

Bellcore Practice BR 313-220-100 Issue 2, September 1988

# VOICEBAND LOCAL ACCESS AND TRANSPORT AREA SPECIAL ACCESS CHANNELS PRESERVICE TRANSMISSION TEST REQUIREMENTS AND LIMITS

PROPRIETARY - BELLCORE AND AUTHORIZED CLIENTS ONLY

This document contains proprietary information that shall be distributed or routed only within Bellcore and its authorized clients, except with written permission of Bellcore.

Prepared by the Information Management Services Division for Organization 22332, Network Technical Support.

Project Number 422241

Copyright  $\bigcirc$  1988 Bellcore. All rights reserved.

For further information, please contact:

B. Patel 201-829-2957

### CONTENTS

| 1. | GEN        | ERAL                               | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 1  |
|----|------------|------------------------------------|-----|------|-----|-----|----|----|----|----|----|----|-----|----|-----|----|--------------|---|---|---|---|----|
|    | 1.1        | Purpose and Scope                  | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | ٠ | • | • | • | 1  |
|    | 1.2        | Application                        | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 1  |
|    | 1.3        | Preservice Test Requirements and I | Lin | nits |     | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 1  |
|    | 1.4        | Channel Configurations             | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 1  |
| 2. | SPEC       | CIAL ACCESS — CHANNEL DESC         | RI  | PΤ   | IOI | ٩N  |    | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 5  |
|    | 2.1        | Service Code LB (Voice Grade 1)    | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 5  |
|    | 2.2        | Service Code LC (Voice Grade 2)    | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 7  |
|    | 2.3        | Service Code LD (Voice Grade 3)    | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 9  |
|    | 2.4        | Service Code LE (Voice Grade 4)    | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 11 |
|    | <b>2.5</b> | Service Code LF (Voice Grade 5)    | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 12 |
|    | 2.6        | Service Code LG (Voice Grade 6)    | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 14 |
|    | 2.7        | Service Code LH (Voice Grade 7)    | •   | •    | •   | •   | •  | •  | •  | ٠  | •  | •  | •   | •  | •   | •  | ٠            | • | ٠ | • | • | 16 |
|    | 2.8        | Service Code LJ (Voice Grade 8)    | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 18 |
|    | 2.9        | Service Code LK (Voice Grade 9)    | •   | •    | •   | •   | •  | •  | •  | •  | •  | ٠  | •   | •  | •   | •  | •            | • | • | • | • | 20 |
|    | 2.10       | Service Code LN (Voice Grade 10)   | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 21 |
|    | 2.11       | Service Code LP (Voice Grade 11)   | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | ٠ | • | • | 22 |
|    | 2.12       | Service Code LR (Voice Grade 12)   | •   | •    | •   | •   | •  | •  | ٠  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | ٠ | 24 |
| 3. | SPE        | CIAL ACCESS - Preservice Limits    | •   | ٠    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 26 |
|    | 3.1        | General                            | •   | •    | •   | •   | •  | •  | •  | •  | ٠  | •  | •   | •  | •   | •  | •            | • | • | • | • | 26 |
|    | 3.2        | Frequency Shift                    | •   | •    | •   | •   | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | • | • | 37 |
| 4. | TES        | TS REQUIRED FOR CONDITION          | IN  | G    | •   | •   | •  | •  | •  | •  | •  | ٠  | •   | •  | •   | •  | •            | • | • | • | • | 37 |
| 5. | SWI        | TCHED ACCESS CHANNELS—DE           | esc | RI   | PT] | 101 | ٩N | AN | 1D | PR | ES | ER | VIC | CE | LIN | лп | $\mathbf{S}$ | • | • | • | • | 38 |
|    | 5.1        | Service Codes SE and SF (WATS      | Acc | ess  | Li  | ne) | •  | •  | •  | •  | •  | •  | •   | •  | •   | •  | •            | • | • | ٠ | • | 38 |
|    | 5.2        | Service Codes SB and SD (Feature   | G   | rou  | рА  | .)  | •  | •  | •  | •  | •  | •  | •   | •  | •   |    | •            | • | • | • | ٠ | 40 |

BR 313-220-100 Issue 2, September 1988

## LIST OF FIGURES

-

| Figure 1.  | Typical Effective 2-Wire Channel Configuration | ion | з.  | • | • | • | • | • | • | • | • | • | • | • | • | 2  |
|------------|------------------------------------------------|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|----|
| Figure 2.  | Typical Effective 4-Wire Channel Configurat    | ion | 5.  | • | • | • | • | • | • | • | • | • | • | • | • | 3  |
| Figure 3.  | Typical VG1 Channel Configurations             | •   | •   | • | • | • | • | • | • | • | • | • | • | • | • | 6  |
| Figure 4.  | Typical VG2 Channel Configurations             | •   | •   | • | • | • | • | • | • | • | • | • | • | • | • | 8  |
| Figure 5.  | Typical VG3 Channel Configurations             | •   | •   | • | • | • | • | • | • | • | • | • | • | • | • | 10 |
| Figure 6.  | Typical VG4 Channel Configuration              | •   | •   | • | • | • | ٠ | • | • | • | • | • | • | • | • | 11 |
| Figure 7.  | Typical VG5 Channel Configurations             | •   | •   | • | • | • | • | • | • | • | • | • | • | • | • | 13 |
| Figure 8.  | Typical VG6 Channel Configurations             | •   | •   | • | • | • | • | • | • | • | • | • | • | • | • | 15 |
| Figure 9.  | Typical VG7 Channel Configurations             | •   |     | • | • | • | • | • | • | • | • | • | • | • | • | 17 |
| Figure 10. | Typical VG8 Channel Configurations             | •   |     | • | • | • | • | • | • | • | • | • | • | • | • | 19 |
| Figure 11. | Typical VG9 Channel Configuration              | •   | • • | • | • | • | ٠ | • | • | • | • | • | • | • | • | 20 |
| Figure 12. | Typical VG10 Channel Configurations .          | •   | • • | • | • | • | • | • | • | • | • | • | • | • | • | 21 |
| Figure 13. | Typical VG11 Channel Configurations .          | •   | • • | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| Figure 14. | Typical VG12 Channel Configurations .          | •   | •   | • | • | • | • | • | • | • | • | • | ٠ | • | • | 25 |
| Figure 15. | Typical WATS Access Line Configurations        | •   | •   | • | • | • | • | • | • | • | • | • | • | • | • | 39 |
| Figure 16. | Typical Feature Group A Configurations         | •   | •   | • | • | • | • | • | • | • | • | • | • | • | • | 41 |

## LIST OF TABLES

| Table 1. Tarif  | fed Parameters—Con     | ditioned a | nd N   | Jon-C | Cond  | itior | ned  | Cha | ann | els | •   | • | • | • | • | • | • | 5         |
|-----------------|------------------------|------------|--------|-------|-------|-------|------|-----|-----|-----|-----|---|---|---|---|---|---|-----------|
| Table 2. Prese  | rvice Tests—Voice G    | rade 1     |        | •     | •••   | •     | •    | •   | •   | • • | •   | • | • | • | • | • | • | 7         |
| Table 3. Prese  | rvice Tests—Voice G    | rade 2     | •••    | •     | •••   | •     | •    | •   | •   | ••• | •   | • | • | • | • | • | • | 9         |
| Table 4. Prese  | rvice Tests—Voice G    | rade 3     | •••    | •     |       | •     | •    | •   | •   | ••• | •   | • | • | ٠ | • | • | • | 11        |
| Table 5. Prese  | rvice Tests—Voice G    | rade 4     |        | •     | • •   | •     | •    | •   | •   | ••• | •   | • | • | • | • | • | • | 12        |
| Table 6. Prese  | rvice Tests—Voice G    | rade 5     | • •    | •     |       | •     | •    | •   | •   |     |     | • | • | • | • | • | • | 14        |
| Table 7. Prese  | rvice Tests—Voice G    | rade 6     | •••    | •     |       | •     | •    | •   | •   |     | •   | • | • | ٠ | • | • | • | 16        |
| Table 8. Prese  | rvice Tests—Voice G    | rade 7     |        | •     | • •   | •     | •    | •   | •   |     | •   | • | • | • | • | • | • | 18        |
| Table 9. Prese  | rvice Tests—Voice G    | rade 8 Wi  | ithou  | t C-0 | Cond  | litio | ning | 3   | •   |     | •   | • | • | • | • | • | • | 20        |
| Table 10. Prese | ervice Tests—Voice G   | rade 9     |        | •     | •••   | •     | •    | •   | •   | • • | •   | • | • | • | • | • | • | 21        |
| Table 11. Prese | rvice Tests—Voice G    | rade 10    | • •    | •     |       | •     | •    | •   | •   | • • | •   | • | • | • | • | • | • | <b>22</b> |
| Table 12. Pres  | ervice Tests—Voice G   | rade 11 V  | Vitho  | ut T  | -Con  | diti  | onii | ng  | •   | • • | •   | • | • | • | • | • | ٠ | 24        |
| Table 13. Pres  | ervice Tests—Voice G   | rade 12    |        | •     |       | •     | •    | •   | •   | •   | •   | • | • | • | • | • | • | 26        |
| Table 14. Atte  | nuation Distortion—F   | reservice  | Limi   | ts    |       | •     | •    | •   | •   | •   | •   | • | • | • | • | • | • | 28        |
| Table 15. C-M   | essage Noise Preservio | e Limits   | • •    | •     | • •   | •     | ٠    | •   | •   | •   | •   | • | • | • | • | • | • | 29        |
| Table 16. Signa | al to C-Notched Noise  | e Ratio    |        | •     | •••   | •     | •    | •   | •   | •   | • • | • | • | • | • | • | • | 31        |
| Table 17. Sign  | al to C-Message Noise  | e—Preserv  | vice I | imit  | s.    | •     | •    | •   | •   | •   |     | • | • | • | • | • | • | <b>32</b> |
| Table 18. Impu  | llse Noise—Preservice  | Limits     |        | •     |       | •     | •    | •   | •   | •   |     | • | • | • | • | • | • | 33        |
| Table 19. Echo  | Control (Impedance     | Balance)-  | Pre    | servi | ce L  | imit  | s    | •   | •   | •   | • • | • | • | • | • | • | • | 34        |
| Table 20. Enve  | lope Delay Distortion  | n—Preserv  | vice I | imit  | s.    | •     | •    | •   | •   | •   |     | • | • | • | • | • | • | 35        |
| Table 21. Inter | modulation Distortio   | n (IMB)—   | Pres   | ervic | e Liı | nit   | •    | •   | •   | •   |     | • | • | • | • | • | • | 36        |
| Table 22. Phas  | e Jitter Preservice Li | mits* .    | • •    | •     | • •   | •     | •    | •   | •   | •   | • • | • | • | • | • | • | • | 37        |
| Table 23. Opt   | onal Conditioning—F    | reservice  | Test   | s Rec | quire | d.    | •    | •   | •   | •   | • • | • | • | • | • | • | • | 38        |
| Table 24. Pres  | ervice Tests—WATS      | Access Li  | ne .   | •     | • •   | •     | •    | •   | •   | •   | •   | • | • | • | ٠ | • | • | 40        |
| Table 25. Pres  | ervice Tests—Feature   | e-Group A  | . Cha  | nnel  | s .   | • •   | •    | •   | •   | •   | •   |   | • | • | • | • | • | 42        |
| Table 26. Faci  | lity-Related Paramet   | ers Requi  | ring ] | Prese | rvic  | e Te  | ests | •   | •   | •   | •   |   | • | • | • | • | • | 43        |
|                 |                        |            |        |       |       |       |      |     |     |     |     |   |   |   |   |   |   |           |

