359K EQUALIZER

DESCRIPTION

1. GENERAL 1
2. EQUIPMENT DESCRIPTION 1
3. CIRCUIT DESCRIPTION 1

1. GENERAL

1.01 This section describes the 359 K equalizer, which is a plug-in apparatus unit designed for use in V4 telephone repeater applications.
1.02 The 359 K equalizer is an adjustable lowfrequency loss equalizer intended for use in applications where circuit gain and loss equalization are required for H44-loaded exchange cable. The 359 K equalizer is used in conjunction with a 227-type amplifier to provide adjustable loss equalization, when needed, to flatten the frequency attenuation characteristic of H 44 -loaded exchange cable over the frequency range of 200 to 3000 Hz .
1.03 The 359K equalizer contains the same circuit components as the low-frequency section of the 359A equalizer, but contains no high-frequency section since H 44 facilities do not ordinarily need high-frequency equalization in the $200-$ to $3000-\mathrm{Hz}$ range. Unlike the 359A, however, it selects the 600 -ohm ports of both amplifiers toward the cable facilities.

2. EQUIPMENT DESCRIPTION

2.01 The 359 K equalizer (see Fig. 1) is a plug-in unit equipped with a 20 -pin connector plug and is designed to be plugged directly into the equalizer connector socket of the repeater mounting shelf.
2.02 The 359 K equalizer consists of seven resistors and four capacitors mounted on a printed wiring board and housed in a metal can approximately $1-3 / 4$ inches wide by $1-3 / 4$ inches high by 7 inches long. Tabs are provided on the front of the can

Fig. 1-359K Equalizer
to facilitate removal of the equalizer from the repeater mounting shelf with the use of a 602 C or 602D tool.
2.03 Eight screw-type switches mounted in the faceplate permit selection of the indicated component values, as required, when adjusting equalization.

3. CIRCUIT DESCRIPTION

3.01 The general circuit configuration of the 359 K equalizer is illustrated in Fig. 2. Resistor R and capacitor C are the low-frequency equalizer; resistors R5, R6, and R7 make up a 600 -ohm, 6.2-dB pad.

Fig. 2-359K Equalizer-General Circuit Configuration
3.02 Figure 3 is a schematic of the 359 K equalizer illustrating typical circuit connections when plugged into the equalizer socket of a 24 V 4 or 44 V 4 repeater. The transmitting side is strapped to provide connections to the AMPL OUT and MON jacks and also connects the $600-\mathrm{ohm}$ transmitting amplifier output to the 4 -wire line (H44-loaded cable).
3.03 The receiving side of the 359 K equalizer contains the equalizing components for equalizing the H44-loaded cable. Received transmission signals from the 4 -wire line (H44-loaded cable) at terminals 2 and 4 are connected to the 600 -ohm receiving amplifier input through terminals 1 and 3 . Terminals 6,8 , and 9 connect the equalizing section into the receiving amplifier circuit and select the proper transformer secondary tap to make the input impedance 600 ohms.
3.04 The equalization circuit consists of a resistor section R made up of R1, R2, R3, and R4 in parallel with a capacitor section C made up of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, and C 4 . All are controlled by associated faceplate screw-type switches. Resistors R5, R6, and R7 form a $6.2-\mathrm{dB}$ fixed pad which prevents interaction between the equalizer and amplifier. Resistor R is adjustable from 0 to 3750 ohms in $250-\mathrm{ohm}$ steps, and capacitor C is adjustable from 0 to $3.75 \mu \mathrm{~F}$ in $0.25-\mu \mathrm{F}$ steps. The resistors are
bypassed when their associated screw-type switches are closed (turned in) and are included in the circuit when the switches are opened (turned out). The capacitors are added to the circuit when their associated screw-type switches are closed (turned in) and are removed when the screw-type switches are opened (turned out).
3.05 The 359 K equalizer provides compensation for loss distortion in the 4 -wire line facilities at frequencies up to approximately 1000 Hz . Figures 4 and 5 illustrate typical equalization losses which may be obtained by various combinations of C and R. Figure 4 shows the results of keeping C constant and varying R; Fig. 5 shows the results of keeping R constant and varying C. Adjustment settings of the equalizer normally used have little effect on either the transmission loss or the transmission frequency characteristics above 1000 Hz .
3.06 While the equalizer components provide compensation for amplitude distortion, they introduce delay distortion at the same time. Figures 6 and 7 illustrate typical delay-frequency characteristics obtained from various combinations of R and C . Figure 6 shows the results of keeping C constant at $0.25 \mu \mathrm{~F}$ and varying R; Fig. 7 shows the results of keeping R constant at 1500 ohms and varying C.

Fig. 3-359K Equalizer-Schematic and Typical Circuit Connections

Fig. 4-359K Equalizer-Loss-Frequency Characteristics-Between 600 OhmsKeeping C Constant and Varying R

Fig. 5-359K Equalizer-Loss-Frequency Characteristics-Between 600 OhmsKeeping R Constant and Varying \mathbf{C}

Fig. 6-359K Equalizer-Delay-Frequency Characteristics-Between 600 OhmsVarying \mathbf{R} for $\mathbf{C}=\mathbf{0 . 2 5} \mu \mathrm{F}$

Fig. 7-359K Equalizer-Delay-Frequency Characteristics-Between 600 OhmsVarying C for $\mathrm{R}=1500$ Ohms

