DSX-0 CROSS-CONNECT BAY

CONNECTIONS

DIGITAL DATA SYSTEM

NOTICE
Not for use or disclosure outside the Bell System except under written agreement
1.02 This section is reissued for the following reasons:
(a) To remove coverage on the 510A Data Service Unit (DSU)
(b) To add material on the ED-type connector intended for use in Automatic Bit Access Test System (ABATS) testing
(c) To add coverage of the new DSX-0 planned for the " A " and " N " bays
(d) To include information from a previous addendum
(e) To reformat section so that it agrees with the other DDS sections.

Revision arrows are used to show the more significant changes.
1.03 Each individual quad termination in the DSX-0 is uniquely identified and can be located by its alphanumeric code. The code contains the panel number, horizontal row letter, and vertical file number in addition to the standard lineup and bay numbers.
1.04 Connections made at the DSX-0 use a specially designed quad jumper (Section 314-914-100) that requires a special tool for removal. If a jumper is damaged or if a specific length jumper is not available from stock, Section 314-914-300 gives detailed procedures for repair and fabrication of a quad jumper.
1.05 At the DSX-0, it is recommended that the jumpers for one circuit be completely connected before work is begun on another circuit. Each jumper should be terminated completely, following a near- to far-end termination procedure [for example, office channel unit (OCU) to maxtrix unit, matrix unit to subrate data multiplexer (SRDM) on DSX-0A, and SRDM to T1 data multiplexer (T1DM) on DSX-0B]. A general knowledge of the DSX-0 is required for a complete understanding of this section.
1.06 To provide an orderly routing for the quad jumpers, the following sequence of routing must be followed:
(a) Start routing from the quad termination nearest the vertical center of the DSX-0 (midpoint of panel 5).
(b) Route through an appropriate fanning slot into the nearest horizontal duct.
(c) If the end termination is on the same horizontal level as the start termination, route horizontally to a fanning slot appropriate for the end termination.
(d) If the end termination is on a different horizontal level than the start termination, route horizontally to the nearest vertical duct and then vertically to the horizontal level of the end termination.
(e) Route horizontally to a fanning slot appropriate for the end termination.
(f) Route through the fanning slot and terminate.
1.07 In a T1WB5 data-voice multiplexer (T1WB5) local office bay arrangement, one quad terminal panel (QTP) of a DSX-0 allows for routing of 64kb / s DS-0B level signals to the ports of the T1WB5. In this panel, the quad jumpers need not be routed in any special sequence and the maximum number of 2 $1 / 2$ foot long quad jumpers is 23 . Figure 1 gives the quad terminal assignment information necessary for making cross-connections from the OCU assembly to the T1WB5 ports.

2. QUAD JUMPER PROCEDURES

2.01 This part contains four different procedures involving the quad jumper of the DSX-0 crossconnect bay. These procedures are used to determine the length of a quad jumper (Charts 1 and 2), route and connection of a quad jumper (Chart 3), and removal of a quad jumper (Chart 4).

DETERMINE QUAD JUMPER LENGTH

2.02 In determining the quad jumper length, only one procedure of the first two procedures (Chart 1 or Chart 2) is used. The first procedure (Chart 1) uses a quad jumper calculator to determine
length. The second procedure (Chart 2) uses a ruler at least 6 -inches long to determine the quad jumper length.

A. Jumper Length Calculator (Chart 1)

2.03 The apparatus required to determine the length of a quad jumper in this procedure is a jumper length calculator.

STEP

1 Obtain the two alphanumeric codes that identify the connections or the end terminations to be connected (Fig. 2).

2 Using a DSX-0 drawing or its likeness (Fig. 3) as a reference, determine the start termination.
Note: The termination nearest the center of the DSX-0 bay (midpoint of panel 5) is the start termination. If both terminations are equal distance from the center, either one may be designated as the start termination.

3 Record the start termination on the circuit card for subsequent jumper removal or rearrangements, if necessary.

4 Using the applicable figures on the back of the jumper length calculator (Fig. 4), determine the index numbers for the start and end terminations.

Note 1: The figures on the back of the jumper length calculator illustrate quad starting and terminating configurations. The index number is found on the quad configuration that matches the intended routing path at the DSX-0 panel.

Note 2: For a termination with a vertical jumper run, use the figure labeled TERMINATIONS ON DIFFERENT LEVELS-START to obtain the start index number. For a termination with no vertical jumper run, use the figures labeled TERMINATIONS ON SAME LEVEL-START (right) or START (left) to obtain the start index number. All end termination index numbers are determined from the figures labeled TERMINATIONS ON ANY LEVEL-END (from left) or END (from right).

Note 3: The term START (right or left) indicates the relative position of the start bay with respect to the end bay. The term END (from right or from left) indicates the direction that the jumper enters the end bay, which is also determined by the relative position of the start and end bays.

5 Following the condensed instructions on the front of the jumper length calculator (Fig. 5), set the start termination index number at the end termination index number on the scales marked for the respective terminations.

6 Using the DSX-0 or its likeness (Fig. 3) as a reference, count the number of DSX-0 bays passed in the horizontal jumper run.