## PROPRIETARY - BELLCORE AND AUTHORIZED CLIENTS ONLY See proprietary restrictions on title page.

v

#### 1. GENERAL

#### 1.1 Purpose and Scope

This practice is reissued to reflect present-day transmission limits contained in the latest Technical References and to emphasize current-vintage transmission facilities. It suggests preservice transmission tests and limits for voice grade special-access channels (VG1-VG12), the Wide Area Telecommunications Service (WATS) access line, and the Feature Group A switched-access service. For purposes of this practice, these circuits are referred to as channels. Although they are tariffed as switched-access services, WATS access line and Feature Group A channels are included because they are used to furnish services that have traditionally been considered special services.

The preservice tests and limits given in this document have been determined by the performance required for the type of service each channel will provide. The preservice tests and limits include both voice and voiceband data parameters that should be tested for each channel.

This document also provides the preservice tests and limits that apply to the optional C, DA, and Tconditioning offered with certain channels. Acceptance and immediate action limits are contained in Bellcore Technical Reference BR 313-220-101, Voice Grade Special Access Service Feature Group A and WATS Access Lines Transmission Tests and Limits, Issue 1, December 1986.

#### 1.2 Application

Special-access channels are provided by the Bellcore Client Companies (BCCs) to provide the interexchange carriers (ICs) access to their customers (the end users) in the local access and transport area (LATA). Voice Grade channels (VG1-VG12) are provided between the IC point-of-termination (POT) within the LATA and a POT on a customer's premises, between the IC POT and a telephone company central office (CO), or between two IC POTs.

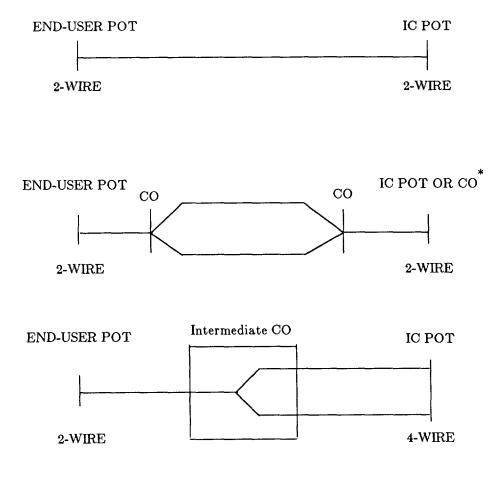
WATS access line channels extend from a POT on a customer's premises to a telephone company's CO that is equipped to provide WATS or 800 Service screening functions and that terminates Feature Group C or D switched-access service to an IC.

Feature Group A channels extend from an IC POT to a line-side termination at a telephone company end office.

#### 1.3 Preservice Test Requirements and Limits

Preservice tests are performed by the BCC to ensure that the quality of a channel meets the acceptance limits of an IC when turned up for service (i.e., installed, rearranged, or repaired). The preservice limits are selected to ensure that normal variations will not cause a parameter to exceed the tariffed Immediate Action Limits (IALs).

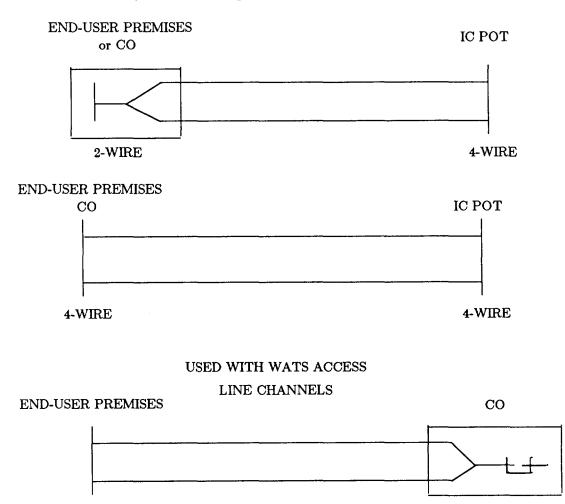
Benchmark measurements are preservice test results that are recorded for use as an aid in localizing future troubles. (Any impairment to normal transmission is classified as a trouble.) Loss and three-tone slope are suggested as benchmark measurements on all channels.


#### 1.4 Channel Configurations

Technical specifications refer to "effective 2-wire" and "effective 4-wire" transmission capability. The channels provided by the BCC typically use a mix of facilities:

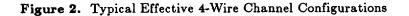
- analog carrier
- digital carrier

- single-gauge cable
- mixed-gauge cable
- digital loop carrier.


An effective 2-wire channel may terminate in either a 2-wire or a 4-wire interface (Figure 1). It may be wholly 2-wire, such as a channel made up entirely of metallic cable, or may contain a 4-wire section such as a carrier facility with a 2-wire cable extension. An effective 2-wire channel will contain at least one 2-wire segment and its transmission performance is that of a 2-wire channel. With effective 2-wire transmission, simultaneous transmission in both directions may be possible but is not ensured.



\* Central Office used with WATS access line or Feature Group A.


Figure 1. Typical Effective 2-Wire Channel Configurations

An effective 4-wire channel may terminate in a 2-wire interface at the end user's premises or CO end but the IC interface must be 4-wire (Figure 2). An effective 4-wire channel is entirely 4-wire with no intermediate 2-wire segment. Its transmission performance is that of a 4-wire channel. Effective 4-wire channels ensure simultaneous transmission in both directions except when the channel is terminated in a 2-wire interface. When terminated in a 2-wire, an effective 4-wire channel may allow simultaneous bidirectional transmission, but there is no guarantee.



4-WIRE

2-WIRE



The method of implementing effective 4-wire transmission on a channel (whether the separation is physical, time-domain, or frequency-domain) is at the discretion of the BCC. This is subject, of course, to the growing use of high-capacity 4-wire carrier facilities, paid for by the IC, between the IC POT and a BCC "hub" office.

Analog or digital multiplexing at the IC end is an option available with these channels. At the IC end, the channel is part of a Digital Signal Level 1 (DS-1) or higher-rate digital signal or part of a group (or higher-capacity) analog system. With this option, the stated limits apply to the derived voice-frequency (VF) channel as measured between the customer premises and the IC POT or between the CO and the IC POT. Parameters such as loss and noise can be measured at a digital multiplexed interface with digital time-slot test equipment; an analog multiplexed signal can be tested with a selective level meter and similar equipment.

**Table 1** gives the tariffed parameters. Although frequency response is a tariffed parameter, slope and attenuation distortion are two ways of measuring it. Usually a slope measurement is made using three test frequencies (404, 1004, and 2804 Hz) for a quick test of the channel frequency response. An attenuation distortion measurement uses frequencies spaced every 200 Hz apart throughout the frequency band. This provides a more accurate picture of the channel frequency response, but is more expensive. Attenuation distortion measurements are necessary on most of the conditioned channels. These tests should be made in both directions of transmission. The test requirements specify whether a slope or an attenuation distortion measurement should be made. The channel must be within the stated limits at all test frequencies.

