1.01 The effect of inserting in an open wire circuit a longth of a different type of open wire facility can be determined by computing the impedance of the inserted facility terminated in the characteristic impedance of the facility beyond and taking the return loss between this impedance and the characteristic impedance of the circuit in which the insert is made. If the characteristic impedances of the two types of facilities are not widely different the insertion return loss can be determined with sufficient accuracy by adding the term $F y$ of the following table to the junction return ioss between the two facilities.

				300	14	26	22	18	14
Lencth of		Fy (db)		500	15	27	21	18	14
Inserted		1500 or	2400 or	1000	18	26	21	17	16
Facility	300	1600	2500	1500	20	26	21	17	20
in Miles	cycles	cycles	cycles	2000	22	26	21	19	24
	,			2500	24	26	21	21	25
10	+13	0	-3	3000	25	26	22	23	24
20	$+7$	-4	-5	Small cauge copper and even iron may sometimes be involved. Junction and 5-rile insertion return losses of 134 steel and $80-\mathrm{mil}$ copper in 104-mil 12-inch spaced copper circuits are:					
30	$+4$	-5	0						
40	$+2$	-4	+6						
50	$+1$	-4	-3	134-mil Steel				80-mil Copper	
60	0	-4	-4	Freg	Jet.		$\begin{gathered} 5 \mathrm{mi} . \\ \text { Insertion } \end{gathered}$	Jct.	5 mi . Insertion
70	- 1	-3	-3						
80	- 1	-3	-3	300	9		20	18	34
90	- 2	-3	-2	1000	9		13	23	31
90	- 2	-3	-2	2000	11		11	27	30
100	- 2	-2	-2	3000	12		10	29	29

1.02 More accurate computations may be advisable where the conductor material changes, especially if the insertion return loss has a controlling effect. Insertion of 104 coppersteel, 40 per cent. conductivity, in 104 copper circuits (12 inch spacing) is probably an extreme of the type of mixed materials that may be met to any extent in the toll plant. The insertion return loss for this condition (together witil the junction return loss for comparison) is:
$\frac{10^{\circ}+\text { Coper-Steel Insert in } 10_{4} \text { Copper }}{\text { Inserthon Return Loss (db) }}$
For the Indicated Length of Insert
$5 \mathrm{mi} \quad 10 \mathrm{mi} \cdot 20 \mathrm{mi} \quad 40 \mathrm{mi}$
Freq. R.In 5 mi. $10 \mathrm{mi} .20 \mathrm{mi} . \quad 40 \mathrm{mi}$.

Small cauge copper and even iron nay sometimes urn ? 104-mil 12-inch spaced copper circuits are:

