A1 DIGITAL DATA TRANSMISSION SYSTEM WORD GENERATOR CIRCUIT SD-1G097-01 ANALYSIS AND CLEARANCE OF TROUBLE

1. GENERAL
1.01 This section describes methods and procedures to be followed in the analysis and clearance of typical troubles which may be encountered in the word generator circuit, SD-1G097-01.
1.02 These trouble indications usually ocour from failure to meet the test and adjustment requirements described in Section 314-505-501 covering out-of-service tests of the word generator. The suggested procedures for location of the troubles are classified in the same order as the requirements listed in Section 314-505-501 under the following headings.
A. Binary Counters
B. Dipulse output
C. Synchronization

Under the following heading, Tables A through O are found. These tables may be used to locate a defective varistor.
D. Varistor Tables
1.03 Care should be used to prevent damage to varistors by avoiding the direct
application of the heat of a soldering iron.
1.04 Reference to schematic SD-1G097-01
will be helpful in applying the procedures of this section.

2. APPARATUS

2.01 KS-16305 Waterman oscilloscope.
2.02 No. $262 B$ plug (600 ohms).
2.03 One Vector tube socket adapter, $T-9-N$ or CBS Hytron SH29, or equivalent.

3. TROUBLE CONDITIONS

A. Binary Counters
3.01 When a square wave cannot be obtained at BCAl test point in accordance with the requirements of Test A, Step 19 , of Section 314-505-501, it is probably due to one of the following reasons.
(a) No sine wave at the OSC test point, which may be due to:
(l) Defective crystal in the oscillator circuit, Fig. 4.
(2) Faulty Q1, Q2, Q3, or Q4 transistor or CRI or CR2 varistor in the oscillator circuit, Fig. 4.
(3) Faulty V16 electron tube.
(b) No square wave at pin 4 of V5 electron tube. (Use T-9-N adapter.) This may
be due to faulty $V 4$ or $V 5$ electron tube.
(c) A square wave at pin 4 of $V 5$ electron tube but not at the BCAl test point may be due to:
(1) Faulty V6 or V17 electron tube.
(2) Defective CR2O1-1, CR2O2-1, or CR203-1 varistor in Fig. 1.
3.02 When a rectangular pulse cannot be obtained at the ST test point to meet the requirements of Test A, Step 21 , of Section 314-505-501, it is probably due to one of the following reasons.
(a) A BCA- counter may be raulty if a square wave is not obtained at each of the BCA- test points. Starting at the lowest numbered BCA-counter and continuing in order, this condition may be due to:
(1) Faulty v6 or V17 electron tube or CR2O1-1, CR2O2-1, or CR2O3-1 var1s-
tor in BCAl counter.
(2) Faulty V7 or V18 electron tube or CR2O1-2, CR2O2-2, or CR2O3-2 varis-
tor in BCA2 counter.
(3) Faulty v8 or V19 electron tube or CR2O1-3, CR2O2-3, or CR2O3-3 varis-
tor in BCA3 counter.
(4) Faulty V9 or V20 electron tube or CR2O1-4, CR2O2-4, or CR2O3-4 var1stor in BCA4 counter.
(b) No square pulse at pin 3 of the $V 24$ electron tube may be due to an open
CR25 varistor in the word matrix circuit,
Fig. 5.
(c) No square pulse at pin 4 of the v24 electron tube may be due to a faulty
V24 electron tube.
(d) No square pulse at pin 4 of the V22 electron tube may be due to a faulty v24 electron tube.
(e) No square pulse at pin 4 of Vl2 electron tube may be due to a faulty V4 or V12 electron tube or a defective varistor, CR1 through CR6, in the sampling gate, Fig. 2.
(f) No square pulse at the ST test point may be due to a faulty $\nabla 1$ electron tube.
3.03 When a square pulse cannot be obtained at the DAT test point to meet the requirements of Test A, Step 23, of Section 314-505-501, it is probably due to one of the following reasons.
(a) A square pulse at pin 7 of the v29 electron tube and not at pin 8 may be due to a faulty V29 electron tube.
(b) If a square pulse appears at pin 8 of v29 electron tube and not at pin 7 of V24 electron tube, refer to Tables F and G.
(c) No square pulse at pin 6 of v24 electron tube may be due to a faulty
V24 electron tube.
(d) No square pulse at pin 4 of v23 electron tube may be due to a faulty
v23 electron tube.
(e) No square pulse at pin 4 of V13 electron tube may be due to a faulty V4 or V13 electron tube or a defective varistor, CR7 through CRI2, in the sampling gate circuit, Fig. 2.
(f) No square pulse at the DAT test point may be due to a faulty $V 2$ electron tube.
3.04 Inability to remove two of the pulses when Sl switch is operated to position 32, as stated in Test A, Step 26, of Section 314-505-501, is probably due to one of the following reasons.
(a) No square wave at the BCBl test point may be due to a faulty Vlo or V27 electron tube or CR3O1-1, CR302-1, or CR303-1 varistor in the BCBI counter.
(b) If a square wave appears at the BCB1 test point and the circuit is still not functioning properly, it may be due to an open CR8 varistor in Fig. 1.
3.05 Inability to remove pulses when Sl switch is operated to other positions as stated in Test A, Steps 28 to 31, inclusive, of Section 314-505-501, is probably due to one of the following reasons.
(a) No square wave at the BCB- test point. This may be due to:
(1) Faulty V1l or V27 electron tube or CR301-2, CR302-2, or CR303-2 varistor if no square wave appears at the BCB2 test point.
(2) Faulty V21 or V28 electron tube or CR301-3, CR302-3, or CR303-3 varistor if no square wave appears at the BCB3 test point.
(3) Faulty V3l or V28 electron tube or CR301-4, CR302-4, or CR303-4 varistor if no square wave appears at the BCB4 test point.
(b) When a square wave is obtained at the BCB- test point and the circuit is still not functioning properly, the trouble may be due to an open varistor, CR9, CRIO, or CRIl, of Fig. l, corresponding to counters BCB2, BCB3, or BCB4, respectively.
B. Dipulse Output
3.06 When dipulses cannot be made to meet
the requirements of Test B, Step 20, of Section 314-505-501 by adjusting the LEVEL potentiometer, it is probably due to one of the following reasons.
(a) If a dipulse does not appear at the data output jack, or if the $1 / 2$-inch peak-to-peak deflection cannot be met, 1t may be due to a faulty V26 electron tube or a defective varistor. (See Tables B through I.)
(b) If the dipulse is misshapen and replacing the V26 electron tube does not eliminate the trouble, refer to Table J, L, N, or 0 .