Although not all tariffed parameters are designated for preservice testing, all listed parameters should be supported. A tariffed parameter that is out of limits requires corrective action when IAL values are not met.

Usually the transmit and receive levels are specified by the type of service, but several sets of transmission levels are offered as an option. The exact levels are stipulated on the Circuit Layout Record (CLR) card or Work Order Record and Details (WORD) document and on the Design Layout Record (DLR) offered to the IC. The usable frequency range for the channels discussed in this practice is nominally 300 to 3000 Hz.

The access tariffs offer the customer the option of requesting "customized" performance parameters via a VG13 channel, service code LQ, subject to acceptance by the BCC. Since these parameters are unique, they are not included in this practice.

| Parameter                                                      | Channel                   |
|----------------------------------------------------------------|---------------------------|
| Loss                                                           | All                       |
| Frequency Response (3-Tone<br>Slope or Attenuation Distortion) | All                       |
| C-Message Noise                                                | All                       |
| C-Notched Noise                                                | VG5-12, WATS Access Lines |
| Impulse Noise                                                  | VG5-12, WATS Access Lines |
| Echo Control (Impedance Balance)                               | All                       |
| Envelope Delay Distortion                                      | VG6-12, WATS Access Lines |
| Intermodulation Distortion                                     | VG6-11, WATS Access Lines |
| Phase Jitter                                                   | VG6-11                    |
| Frequency Shift                                                | VG6-12, WATS Access Lines |
| Resistance Unbalance                                           | VG12                      |
| Signal-to-C-Message Noise                                      | VG4                       |

## Table 1. Tariffed Parameters-Conditioned and Non-Conditioned Channels

## 2. SPECIAL ACCESS — CHANNEL DESCRIPTIONS

# 2.1 Service Code LB (Voice Grade 1)

Voice Grade 1 (VG1) channels are suitable for the access segments of basic two-point nonswitched-voice circuits when the better transmission quality of other channels is not required. Typical configurations for a VG1 channel are shown in Figure 3.

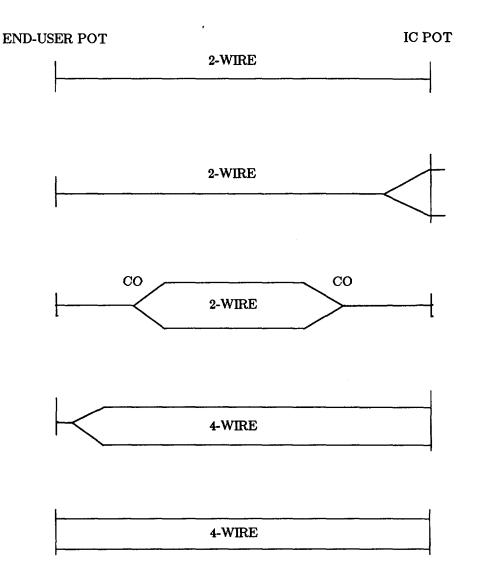



Figure 3. Typical VG1 Channel Configurations

A VG1 channel extends from the customer premises POT to an IC POT. The transmission interfaces are 2- or 4-wire at each end. This channel supports effective 2-wire or effective 4-wire transmission.

Voice Grade 1 (VG1) is suitable for application such as voice grade facility, access facility, or voice grade alarm circuit.

Table 2 gives the preservice tests along with description and limits for VG1 channels.

| Parameter                           | Description/Limits                                                                                            |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Loss                                | Measure (and record) 1004-Hz loss<br>Limit: ±.8 dB of EML<br>Note: ±1 dB non-repeatered cable.                |
| Slope                               | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit: Within -1.5 to +9.0 dB of<br>1004-Hz measurement.       |
| C-Message Noise                     | See Table 15 for limits.                                                                                      |
| Echo Control<br>(Impedance Balance) | Required when POT is 4-wire and<br>other end is 2-wire. See <b>Table 19</b><br>for limits.                    |
| DC Continuity                       | Measure (and record) DC resistance<br>as appropriate for all cable facili-<br>ties serving customer premises. |

| Table 2. | Preservice | Tests—Voice | Grade 1 |
|----------|------------|-------------|---------|
|----------|------------|-------------|---------|

#### 2.2 Service Code LC (Voice Grade 2)

Voice Grade 2 (VG2) channels are suitable for the access segments of two-point voice private lines and switched-special-service circuits. For services such as Foreign Exchange (FX) that are switched at a BCC CO, this channel is suitable for the station or "closed end" only. The "open end" of an FX service is provided by a switched-access Feature Group A channel. Typical configurations for a VG2 channel are shown in Figure 4.

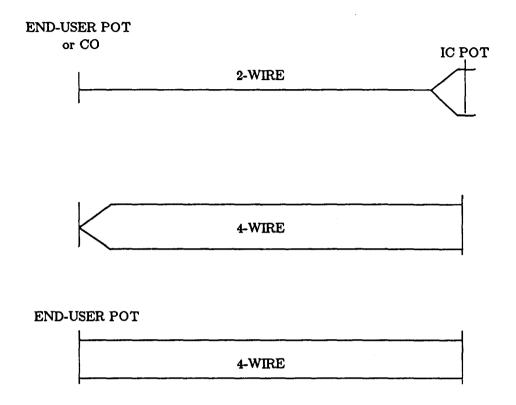



Figure 4. Typical VG2 Channel Configurations

A VG2 channel extends from the end-user premises POT or BCC CO, where a Centrex switch is located, to the IC POT. The transmission interface is 2- or 4-wire at the end-user premises POT, 2-wire at the BCC CO, and 4-wire at the IC end. This channel supports effective 2-wire or effective 4-wire transmission.

VG2 is suitable for applications such as FX line (closed end), extension service, intercommunication offpremises station line, off-premises PBX station line, off-premises extension, private-line voice circuit, paging circuit, radio landline, secretarial line, and turret or automatic call distributor (ACD) line.

Table 3 gives the preservice limits along with description and limits for VG2.

| Parameter                           | Description/Limits                                                                                                                                  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss                                | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>of non-repeatered cable). |
| Slope                               | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit: Within -0.5 to +3.0 dB of<br>1004-Hz measurement.                                             |
| C-Message Noise                     | See Table 15 for limits.                                                                                                                            |
| Echo Control<br>(Impedance Balance) | Required when IC interface is 4-<br>wire and other end is 2-wire. See<br><b>Table 19</b> for limits.                                                |
| DC Continuity                       | Measure (and record) DC resistance<br>as appropriate.                                                                                               |

## Table 3. Preservice Tests-Voice Grade 2

### 2.3 Service Code LD (Voice Grade 3)

Voice Grade 3 (VG3) channels are suitable for the access segments of voice trunk-type circuits. Typical configurations for a VG3 channel are shown in Figure 5.

•

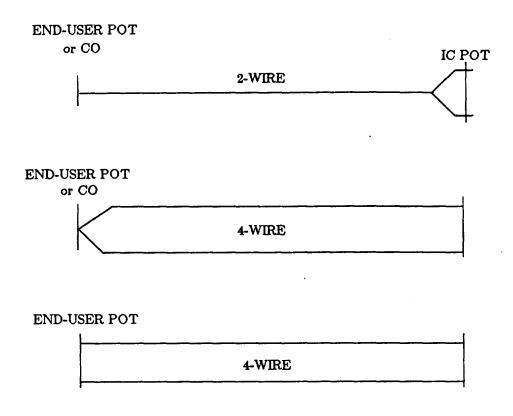



Figure 5. Typical VG3 Channel Configurations

A VG3 channel extends from the end-user premises POT, or BCC CO where a Centrex switch is located, to the IC POT. The transmission interface is 2- or 4-wire at the end-user premises POT, 2-wire at the CO, and 4-wire at the IC end. This channel supports effective 2-wire or effective 4-wire transmission.

Voice Grade 3 is suitable for applications such as:

- foreign exchange trunk (closed end)
- remote attendant trunk
- alternate service
- tie trunk
- Switched Services Network (SSN) access line
- SSN station line
- local off-network access line
- SSN tie trunk
- turret or ACD trunk.

Table 4 gives the preservice tests for Voice Grade 3 along with description and limits for VG3 channels.

| Parameter                           | Description/Limits                                                                                                                                  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss                                | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>of non-repeatered cable). |
| Slope                               | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit: Within -0.5 to +2.0 dB of<br>1004-Hz measurement.                                             |
| C-Message Noise                     | See Table 15 for limits.                                                                                                                            |
| Echo Control<br>(Impedance Balance) | Required when IC interface is 4-<br>wire and other end is 2-wire. See<br><b>Table 19</b> for limits.                                                |
| DC Continuity                       | Measure (and record) DC resistance<br>as appropriate.                                                                                               |

Table 4. Preservice Tests-Voice Grade 3

#### 2.4 Service Code LE (Voice Grade 4)

Voice Grade 4 (VG4) is suitable for the access segments of specialized voice/tone circuits for the Federal Aviation Administration per FAA specification S-1142a. This channel provides two-way voice transmission and also one-way or two-way transmission of tones that control radio transceivers. Figure 6 shows a typical configuration of a Voice Grade 4 channel.