Note: DO NOT include the bays containing the start or end terminations in the tally unless the horizontal run crosses the entire width of the bay (Fig. 6).

STEP

PROCEDURE

7 Using the DSX-0 or its likeness (Fig. 3) as a reference, count the number of termination panels passed in the vertical jumper run.

Note: DO NOT include the start or end termination panels in the tally unless the panel is part of the vertical run (Fig. 7).

Without moving the upper slide from its setting (Step 5), set the number of bays passed in the horizontal run (Step 6) at the number of panels passed in the vertical run (Step 7) by moving only the lower slide and observing the BAYS PASSED and PANELS PASSED scales, respectively (Fig. 5).

9 Using the DSX-0 or its likeness (Fig. 3) as a reference, count the number of filler plates passed in the horizontal jumper run and locate this number on the FILLER PLATES PASSED scale (Fig. 5).

10 Read the number on the JUMPER LENGTH-FT. scale below the number determined in Step 9. This number is the required jumper length.

Note: If the scale indication is not on a specific mark (other than a slight deviation), use the nearest indication.

11 Use Table A which lists the quad plug colors to select the proper quad jumper length.
2.04 The following information is an example of the procedure used to determine jumper length. Figures 1 through 10 help to illustrate the procedure.
(a) Assume that the terminations to be connected have the alphanumeric codes $923.14 .7 . \mathrm{F} 3$ and 923.18.4.B31.
(b) Termination 4.B31 is the start termination.
(c) From Fig. 4 and 8, the start index number is 2 and the end index number is 4 .
(d) Index numbers are set as shown in Fig. 9.
(e) As shown in Fig. 8, the number of bays passed is 4 .
(f) As shown in Fig. 8, the number of panels passed is 4.
(g) Figure 10 illustrates the calculator setting.
(h) As shown in Fig. 8, the number of filler plates passed is 4 .
(i) Figure 10 illustrates the calculator setting. The required jumper length is $201 / 2$ feet.

B. Scale Measurement (Chart 2)

2.05 The apparatus required to determine the quad jumper length in this procedure is a ruler at least 6 -inches long.

1 Obtain the alphanumeric codes that identify the terminations to be connected (Fig. 2).
2 In bay X of Fig. 11, locate the segment center nearest the termination in the leftmost bay of the terminations to be connected.

3 In bay Y of Fig. 11, locate the segment center nearest the termination in the rightmost bay of the terminations to be connected.

Note: If both bay numbers are the same, locate the segment centers in the same bay (X or Y).
$9 \quad$ Draw a line between the segment centers determined in Steps 2 and 3.

Use Table A which lists the quad plug colors to select the proper quad jumper length.
2.06 The following example uses the scale measurement procedure to determine the quad jumper length. Figures 12, 13, and 14 help illustrate this procedure.
(a) Assume that the terminations to be connected have the alphanumeric codes 923.14.7.F3 and 923.18.4.B31.
(b) The segment center nearest the termination 7.F3 is located in Fig. 12.
(c) The segment center nearest the termination 4.B31 is located in Fig. 13.
(d) The total line is shown in Fig. 14 as a solid line, dashed line, and a dot/dash line.
(e) The lines in Fig. 14 measure $87 / 8$ inches.
(f) The $87 / 8$ inches plus $11 / 4$ inches equals $101 / 8$ inches.
(g) Rounding off to the next higher $1 / 2$ inch yields $101 / 2$ inches.
(h) Three bays are located between the start bay (18) and the end bay (14). Therefore, $3 \times 31 / 2$ inches equals $101 / 2$ inches, which added to $101 / 2$ yields 21 inches. The required jumper length is 21 feet.

ROUTE AND CONNECT QUAD JUMPER (CHART 3)

2.07 The apparatus required to route and connect a quad jumper is a jumper plug extraction tool, part number 91079-01, which is shown in Fig. 15. The quad jumper and its length were determined from Chart 1 or Chart 2.

PROCEDURE

1 Obtain the two alphanumeric codes that identify the terminations to be connected (Fig. 2).
2 Determine the start termination.

Note: The termination contained in the panel nearest the center (panel 5) of the DSX-0 is the start termination. If both termination panels are equal distance from the center, either one may be designated as the start termination.

Terminate one end of the jumper in the start termination.

Note 1: Polarization grooves (Fig. 16) must be oriented vertically for proper insertion.

Note 2: The jumper plug extraction tool may be used to insert the jumper plug if the panel is congested with plugs.

6 Open the hinged horizontal duct cover nearest the termination.

Note: For terminations with horizontal row letters A through D, use the upper horizontal duct; with horizontal row letters E through H , the lower horizontal duct.

7
Record the bay number, panel number, horizontal row letter, and vertical file number of the end termination alphanumeric code on the hinged duct cover designation strip with a pencil. Record the information in the portion of the designation strip corresponding to the start termination. This designation should provide a positive reference for locating the opposite end of the quad jumper.
-Verify the start termination is indicated on the circuit card to aid in subsequent jumper removal if necessary.

Route the jumper through an appropriate fanning slot and into the horizontal duct.