3.07 When the requirements of Test B, Steps 22

 through 26, of Section 314-505-501 cannot be met because no dipulse or more than one dipulse appears corresponding to each operated switch, it may be due to a faulty varistor in the word forming network. Locate by referring to Tables B through I.3.08 When the requirements of Test B, Step 28 , of Section 314-505-501 cannot be met because no dipulse or more than one dipulse appears, it may be due to a faulty varistor. Refer to Table A. If the start pulse is misshapen, refer to Tables K and M.
3.09 If the sine wave described in Test B, Step 30, of Section 314-505-501 cannot be obtained, or the $1 / 2$-inch peak-to-peak amplitude cannot be attained, it is probabiy due to one of the following reasons.
(a) Faulty V16 or V26 electron tube.
(b) Shorted CR6 or CR7 varistor in Fig. 1.

C. Synchronization

3.10 If the matching and error counter circuit records errors, falling to meet the requirements of Test C, Step 21 , of Section 314-505-501, it is because word generators 1 and 2 are not in synchronism. This condition may be due to one of the following reasons.
(a) Faulty $V 4, V 15$, or $V 25$ electron tube.
(b) Defective CR3, CR4, or CR5 varistor in Fig. 1.
D. Varistor Tables
3.11 The following tables provide the necessary information to locate an open or shorted varistor in the word generator.
3.12 The following oscilloscope adjustments are to be made before tables are used. Connect oscilloscope SYNC input to word generator SYNC test point, set SYNCSEL switch to TRIG EXT HI, insert oscilloscope probe into BCA2 test point, and adjust sweep to obtain four cycles of square wave (Fig. 1).
3.13 Sl switch of the word generator should be in position 16.
3.14 The data output jack or start output jack referred to in the tables are the ones located in the jack and connector circuit or in the word generator.
3.15 All observations will be made at the data output jack, unless otherwise specified.
3.16 While using tables, oscilloscope is to be terminated in 600 ohms.
3.17 In reference to the Bits Appear column of tables, the diagram below
w11l show the position of b1ts on oscilloscope.

Position

(That is, see Fig. 2 which shows bits in positions [Pos] B2 and B3.)

3.18 To 111ustrate the use of the tables,

 an example will be given. Assume that observations are being made at the deta output jack. S2 switch is operated down andbits appear in positions 2 and 6 . Looking at the start output jack, it is found that the start pulse is not normal; bits appear in positions $S T, B 1, B 2,2,3,4,5$, and 6. Refer to Table A and under the Switches Operated column it is indicated that no switches are to be operated. Therefore, restore S 2 switch to its up position. It is observed that bits still appear in positions ST, B1, B2, 2, 3, 4, 5, and 6 at the start jack. Since this combination is not listed in the Bits Appear column of Table A, go on to Table B. To use Table B, observations are made at the data output jack with no switches operated down. Looking at the data output jack with all switches in the up position, it is found that no bits appear. Therefore, Table B does not apply. Table C requires that the start pulse be normal and, therefore, Table C does not apply. Since the operation of $S 2$ switch produced the trouble condition, looking down the Switch Operated column of Table D, it is found that 52 switch appears twice. The first appearance of $S 2$ lists bits appearing in positions $B 1$ and 2. The second appearance of $S 2$ lists bits appearing in positions B2 and 2. Therefore, Table D does not apply since it was originally determined that the operation of $S 2$ switch produced bits in positions 2 and 6 . Table E has $S 2$ and $S 3$ switches operated in all rows. Therefore, operate $S 2$ and $S 3$ switches which will result in bits in positions $2,3,4$, 5, and 6. In the Bits Appear column, this combination of bits appears when CR2l varistor of Fig. 4 is shorted. Hence, the trouble has been located.