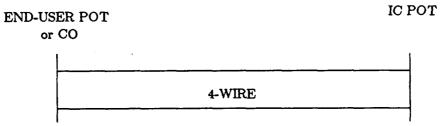



Figure 6. Typical VG4 Channel Configuration

A VG4 channel extends from the end-user premises POT to the IC POT. The transmission interfaces are 4-wire at both ends. This channel supports effective 4-wire transmission.

Table 5 gives the preservice tests along with the description and limits for VG4 channels.

| Parameter       | Description/Limits                                                                                                                                                                                                  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss            | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.5$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>of non-repeatered cable).                                                                 |
| Slope           | Measure 304, 504, 2504, 2804 and<br>3004 Hz.<br>Limits compared to 1004-Hz meas-<br>urement:<br>304 and 504 Hz: -0.5 to +2.5 dB<br>2504 Hz: -0.5 to +1.0 dB<br>2804 Hz: -0.5 to +2.0 dB<br>3004 Hz: -0.5 to +3.0 dB |
| C-Message Noise | See Table 15 for limits.                                                                                                                                                                                            |

Table 5. Preservice Tests-Voice Grade 4

### 2.5 Service Code LF (Voice Grade 5)

Voice Grade 5 (VG5) channels are suitable for the access segments of low-speed voice grade data circuits. Typical configurations for VG5 channels are shown in Figure 7.

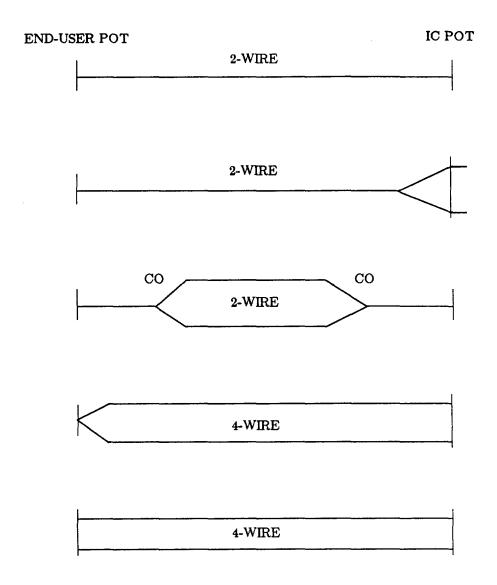



Figure 7. Typical VG5 Channel Configurations

A VG5 channel extends from the end-user premises POT to the IC POT. The transmission interfaces are 2- or 4-wire at the customer premises and at the IC end. This channel supports effective 2- or 4-wire transmission. The customer may order C-conditioning for this channel.

VG5 channels are suitable for services such as protective alarm or DATAPHONE\* Select-A-Station service.

Table 6 gives the preservice tests along with descriptions and limits for VG5 channels.

| Parameter                           | Description/Limits                                                                                                                                  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss                                | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>on non-repeatered cable). |
| Slope                               | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit: Within -0.5 to +4.0 dB of<br>1004-Hz measurement.                                             |
| C-Notched Noise<br>(S/C-NN ratio)   | See <b>Table 16</b> for limits.                                                                                                                     |
| Echo Control<br>(Impedance Balance) | Required when IC interface is 4-<br>wire and other end is 2-wire. See<br><b>Table 19</b> for limits.                                                |
| DC Continuity                       | Measure (and record) DC resistance<br>as appropriate.                                                                                               |
| C-Conditioning                      | See Table 23.                                                                                                                                       |

Table 6. Preservice Tests-Voice Grade 5

#### 2.6 Service Code LG (Voice Grade 6)

Voice Grade 6 (VG6) channels are suitable for the access segments of most two-point voice grade data circuits. Figure 8 shows a typical configuration of a VG6 channel.

<sup>\*</sup> Trademark of AT&T Co.

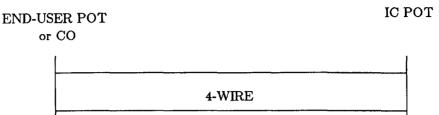



Figure 8. Typical VG6 Channel Configurations

A VG6 channel extends from the end-user premises POT to the IC POT. The transmission interfaces are 4-wire at both ends. This channel supports effective 4-wire transmission. The customer may order C- and/or DA-conditioning.

Voice Grade 6 is suitable for services such as:

- two-point private circuits
- multiplex lines
- data/control links for Enhanced Private Switched Communications Service (EPSCS)
- digital data-off-net extension
- control/remote metering.

Table 7 gives the preservice tests along with description and limits for a VG6 channel.

| Parameter                          | Description/Limits                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss                               | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>of non-repeatered cable).                       |
| Slope                              | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit: Within -0.5 to +3.0 dB of<br>1004-Hz measurement.                                                                   |
| C-Notched Noise<br>(S/C-NN ratio)  | See <b>Table 16</b> for limits.                                                                                                                                           |
| Envelope Delay<br>Distortion (EDD) | Envelope delay distortion and<br>phase-jitter tests are required when<br>the channel includes an N3, N4, or<br>A carrier facility. See <b>Table 20</b> for<br>EDD limits. |
| Phase Jitter                       | See <b>Table 22</b> for phase-jitter limits.                                                                                                                              |
| DC Continuity                      | Measure (and record) DC resistance,<br>as appropriate.                                                                                                                    |
| Conditioning -<br>C and/or DA      | See <b>Table 23</b> .                                                                                                                                                     |

#### Table 7. Preservice Tests—Voice Grade 6

ţ

### 2.7 Service Code LH (Voice Grade 7)

Voice Grade 7 (VG7) channels are suitable for the access segments of medium-speed voice grade data circuits. Typical configurations for VG7 channels are shown in Figure 9.

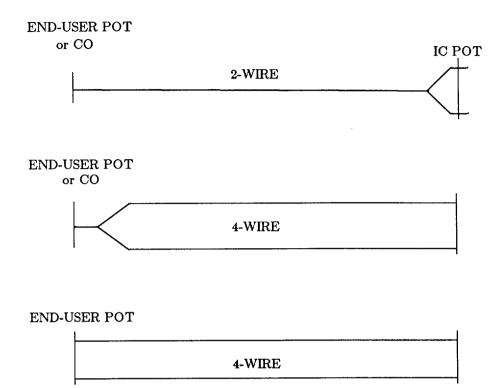
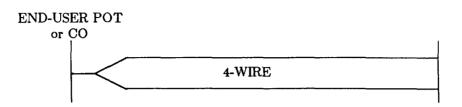



Figure 9. Typical VG7 Channel Configurations

A VG7 channel extends from the end-user premises POT or from a BCC CO, where a Centrex switch is located, to the IC POT. The transmission interface is 2- or 4-wire at the end-user premises, 2-wire at the CO, and 4-wire at the IC end. This channel supports effective 2- or 4-wire transmission. C- and/or DA-conditioning are orderable with this channel.

Voice Grade 7 is suitable for services such as:

- Centrex off-premises station line
- Private Branch Exchange (PBX) off-premises station line
- tie trunk
- foreign exchange line or trunk (closed end)
- voice grade data connecting facility.


Table 8 gives preservice tests along with description and limits for VG7 channels.

| Parameter                           | Description/Limits                                                                                                                                                        |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss                                | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>of non-repeatered cable).                       |
| Slope                               | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit: Within -0.5 to +1.0 dB of<br>1004 Hz measurement.                                                                   |
| C-Notched Noise<br>(S/C-NN ratio)   | See Table 16 for limits.                                                                                                                                                  |
| Echo Control<br>(Impedance Balance) | Required when the IC POT is 4-<br>wire and the other end is 2-wire.<br>See <b>Table 19</b> for limits.                                                                    |
| Envelope Delay<br>Distortion (EDD)  | Envelope delay distortion and<br>phase-jitter tests are required when<br>the channel includes an N3, N4, or<br>A carrier facility. See <b>Table 20</b> for<br>EDD limits. |
| Phase Jitter                        | See <b>Table 22</b> for phase-jitter limits.                                                                                                                              |
| DC Continuity                       | Measure (and record) DC resistance,<br>as appropriate.                                                                                                                    |
| Conditioning -<br>C and/or DA       | See Table 23.                                                                                                                                                             |

#### Table 8. Preservice Tests—Voice Grade 7

### 2.8 Service Code LJ (Voice Grade 8)

Voice Grade 8 (VG8) channels are suitable for the access segments of trunk-type voice grade data circuits. Figure 10 contains typical configurations of VG8 channels.



END-USER POT

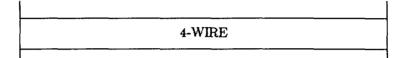



Figure 10. Typical VG8 Channel Configurations

A VG8 channel extends from the end-user premises POT or from a BCC CO office to the IC POT. The transmission interface is 2- or 4-wire at the customer premises, 2-wire at the CO, and 4-wire at the IC end. This channel supports effective 4-wire transmission. C-conditioning may be ordered for this channel.

A VG8 is suitable for services such as SSN access line or station line.

