Option YD | 120PHYD | 3.7 | 3.7 | |
| 120P coils, 1500-ohm nominal 2-wire impedance: | | | | |
| SD-55273-01, Option Y | 120PHY | 3.4 | 3.4 | |
| SD-95443-01, Option T | 120PHT | 3.6 | 3.6 | 8 |
| SD-95489-01 | 120PHX | 3.6 | 3.6 | |
| SD-96463-01, Fig. 1, Option X | 120PHX | 3.6 | 3.6 | |
| SD-96463-01, Fig. 7, Option YE | 120PHYE | 3.7 | 3.7 | |
| ${ }^{(1)}$ On drawings earlier than Issue 9 losses are 3.6 | | | | |
| ${ }^{(2)}$ On drawings earlier than Issue 7 losses are 3.6 | | | | |
| ${ }^{(3)}$ On drawings earlier than Issue 4 losses are 3.6 | | | | |
| ${ }^{(4)}$ On drawings earlier than Issue 2 losses are 3.6 | | | | |

Notes.

1. The losses shown apply to the condition in which, unless otherwise noted, pads or potentiometers in the hybrid or terminating circuit are arranged to give zero loss. (The loss of low-pass filters is not included: when a filter is used, its loss should be added in the proper path, usually the transmitting path; see Bell System Practices Section 304-208-100.) The losses are those which are obtained when the equipment is terminated by the nominal impedances for which it is designed.
2. When this terminating circuit is associated with a 1-tube, 1000-cycle ringer (Code 30A- or $31 \mathrm{~A}-$), an 1800 -ohm shunt is installed in the receiving path of the terminating circuit and causes an additional 1.5 db loss in that path. The receiving loss for the second entry of this code includes that additional loss.
3. Show the type by a note on the circuit layout record card.
4. When the 3 db impedance improving pad is omitted, the loss in the transmitting path is 4.0 db .

Notes (cont)

5. The resistance hybrid associated with 0 carrier was formerly coded 4TRO.
6. In the case of the 4 TCP , the receiving loss includes that of the filter.
7. Terminating circuits codes 120 PHZ and 120 PHY contain a 20 dc ringer coded 10 F whose loss is included in the tabulated value. See also Bell System Practices Section 304-204-104 for losses when these circuits are used as hybrids in No. 4 toll switching system.
8. The loss shown applies when the trunk is arranged for SX or no incoming signaling; for 20 -cycle incoming signaling, add 0.2 db in both paths.

[^0]: *Type indicated by note on circuit layout cards.