TABLE A

Switches Operated Down	Bits Appear	This Varistor in Fig. 4 Open
None	Pos ST,7	
None	Pos ST,3	CR21
None	Pos ST,B2	CR22
None	PoS ST,B1	CR23
		CR24

Note 1: Observations are to be made at the start output jack.

Note 2: If any one of the CR2l through CR24 varistors of F1g. 4 is open, any observation at the data output jack while using Table A will appear normal.

TABLE B

TABLE C

TABLE D

Switches		This Varistor
Operated	B1ts Appear	in Fig.
5	Pos 3,5	CRI2
9	Pos 7,9	
5	Pos 5,6	CRI3
9	Pos 9,10	
2	Pos Bl, 2	
6	Pos 4,6	CRII
10	Pos 8,10	
2	Pos B2,2	CR15
10	Pos 5,6	CR15
3	Pos 3,5	
7	Pos 7,9	CRIO
11	Pos 11, B3	
3	Pos 3,4	
7	Pos 7,8	CRI4
11	Pos 11,12	
4	Pos 4,6	
8	Pos 8,10	CR9
12	Pos 12, B^{4}	
4	Pos 3,4	
8	Pos 7,8	CR16
12	Pos 11,12	

TABLE E
All switches in a group must be operated.

Switches		This Varistor
Operated	Bits	in Fig. 4
Down	Appear	Shorted
2,3	Pos 2,3,4,5,6	CR21
2,3	Pos 2,3,10	CR22
2,3	Pos 2,3,4,11	CR23
2,3	Pos 2,3,5,11, B3	CR24

TABLE F

All switches in a group must be operated.		
Switches		Varistor
Operated	Bits	in Fig. 1
Down	Appear	Open
5,9	Pos 5	CR19
	Pos 9	CR15
2,6,10	Pos 6,10	CRI2
	Pos 2,10	CR16
	Pos 2,6	CR20
3,7,11	Pos 3,7	CR21
	Pos 7,11	CR13
	Pos 3,11	CRI7
4,8,12	Pos 4,8	CR22
	Pos 8,12	CR14
	Pos 4,12	CR18
Note: Start dipulse must be normal to use TabIe F.		

TABLE G

TABLE H

All switches in a group must be operated.			
			This
Switches			Varistor
Operated		Bits	in Fig. 1
Down		Appear	Shorted
3,4,7,11	Pos	3,4,7,8,11,12	CRI 3
3,4,8,12	Pos	3,4,7,8,11,12	CR14
4,5,9	Pos	4,5,8,9	CR15
2,5,6,10	Pos	B2,2,5,6,9,10	CR16
3,7,8,11	Pos	3,4,7,8,11,12	CR17
4,7,8,12	Pos	3,4,7,8,11,12	CR18
5,8,9	Pos	4,5,8,9	CR19
2,6,9,10	Pos	B2,2,5,6,9,10	CR20
3,7,11,12	Pos	3,4,7,8,11,12	CR21
4,8,11,12	Pos	3,4,7,8,11,12	CR22

TABLE I

All switches in a group must be operated.		
This		
Switches. Operated Down	Bits	Varistor in Fig.
Appear	Shorted	

TABLE J

Switches		This Varistor
Operated	Bits	in Fig. 3
Down	Appear	Shorted
None	Positive half of all bits appear. (See Fig. 3.)	CR2
None	Negative half of all bits appear. (See Fig. 4.)	CRI

TABLE K

Switches	This Varistor
Operated	Bits in Fig. 3
Down	Appear Shorted
None	```Start dipulse CR4 and positive half of all other bits appear. (See Fig. 5.)```
None	```Start dipulse CR3 and negative half of all other bits ap- pear. (See Fig. 6.)```
Note: Observations are to be made at start output jack.	

TABLE I

TABLE M

TABLE N

Switches		$\begin{gathered} \text { This } \\ \text { Varistor } \end{gathered}$
Operated	B1ts	in Fig. 3
Down	Appear	Open
2	Position 2, but the dipulse appears unbalanced. (See Fig. 11.)	CR6
2	Position 2, but the dipulse appears unbalanced. (See F1g. 12.)	CR5

TYPICAL NORMAL OSCILLOSCOPE PATTERNS

FIG. 1

FIG. 2

TYPICAL TROUBLE OSCILLOSCOPE PATTERNS

FIG. 3

FIG. 4

FIG.II

FIG. 6

FIG. 13

FIG. 7

FIG.I2

FIG. 5

FIG. 8

FIG. 9

Page 7 7 Pages