Table 9 gives preservice tests along with description and limits for VG8 channels.

| Parameter                           | Description/Limits                                                                                                                                  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Loss                                | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>of non-repeatered cable). |  |  |
| Slope                               | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit: Within -0.5 to +1.0 dB of<br>1004-Hz measurement.                                             |  |  |
| C-Notched Noise<br>(S/C-NN ratio)   | See Table 16 for limits.                                                                                                                            |  |  |
| Echo Control<br>(Impedance Balance) | Required when the IC interface is<br>4-wire and the other end is 2-wire.<br>See <b>Table 19</b> for limits.                                         |  |  |
| DC Continuity                       | Measure (and record) DC resistance<br>as appropriate.                                                                                               |  |  |
| C-Conditioning                      | See Table 23.                                                                                                                                       |  |  |

| Table 9. | Preservice | Tests-Voice | Grade 8 | Without | C-Conditioning |
|----------|------------|-------------|---------|---------|----------------|
|----------|------------|-------------|---------|---------|----------------|

#### 2.9 Service Code LK (Voice Grade 9)

Voice Grade 9 (VG9) channels are suitable for the access segments of two-way simultaneous (duplex) voice grade data circuits. Figure 11 shows a typical configuration for a VG9 channel.

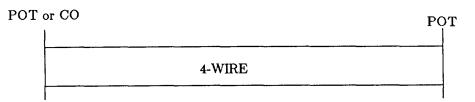



Figure 11. Typical VG9 Channel Configuration

A VG9 channel extends from the IC POT to another IC POT in the same LATA or between the IC POT and a BCC CO that serves as a SSN switch. The transmission interfaces are 4-wire. This channel supports effective 4-wire transmission. It may be ordered with C-conditioning.

Voice Grade 9 is suitable for use as part of SSN intermachine trunks.

Table 10 gives preservice tests along with description and limits for VG9 channels.

| Parameter                         | Description/Limits                                                                                                                                  |  |  |  |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Loss                              | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>of non-repeatered cable). |  |  |  |  |  |
| Slope                             | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit: Within -0.5 to +1.0 dB of<br>1004-Hz measurement.                                             |  |  |  |  |  |
| C-Notched Noise<br>(S/C-NN ratio) | See Table 16 for limits.                                                                                                                            |  |  |  |  |  |
| DC Continuity                     | Measure (and record) DC resistance<br>as appropriate.                                                                                               |  |  |  |  |  |
| C-Conditioning                    | See Table 23.                                                                                                                                       |  |  |  |  |  |

|  | Table 10. | Preservice | TestsVoice Grade 9 |  |
|--|-----------|------------|--------------------|--|
|--|-----------|------------|--------------------|--|

## 2.10 Service Code LN (Voice Grade 10)

Voice Grade 10 (VG10) channels are suitable for specialized 2-way simultaneous voice grade analog data circuits that extend digital data access service into areas that do not have digital line facilities. Figure 12 shows a typical configuration of a VG10 channel.

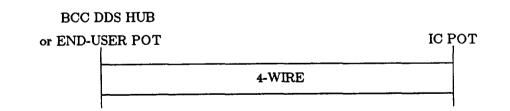



Figure 12. Typical VG10 Channel Configurations

A VG10 channel extends from the end-user premises POT to the IC POT or from the IC or end-user POT to a BCC Digital Data System (DDS) hub office for connection to digital data service. The

transmission interfaces are 4-wire. This channel supports effective 4-wire transmission. Conditioning, either C, DB, or both, may be ordered for this offering.

Table 11 gives preservice test parameters along with description and limits for VG10 channels.

| Parameter                         | Description/Limits                                                                                                                                  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss                              | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>of non-repeatered cable). |
| Slope                             | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit: Within -1.5 to +9.0 dB of<br>1004-Hz measurement.                                             |
| C-Notched Noise<br>(S/C-NN ratio) | See Table 16 for limits.                                                                                                                            |
| Phase Jitter                      | Required when the channel includes<br>N3, N4, or A carrier facilities. See<br><b>Table 21</b> for limits.                                           |
| DC Continuity                     | Measure (and record) DC resistance<br>as appropriate.                                                                                               |
| Conditioning -<br>C and/or DA     | See Table 23.                                                                                                                                       |

 Table 11. Preservice Tests—Voice Grade 10

2.11 Service Code LP (Voice Grade 11)

Voice Grade 11 (VG11) channels are suitable for the access segments of specialized voice grade telephoto/facsimile circuits. Figure 13 show typical configurations for VG11 channels.

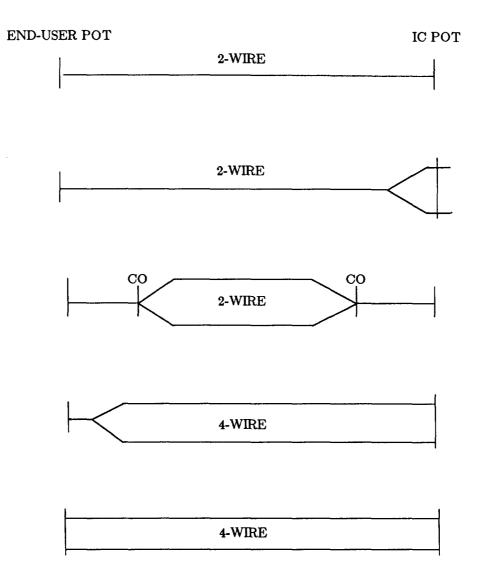
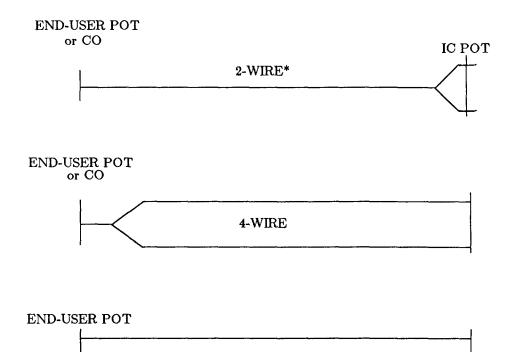
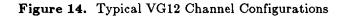



Figure 13. Typical VG11 Channel Configurations

A VG11 channel extends from the customer premises POT to the IC POT. The transmission interfaces may be 2- or 4-wire at either end. This channel supports effective 2- or 4-wire transmission. Special "T" conditioning may be ordered for a VG11.


Table 12 gives the preservice tests along with description and limits for VG11 channels.

| Parameter                           | Description/Limits                                                                                         |
|-------------------------------------|------------------------------------------------------------------------------------------------------------|
| Loss                                | Measure (and record) 2204-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML                                    |
| Slope                               | Measure (and record) 1204 Hz and<br>2604 Hz.<br>Limit: Within -0.5 dB of 2204-Hz<br>measurement.           |
| C-Notched Noise<br>(S/C-NN ratio)   | See <b>Table 16</b> for limits.                                                                            |
| Echo Control<br>(Impedance Balance) | Required when the IC POT is 4-<br>wire and the other end is 2-wire.<br>See <b>Table 18</b> for limits.     |
| Envelope Delay<br>Distortion (EDD)  | See <b>Table 20</b> for limits.                                                                            |
| Phase Jitter                        | Required when the channel includes<br>an N3, N4, or A carrier facility.<br>See <b>Table 21</b> for limits. |
| DC Continuity                       | Measure (and record) DC resistance<br>as appropriate.                                                      |
| T-conditioning                      | See Table 23.                                                                                              |


#### Table 12. Preservice Tests-Voice Grade 11 Without T-Conditioning

## 2.12 Service Code LR (Voice Grade 12)

Voice Grade 12 (VG12) channels are suitable for the access segments of specialized voice grade privateline audio-tone protective-relaying circuits as used by the electric power industry. Figure 14 shows three typical configurations of VG12 channels.



\* One-way transmission only.



4-WIRE

A VG12 channel extends from the customer premises POT to the IC POT. The transmission interface may be 2- or 4-wire at either end. This channel can provide one-way effective 2-wire transmission or effective 4-wire transmission.

Table 13 gives the preservice test along with description and limits for VG12 channels.

| Parameter                           | Description/Limits                                                                                                                                                                          |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss                                | Measure (and record) 1004-Hz loss.<br>Limit: Within ±0.8 dB of EML                                                                                                                          |
| Slope                               | Measure 304, 504, 2504, 2804, and<br>3004 Hz.<br>Limits, referred to 1004-Hz meas-<br>urement:<br>304 Hz: -0.5 to +1.5 dB<br>504 and 2804 Hz: -0.25 to +0.25 dB<br>3004 Hz: -0.5 to +1.5 dB |
| C-Notched Noise                     | See Table 16 for limits.                                                                                                                                                                    |
| Echo Control<br>(Impedance Balance) | Required when the IC interface is<br>4-wire and the other end is 2-wire.<br>See <b>Table 19</b> for limits.                                                                                 |
| Resistance Unbalance                | Unbalance between wires of local cable may not exceed $\pm 1\%$ .                                                                                                                           |
| DC Continuity                       | Measure (and record) DC resistance.                                                                                                                                                         |

| Table 13. Preservice | Tests—Voice Grade 12 |
|----------------------|----------------------|
|----------------------|----------------------|

#### 3. SPECIAL ACCESS - Preservice Limits

#### 3.1 General

This section describes special access channels. Tables 14 through 23 give preservice test limits on parameters for special-access channels.