STEP

PROCEDURE

8

12 Feed the jumper through the fanning slot and terminate it in the end termination. Figure 18 illustrates a typical jumper run.

13 Record the bay number, panel number, horizontal row letter, and vertical file number of the start termination alphanumeric code on the hinged duct cover designation strip with a pencil. Record the information in the portion of the designation strip corresponding to the end termination. This designation should provide a positive reference for locating the opposite end of the quad jumper. Close all open ducts.

REMOVE QUAD JUMPER (CHART 4)

2.08 The apparatus required for this procedure is a jumper plug extraction tool, part number 91079-01. It is shown in Fig. 15.

STEP

PROCEDURE

1 Obtain the two alphanumeric codes that identify the terminations to be disconnected (Fig. 2).

2 From the circuit card determine which termination was designated as the start when the jumper was connected.

STEP

PROCEDURE
3 Caution: Ensure that the quad plug being removed is the correct one because a service outage will result from an error.

4 See Caution in Step 3. Using the jumper plug extraction tool (Fig. 16), extract the start termination plug from its socket.

5 Following the jumper wire and using the routing sequence as a guide, open the appropriate ducts, remove the jumper, and close the ducts as required until the end termination is reached.

6 See Caution in Step 3. Using the jumper plug extraction tool, extract the end termination plug from its socket.
$7 \quad$ Close all open ducts.
8 If the quad jumper is not to be replaced, erase the designation information from the hinged duct cover designation strip at each termination location.
table A

length in feet						color of auad plugRed
2.0	7.5	13.0	18.5	24.0	29.5	
2.5	8.0	13.5	19.0	24.5	30.0	White
3.0	8.5	14.0	19.5	25.0		Light Blue
3.5	9.0	14.5	20.0	25.5		Black
4.0	9.5	15.0	20.5	26.0		Yellow
4.5	10.0	15.5	21.0	26.5		Maroon
5.0	10.5	16.0	21.5	27.0		Green
5.5	11.0	16.5	22.0	27.5		Blue
6.0	11.5	17.0	22.5	28.0		Tan
6.5	12.0	17.5	23.0	28.5		Light Grey
7.0	12.5	18.0	23.5	29.0		Moss Green
Nonstandard length						Violet

TIWB5 PORT NO.	QUAD TERMINAL LOCATION
1	H45
2	H46
3	H47
4	H48
5	H49
6	H50
7	045
8	G46
9	647
10	648
11	G49
12	650
13	F45
14	146
15	$F 47$
16	F48
17	F49
18	F50
19	545
2	E49
$\bar{\square}$	547
22	-E4E
22	EAG
24	- 550

notes:

1. J70177Y BAY
2. J70177B BAY (IST)
3. J70177B BAY (2ND)
4. J701778 BAY (3RD)
5. $J 701776$ BAY (3RD)
6. J70177G BAY (4TH)
7. J7017TN BAY EN LIST 4
8. J70I7N BAY EN LIST 5
9. J70177G BAY (IST)
10. J701776 BAY (IST)
11. J701776 Bar (ist)
12. J701776 BaY (2NO)
13. 5701776 BAY (2ND)
14. J70177G BAY (3RD)

* THIS CHART IS arranged for maximun utilization [1c-channel integral subrate multiflexers (ISMXS) ARE USED AND ALL 24 TIWB5 PORTS ARE ASSIGNED]
\dagger ThE SHELVES ARE NUMBEREC IN ACCORDANCE WITH THE STANDARD NUMBERING PLAN. (SEE APPENOIX 1 OF SECTION 682-300-020)
\ddagger IF A SHELF IS EQUIPPED WITH ORIVER-TERMINAYOR BOARDS, ALL TEN OCUS IN A SHELF aRE TERMINATED ON THE QTP, IF A SHELF IS EQUIPPED WITH 5-CHANNEL ISMXS, LNLY THE FIRST ANO SIXTH TERMINATICNS IN EACH GROUP OF TEN ARE "LIVE;" IF A SHELF IS EOUIPPED WITH A 10-CHANNEL ISMX, ONLY THE FIRST TERMINATION IN EACH GROUP IS "LIVE." THESE TERMINATIONS CORRESPOND TO THE MULTIPLEXED OUTPUT OF THE ISMX.

Fig. 1-Quad Terminal Panel Assignment for TIWB5 Bay

Fig. 2 -Alphanumeric Designation Code

Fig. 3-Drawing Likeness of DSX-O

Fig. 4 -Jumper Length Calculator-Back View

Fig. 5-Jumper Length Calculator-Front View

Fig. 6-Horizontal Run Considerations

Fig. 7-Vertical Run Considerations

Fig. 8 -Jumper Length Calculator Example

Fig. 9-Initial Setting of Jumper Length Calculator

Fig. 10-Final Setting of Jumper Length Calculator

Fig. 11 -Quad Jumper Length Worksheet

Fig. 12-Bay X Termination Location

Fig. 13-Bay Y Termination Location

Fig. 14 -Scale Jumper Distance Measurement

Fig. 15-Jumper Plug Extraction Tool

Fig. 16-Quad Plug and Extraction Tool

Fig. 17-Hinging the Vertical Duct Cover