**Table 14** gives the preservice limits and the frequencies that should be measured to determine the frequency response of a channel. When this test is specified, the measurements must be within the stated limits at all frequencies in the indicated band. All limits are the variation from the 1004-Hz loss (2204-Hz loss for a non-conditioned VG11 channel).

**Table 15** gives the C-message noise limits for channels of various lengths and facilities. An example of how to determine a limit for a channel with a mix of facilities is given in the notes that accompany **Table 15**.

Tables 14 and 15 apply to all channels.

Table 18 gives the signal-to-C-notched-noise ratio limits listed according to mileage and facility type.

Table 17 gives special limits for signal to C-message noise that apply only to VG4 channels.

Impulse noise limits are given in Table 14. Tables 14 and 16 apply to all channels except VG1-VG4.

Echo control (impedance balance) limits are given in **Table 19**. The appropriate terminating network must be in place for an echo control measurement. Refer to the table notes for details. This table applies to all channels involving a 2-wire interface.

Envelope delay distortion limits are given in **Table 20**. These limits are given in microseconds (s) and apply to all channels except VG1 through VG5.

Table 21 contains the limits for intermodulation distortion. These limits apply to channels VG6-VG11 and WATS access lines.

Phase-jitter limits are given in **Table 22**. They apply to VG6-VG12 channels. Frequency shift limits are discussed in Section 3.2.

#### Table 14. Attenuation Distortion—Preservice Limits

The +limit means more loss; the -limit means less loss with respect to 1004 Hz. Do not attempt to measure 2604 Hz directly.

| CHANNEL                       | FREQUENCY | LIMITS                             | TEST<br>EDECUENCIES (II-) |
|-------------------------------|-----------|------------------------------------|---------------------------|
|                               | BAND (Hz) | (see Note A)                       | FREQUENCIES (Hz)          |
| Voice Grade 1                 | 500-2500  | -1.5 to $+7.0$                     | 304                       |
| Voice Grade 10                | 400-2800  | -1.5 to + 9.0                      | 404                       |
|                               | 300-3000  | -2.5 to +11.0                      | 504                       |
|                               |           |                                    | 604                       |
| Voice Grade 2                 | 400-2800  | -0.5  to  + 3.0                    | 804                       |
|                               | 300-3000  | -0.5 to $+4.0$                     | 1004                      |
|                               | 400.0000  |                                    | 1204                      |
| Voice Grade 3                 | 400-2800  | -0.5 to $+2.0$                     | 1404                      |
|                               | 300-3000  | -0.5 to $+4.0$                     | 1604<br>1804              |
| Voice Grade 4                 | 300-499   | -0.5 to $+2.5$                     | 2004                      |
| voice Grade 4                 | 500-2500  | -0.5 to $+1.0$                     | 2204                      |
|                               | 2501-2800 | -0.5  to  + 2.0                    | 2404                      |
|                               | 2801-3000 | -0.5  to  + 2.0<br>-0.5  to  + 3.0 | 2604 (see Note B)         |
|                               | 2001 0000 |                                    | 2804                      |
| Voice Grade 5                 | 400-2800  | -0.5 to $+4.0$                     | 3004                      |
| Voice Grade 6                 | 500-2500  | -0.5 to $+2.0$                     |                           |
|                               | 400-2800  | -0.5 to $+3.0$                     | l                         |
|                               | 300-3000  | -0.5 to $+4.0$                     |                           |
| Voice Grade 7                 | 400-2800  | -0.5 to $+1.0$                     |                           |
|                               | 300-3000  | -0.5 to $+4.0$                     | ]                         |
| Voice Grades 8 and 9          | 400-2800  | -0.5 to $+0.5$                     | 1                         |
| voice crades o and b          | 300-3000  | -0.5 to $+4.0$                     |                           |
| Voice Grade 11                | 1200-2600 | +0.5                               |                           |
| (see Note A)                  | 300-3000  | -0.5 to $+1.5$                     |                           |
| C-Conditioning                | 400-2800  | -1.0 to $+1.5$                     | Those above,              |
| (Limited to VG5 through VG10) | 300-3000  | -1.0 to $+2.0$                     | plus 3204 Hz              |
| (                             | 300-3200  | -1.5 to $+5.0$                     |                           |
| T-Conditioning                | 500-3000  | -0.5 to $+1.0$                     |                           |
| (VG11 only)                   | 300-3200  | -1.0 to $+2.0$                     |                           |
| WATS Access Lines             |           |                                    | Those above, less         |
| 2-Wire Standard               | 400-2800  | -2.5 to $+8.0$                     | 304 and 3004 Hz           |
| 2-Wire Improved               | 400-2800  | -1.5 to $+5.0$                     |                           |
| 4-Wire                        | 400-2800  | -1.5 to $+4.0$                     |                           |

NOTE A: For VG11 channels, use 2204 Hz as the reference frequency; use 1004 Hz as reference for all other channels.

NOTE B: If the channel uses SF signaling, measure 2504 Hz and 2704 Hz and average the two results.

# Table 15. C-Message Noise Preservice Limits(In dBrnc0)

Channels containing multiple facilities (other than cable) require that the individual facility limits be added on a power basis and the results used as the preservice limit. Example: Facility length = 75 route miles; facility consists of T1/D1 B digital carrier and N3 carrier channel, and a short length of connecting cable.

Step 1. Use values from the table as follows:

Column D1 at 51-100 miles = 28Column CAC/N3 at 0-50 miles = 23Column C at 0-50 miles = 25

Step 2. Combine the Step 1 values using rules in Chart A below.

28 and 23 = 2929 and 25 = 30

Result: C-message noise limit for this example is 30 dBrnc0. If the channel in this example contained the same facilities but terminated in a CO switch, the C-message noise limit would be 31 dBrnc0 (30 combined with 22 taken from CO switch column = 31). Where two T1 facilities are connected together through a DCS, the applicable noise limit is for a single facility.

#### Chart A

To add two noise limits on a power basis, the following rules apply:

| DIFFERENCE | E                       |
|------------|-------------------------|
| BETWEEN    |                         |
| LIMITS     | ACTION                  |
| 0 dB       | Add 3 dB to one of them |
| 1-3 dB     | Add 2 dB to the larger  |
| 4-8 dB     | Add 1 dB to the larger  |
| 9 or more  | Use the larger          |

If channels containing both carrier and cable facilities are designed for nominal levels (0 to -6) at a CO switch, the cable limit can be considered to be in dBrnc0; otherwise, these channels must have the carrier limit converted to dBrnc by adding the TLP at the point of measurement to the cable limit.

| FACILITY                   | VF CABLE<br>OR                                    | COMPANDORED<br>ANALOG CARRIER |        |    | NON-<br>COMPANDORED |
|----------------------------|---------------------------------------------------|-------------------------------|--------|----|---------------------|
| LENGTH<br>(ROUTE<br>MILES) | INTRABUILDING<br>CABLE<br>WITH GAIN<br>(see Note) | CAC1                          | CAC    |    | ANALOG<br>CARRIER   |
|                            | С                                                 | N1                            | N2, N3 | N4 | NCAC                |
| 0-50                       | 25                                                | 26                            | 23     | 18 | 31                  |
| 51-100                     |                                                   | 28                            | 26     | 20 | 33                  |
| 101-200                    |                                                   | 30                            | 28     | 23 | 34                  |
| 201-400                    |                                                   |                               |        |    | 36                  |
| 401-1000                   |                                                   |                               |        |    | 39                  |

NOTE: Multiple cable facilities connected in tandem are treated as a single facility.

| FACILITY<br>LENGTH<br>(ROUTE<br>MILES) | CA | COMBINATIONDIGITALANALOG/DIGITALCARRIERFACILITY(see Note A)(see Note B) |    | CENTRAL<br>OFFICE<br>SWITCH |
|----------------------------------------|----|-------------------------------------------------------------------------|----|-----------------------------|
|                                        | D1 | D                                                                       | AT | sw                          |
| 0-50                                   |    |                                                                         | 33 |                             |
| 51-100                                 |    |                                                                         | 34 |                             |
| 101-200                                | 28 | 23                                                                      | 35 | 22                          |
| 201-400                                |    |                                                                         | 37 |                             |
| 401-1000                               |    |                                                                         | 39 |                             |

NOTE A: "D" includes DID through D5 channel banks, DLC, etc. Includes digital radio facilities.
 NOTE B: Use this column when facility includes LT1-type analog-to-digital converter (i.e., combined "A" and "T1" facilities).

#### Table 16. Signal to C-Notched Noise Ratio

#### PRESERVICE LIMITS (In dB) USING -16 dBm0 TEST TONE

| FACILITY TYPE                             | ROUTE MILEAGE |        |         |         |          |  |  |
|-------------------------------------------|---------------|--------|---------|---------|----------|--|--|
| (See Note)                                | 0-50          | 51-100 | 101-200 | 201-400 | 401-1000 |  |  |
| Compandored N/ON Carrier                  | 36            | 35     | 32      | NA      | NA       |  |  |
| Non-Compandored<br>Analog Carrier         | 46            | 44     | 43      | 41      | 38       |  |  |
| Digital Carrier (Includes DLC)            | 34            |        |         |         |          |  |  |
| Combination Digital and<br>Analog Carrier | 34            | 34     | 34      | 33      | 33       |  |  |
| N/ON Carrier,<br>Compandors Disabled      | 30            | 29     | 26      |         |          |  |  |
| VF Cable                                  | 52            |        |         |         |          |  |  |

### PRESERVICE LIMITS (In dB) USING -13 dBm0 TEST TONE

| FACILITY TYPE                           | ROUTE MILEAGE |        |         |         |          |  |  |
|-----------------------------------------|---------------|--------|---------|---------|----------|--|--|
| (See Note)                              | 0-50          | 51-100 | 101-200 | 201-400 | 401-1000 |  |  |
| Compandored N/ON Carrier,               | 37            | 36     | 33      |         |          |  |  |
| Non-Compandored<br>Analog Carrier       | 49            | 47     | 46      | 44      | 41       |  |  |
| Digital Carrier (Includes DLC)          |               |        | 34      |         |          |  |  |
| Combination Digital &<br>Analog Carrier | 34            | 34     | 34      | 33      | 33       |  |  |
| N/ON Carrier,<br>Compandors Disabled    | 33            | 32     | 29      |         |          |  |  |
| VF Cable                                | 52            |        |         |         |          |  |  |

NOTE: Application: The difference in dB between the signal level and the C-notched noise level must equal or exceed the value from the chart. This difference must also include the value derived from the use of multiple facilities.

If a channel consists of multiple facilities, the preservice limit is calculated as follows: If the limits are equal, subtract 3 dB from one of them; if the limits differ by 1 to 3 dB, subtract 2 dB from the lower one; if the limits differ by 4 to 8 dB, subtract 1 dB from the lower one; if the limits differ by a to 8 dB, subtract 1 dB from the lower one; if the limits differ by more than 8 dB, use the lower one. Combine three or more limits by pairing.

# Table 17. Signal to C-Message Noise-Preservice Limits

Application: For the 300 to 3000-Hz band, the difference in dB between a 1004-Hz signal at -8 dBm0 (82 dBrnC) and C-message noise must equal or exceed 44 dB. For the 2600 to 3000-Hz band, the difference in dB between any signal in the band at -15 dBm0 (75 dBrnC) and C-message noise must equal or exceed 24 dB.

| CHANNEL | FREQUENCY BAND (HZ) | LIMIT (dB) |
|---------|---------------------|------------|
| VOA     | 300-3000            | 44         |
| VG4     | 2600-3000           | 24         |

### Table 18. Impulse Noise-Preservice Limits

Application: Counts not to exceed 15 in 15 minutes at threshold settings.

| CHANNEL (see Note)         | THRESHOLD SETTING (dBrnc0) |
|----------------------------|----------------------------|
| VG5, 6, 7, 8, 9, 11 and 12 | 65                         |
| VG10                       | 67                         |

NOTE: If the channel consists of only A or cable facilities, a 5-dB lower threshold setting applies. If the channel consists of N carrier with companders disabled, careful facility selection may be necessary to meet limits, since noncompandored limits are 6-dB higher than compandored limits.

| INTERFACE BEING<br>MEASURED - ALL VGs<br>(see Note)                                 | TYPE OF<br>MEASUREMENT        |       | RL<br>MIT |  |
|-------------------------------------------------------------------------------------|-------------------------------|-------|-----------|--|
| Effective 2-wire Facility<br>2-wire at both ends                                    | Return Loss                   | 5.5   | 3         |  |
| 2-wire Network Interface<br>(with 4-wire IC Interface<br>-Standard                  |                               | 5.5   | 3         |  |
| -Improved                                                                           | ID                            | 16    | 10        |  |
| 4-wire IC Interface<br>(2-wire Network Interface)                                   | Equal Level<br>Echo Path Loss | 19    | 12        |  |
| Effective 4-wire Facility<br>2-wire Network Interface<br>(4-wire IC Interface)      | Echo Return Loss              | 28    | 21        |  |
| 4-wire IC Interface<br>2-wire Network Interface                                     | Equal Level<br>Echo Path Loss | 25    | 17        |  |
| Both 4-wire                                                                         |                               | Not S | pecified  |  |
| WATS Access Line<br>Effective 2-wire Facility<br>2-wire Network Interface<br>and CO | Echo Return Loss              |       |           |  |
| -Standard                                                                           |                               | 7     | 4         |  |
| -Improved                                                                           |                               | 16    | 8         |  |
| Effective 4-wire Facility<br>4-wire Interface<br>and 2-wire CO                      | Equal Level<br>Echo Path Loss | 21    | 14        |  |

| Table 19. | Echo Control | (Impedance | Balance) | -Preservice | Limits |
|-----------|--------------|------------|----------|-------------|--------|
|-----------|--------------|------------|----------|-------------|--------|

**NOTE**: Network interface is the interface at the end-user POT or the equivalent point in a BCC CO. Interface combinations not shown are not offered.

#### Table 20. Envelope Delay Distortion-Preservice Limits

The absolute difference in delay between the frequency with the least delay and the frequency with the most delay, within the applicable frequency band, may not exceed the limit shown.

Where two T1 channels are tied back-to-back through a DCS, the connection is electrically transparent. The resulting EDD is that of a single channel.

| CHANNEL                | LIMIT<br>µs                     | FREQUENCY<br>BAND, Hz                                     |
|------------------------|---------------------------------|-----------------------------------------------------------|
| VG6, 7, 8 & 9          | 600*                            | 800-2600                                                  |
| VG10                   | 1650                            | 800-2600                                                  |
| VG11                   | 600                             | 1200-2600                                                 |
| VG12                   | 600*                            | 800-2600                                                  |
| C-Cond<br>(VG5 - VG10) | 75<br>100<br>200<br>500<br>2900 | 1000-2600<br>800-2600<br>600-2600<br>500-2800<br>300-3000 |
| T-Cond<br>(VG11 Only)  | 75<br>80                        | 1000-2600<br>800-2800                                     |

\* 650  $\mu$  s if the channel design includes two analog carrier facilities in tandem.

#### Table 21. Intermodulation Distortion (IMB)-Preservice Limit

## USING FOUR-TONE MEASUREMENT METHOD

Application: The difference in dB between the fundamental and the intermodulation distortion products (R2 and R3) must equal or exceed the values shown.

| CHANNEL                         | IMD PRODUCT<br>(see Note) | LIMIT<br>(dB) |
|---------------------------------|---------------------------|---------------|
| VG6, 7, and 11                  | R2<br>R3                  | 36<br>43      |
| VG8                             | R2<br>R3                  | 47<br>50      |
| VG9                             | R2<br>R3                  | 51<br>55      |
| VG10                            | R2<br>R3                  | 30<br>35      |
| VG6, 7, and 10<br>with DA cond. | R2<br>R3                  | 41<br>45      |

NOTE: R2 is the ratio of fundamental to second-order products; R3 is the ratio of fundamental to third-order products.

# Table 22. Phase Jitter Preservice Limits\*

- \* Accurate phase jitter measurements are required for adequate signal to C-notched noise margins.
- Phase jitter within the applicable frequency band may equal but not exceed the limit shown.

| CHANNEL       | FREQUENCY<br>BAND (HZ) | LIMIT<br>(DEGREES PEAK-TO-PEAK<br>(see Note B) |              |
|---------------|------------------------|------------------------------------------------|--------------|
|               | (see Note A)           | R                                              | OUTE MILEAGE |
|               |                        | 0-250                                          | 251-500      |
| VG6, 7 and 11 | 200-300                | 2                                              | 4            |
| ,             | 4-300                  | 7                                              | 9            |
| VG8           | 20-300                 | 2                                              | 3            |
|               | 4-300                  | 7                                              | 8            |
| VG9           | 20-300                 | 2                                              | 2.5          |
|               | 4-300                  | 7                                              | 7            |
| VG10          | 20-300                 | 2                                              | 4            |
|               | 4-300                  | 7                                              | 9            |

- NOTE A: If the channel makeup (except VG10 channels) contains A, N3, or N4 carrier, use the maximum limit (the 251-500 route mileage figure) regardless of channel length. VG10 limits become 8 and 13. Facility selection may be required to meet the limit.
- NOTE B: The 20 to 300-Hz band is sometimes referred to as "Bell"; the 4 to 300-Hz band as "Bell plus LF (low frequency)."

# 3.2 Frequency Shift

The frequency shift on VG6 through VG12 channels carries a preservice test limit of  $\pm 1$  Hz. However, since frequency shift is generated solely in certain types of analog carrier, no preservice test is necessary if the facilities are digital carrier, wire, N1 carrier, or N2 carrier.

## 4. TESTS REQUIRED FOR CONDITIONING

Table 23 shows the preservice tests required when optional conditioning of several types is ordered for a channel:

- C-conditioning (VG5 VG10)
- T-conditioning (VG11 only)
- DA-conditioning (VG6, VG7, and VG10)
- Both C- and DA-conditioning (VG6, VG7, and VG10)

|                                                | TESTS REQ  | UIRED WITH CONDITIONING |            |  |
|------------------------------------------------|------------|-------------------------|------------|--|
| PARAMETER                                      | C or T     | DA                      | C and DA   |  |
| Loss                                           | Yes        | Yes                     | Yes        |  |
| Attenuation Distortion<br>(Frequency Response) | Yes        | No                      | Yes        |  |
| Slope<br>(Frequency Response                   | No         | Yes                     | No         |  |
| Envelope Delay Distortion                      | Yes        | see Note A              | Yes        |  |
| Phase Jitter                                   | see Note A | see Note A              | see Note A |  |
| Echo Control (Impedance Balance)               | see Note B | see Note B              | see Note B |  |
| C-Notched Noise (S/C-NN)                       | Yes        | Yes                     | Yes        |  |
| Intermodulation Distortion                     | No         | Yes                     | Yes        |  |

Table 23. Optional Conditioning-Preservice Tests Required

NOTE A: Required only when the channel uses an "A", N3, or N4 carrier facility.

NOTE B: Required only with a 4-wire IC interface and a 2-wire interface at the other end.

# 5. SWITCHED ACCESS CHANNELS-DESCRIPTIONS AND PRESERVICE LIMITS

#### 5.1 Service Codes SE and SF (WATS Access Line)

A WATS access line provides a connection between an end-user premises POT or a Centrex CO switch to a CO switch capable of performing screening functions for 800 Service, WATS, or other similar services. The WATS access line is provided only with Feature Groups C or D switched-access services. **Figure 15** shows typical configurations for WATS access lines. WATS access lines are orderable as "standard" (service code SE) and "improved" (code SF), with performance as shown in **Table 24**.

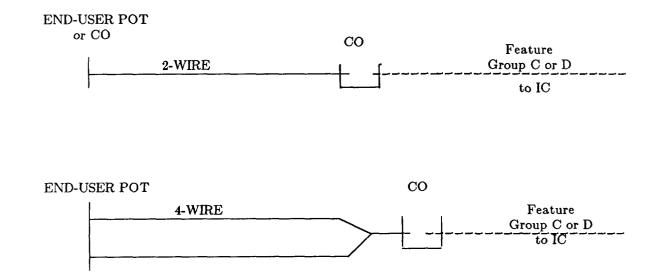



Figure 15. Typical WATS Access Line Configurations

The line extends from the end-user POT or a Centrex CO switch to a line-side (or trunk-side) termination at the WATS/800 Service switch. The transmission interface may be 2- or 4-wire at either end. This channel will support effective 2- or 4-wire transmission.

WATS access lines provide the closed end of an 800 Service or other WATS-type service.

Table 24 lists preservice tests, test descriptions, and limits for WATS access lines.

| Parameter                           | Description/Limits                                                                                                                                                                              |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss                                | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.8$ dB of EML                                                                                                                         |
| Slope                               | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limit referred to 1004-Hz measure-<br>ment:<br>2-W Standard:<br>-2.5 to +7.5 dB<br>2-W Improved and 4-W WATS<br>access lines:<br>-1.5 to +4.5 dB |
| C-Message Noise                     | See <b>Table 15</b> for limits.                                                                                                                                                                 |
| Echo Control<br>(Impedance Balance) | See Table 18 for limits.                                                                                                                                                                        |
| DC Continuity                       | Measure (and record) DC resistance<br>as appropriate.                                                                                                                                           |

| Table 24. | Preservice | Tests-WATS | Access Line |
|-----------|------------|------------|-------------|
|-----------|------------|------------|-------------|

# 5.2 Service Codes SB and SD (Feature Group A)

Feature Group A channels provide a connection between an IC POT and an IC-specified point of switching within a LATA. The first switch provides a line-side termination that is assigned a sevendigit telephone number. Typical configurations of Feature Group A channels are shown in Figure 18. These channels are offered with "standard" transmission (service code SB) and "improved" performance (code SD).

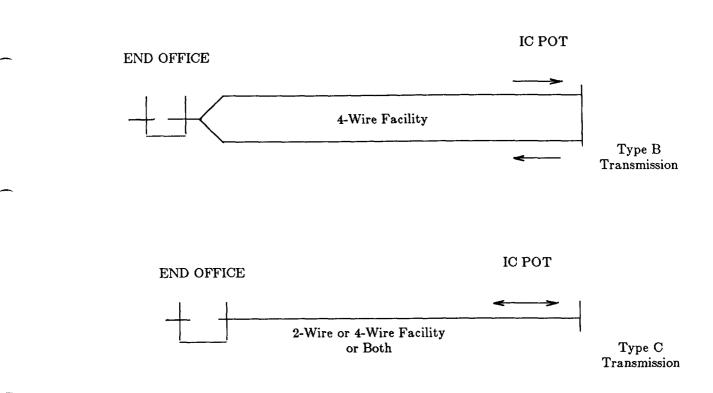



Figure 16. Typical Feature Group A Configurations

The transmission interfaces are 2-wire at the CO and either 2- or 4-wire at the IC POT. Transmission type B offers a 4-wire interface at the IC end and effective 4-wire at BCC facilities. Transmission type C offers a 2-wire interface at each end, while BCC facilities may be 2-wire, 4-wire, or both. Transmission parameters apply only between the IC POT and the point of switching.

Feature Group A channels are suitable for FX service, off-net access lines, and as replacements for the former ENFIA-A facility.

Table 25 contains the preservice test parameters, test descriptions, and limits for FG A channels.

#### Table 25. Preservice Tests-Feature-Group A Channels

These channels should be measured at the IC POT with a termination at the end office. Measurement is not required on 4-wire channels with 4-wire IC POT and 4-wire switch or on channels with digital switch terminations.

| Parameter                  | Description/Limits                                                                                                                                |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Loss                       | Measure (and record) 1004-Hz loss.<br>Limit: Within $\pm 0.5$ dB of EML<br>( $\pm 1.0$ dB if channel consists entirely<br>of cable without gain). |
| Slope                      | Measure (and record) 404 Hz and<br>2804 Hz.<br>Limits referred to 1004 Hz: -1.5 to<br>+3.0 dB (type B)<br>Limit: -1.5 to +4.5 dB (type C)         |
| C-Message Noise            | See Table 15 for limits.                                                                                                                          |
| Echo Control<br>(See Note) | Limit, type B: ERL, 20 dB; SRL, 13<br>dB<br>Limits, type C: RL, 16 dB; SP, 9 dB                                                                   |

NOTE: If one or more of the facilities listed in **Table 25** are used on a Feature Group A channel, the parameters listed should be preservice tested. There is a probability that these facilities will not meet the assigned limits. Refer to Bellcore Technical Reference BR 313-320-100, Voice Grade Switched Access Service Preservice Tests and Limits, Issue 1, March 1986, for preservice test limits.

| FACILITY TYPE    | PARAMETERS THAT REQUIRE PRESERVICE TESTS                                                                                                       |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| T1/D1A<br>T1/D1B | Intermodulation distortion (second order) and C-Notched noise.                                                                                 |
| N1               | C-Notched noise, envelope delay distortion, intermodulation dis-<br>tortion (2nd and 3rd order), attenuation distortion, and impulse<br>noise. |
| ON2              | Same as N1 plus phase jitter measurement.                                                                                                      |
| A, N3            | Envelope delay distortion and phase jitter.                                                                                                    |
| N2               | C-Notched noise and impulse noise.                                                                                                             |
| N4               | Envelope delay distortion                                                                                                                      |

| Table 26. | Facility-Related | Parameters | Requiring | Preservice | Tests |
|-----------|------------------|------------|-----------|------------|-------|
|-----------|------------------|------------|-----------|------------|-------|

BR 313-220-100 Issue 2, September 1988

# Acronyms

| ACD                    |   | Automatic Call Distributor                       |
|------------------------|---|--------------------------------------------------|
| BCC                    |   | Bellcore Client Company                          |
| CLR                    |   | Circuit Layout Record                            |
| CO                     |   | Central Office                                   |
| DCS                    |   | Digital Cross-Connect System                     |
| DDS                    |   | Digital Data System or Service                   |
| DLR                    |   | Design Layout Record                             |
| DS                     |   | Digital Signal                                   |
| DS-1                   |   | Digital Signal Level 1                           |
| EDD                    |   | Envelope Delay Distortion                        |
| EPSCS                  |   | Enhanced Private-Switched Communications Service |
| FAA                    |   | Federal Aviation Administration                  |
| $\mathbf{F}\mathbf{X}$ |   | Foreign Exchange                                 |
| IAL                    | _ | Immediate Action Limit                           |
| IC                     |   | Interexchange Carrier                            |
| LATA                   |   | Local Access and Transport Area                  |
| PBX                    |   | Private Branch Exchange                          |
| POT                    |   | Point of Termination                             |
| PSCS                   |   | Enhanced Private Switched Communications Service |
| SSN                    |   | Switched Services Network                        |
| VF                     |   | Voice Frequency                                  |
| VG                     |   | Voice Grade                                      |
| WATS                   |   | Wide Area Telecommunications Service             |
| WORD                   |   | Work Order Record and Details                    |
|                        |   |                                                  |

#### References

......

- [1] Bellcore Technical Reference BR 313-220-101, Voice Grade Special Access Service Feature Group A and WATS Access Lines Acceptance and Immediate Action Transmission Tests and Limits, Issue 1, December 1986.
- [2] Bellcore Technical Reference BR 313-320-100, Voice Grade Switched Access Service Preservice Tests and Limits, Issue 1, March 1986.

PROPRIETARY - BELLCORE AND AUTHORIZED CLIENTS ONLY See proprietary restrictions on title page.