830B NETWORK

INSTALLATION AND PRESCRIPTION SETTINGS

PAGE

CONTENTS

1.	GENERAL .	•••	•	•	•	•	•	•	•	•	1
2.	INSTALLATION	•	•	•	•	•	•	•	•	•	1
3.	PRESCRIPTION SI	ETTIN	IGS	5		•	•				1

1. GENERAL

1.01 This section gives the installation procedure and prescription settings for the 830B network which is used in either a terminal or intermediate repeater to build out the input impedance of low-capacitance, 19- or 24-gauge cable with H88 loading or of high-capacitance 19-, 22-, or 24-gauge cable with D88 loading to match the image impedance of the E6 repeater gain unit (900 ohms in series with 2.16 μ F). These settings are also found in Section 851-300-101.

1.02 The description of the 830B network is found in Section 332-206-122.

2. INSTALLATION

2.01 The 830B network is mounted in the line side of the E6 repeater chassis and is secured by four screws on the chassis connector block. These screws also make the required electrical connections betweeen the network and the repeater.

3. PRESCRIPTION SETTINGS

3.01 Table A shows the building-out capacitance (BOC) for equivalent end-section length in feet and miles for H88 low-capacitance cable of 19-, and 24-gauge. Table B shows the building-out resistor (BOR) adjustment versus resistance of endsection for H88 low-capacitance cable of 19-, 22-, and 24-gauge. Tables C and D show the BOC for equivalent endsection length (in feet and miles respectively) for D88 high-capacitance cable of 19-, 22-, and 24-gauge. Table E shows the BOR adjustment versus resistance of endsection for D88 high-capacitance cable of 19-, 22-, and 24-gauge.

3.02 For mixed gauges on loaded 2-wire facilities, the prescription settings are based on the

controlling gauge in the adjacent endsection. The prescription settings are determined as follows:

- Determine the length of each segment of continuous gauge. (Start at the network, ignoring all segments of 500 feet or less.)
- (2) The controlling gauge is the gauge of the segment having at least 1 dB attenuation at 1 kHz.
- (3) GA Screws: Use the controlling gauge setting determined in (1) and (2). For 26-gauge cable, use 24-gauge settings on the 830A network if no 26-gauge LBO is available.
- (4) **BOC Screws:** Use BOC settings for gauge selected in (3).
- (5) **BOR Screws:** Use BOR settings for gauge selected in (3).
- 3.03 Where plant records are accurate, prescription settings of the 830B network should provide the required performance. If the plant records are inaccurate, or where there is a complicated mixture of gauges, the network should be touched up as explained in the lineup section.

© American Telephone and Telegraph Company, 1974 Printed in U.S.A.

TABLE A

830B NETWORK BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH FOR H88 LOW-CAPACITANCE CABLE

EQUIVALENT*	19 GA		24 GA		EQUIVALENT*	19	9 GA	24 GA		
SECTION LENGTH (FEET)	вос (µF)	SCREWS DOWN	вос (µF)	SCREWS DOWN	SECTION LENGTH (MILES)	BOC (µF)	SCREWS DOWN	BOC (μF)	SCREWS DOWN	
0	.072	ABDEG	.067	ACEG	0.00	.072	ABDEG	.067	ACEG	
200	.070	ADEG	.065	ABEG	.05	.069	DEG	.064	BEG	
400	.067	ACEG	.063	AEG	.10	.066	CEG	.061	ACDG	
600	.065	ABEG	.061	ACDG	.15	.063	AEG	.058	BDG	
800	.063	AEG	.059	ABDG	.20	.059	ABDG	.054	ACG	
1000	.060	CDG	.057	ADG	.25	.056	DG	.051	BG	
1200	.058	BDG	.055	BCG	.30	.053	CG	.048	ABDEF	
1400	.056	DG	.053	CG	.35	.050	AG	.045	DEF	
1600	.053	CG	.050	AG	.40	.047	BDEF	.042	CEF	
1800	.051	BG	.048	ABDEF	.45	.044	BCEF	.039	AEF	
2000	.048	ABDEF	.046	ADEF	.50	.040	BEF	.036	CDF	
2200	.046	ADEF	.043	ACEF	.55	.037	ACDF	.033	ADF	
2400	.044	BCEF	.041	ABEF	.60	.034	BDF	.030	ACF	
2600	.041	ABEF	.038	EF	.65	.031	BCF	.027	BF	
2800	.039	AEF	.036	CDF	.70	.028	ABF	.024	CDE	
3000	.036	CDF	.034	BDF	.75	.025	F	.021	ADE	
3200	.034	BDF	.032	DF	.80	.021	ADE	.017	CE	
3400	.032	DF	.029	CF	.85	.018	ACE	.014	AE	
3600	.029	CF	.026	AF	.90	.015	BE	.011	CD	
3800	.027	BF	.023	ABDE	.95	.012	ACD	.008	AD	
4000	.024	CDE	.021	ADE	1.00	.009	BD	.005	AC	
4200	.022	BDE	.018	ACE						
4400	.020	DE	.016	ABE						
4600	.017	CE	.013	E						
4800	.015	BE	.011	CD						
5000	.012	ACD	.009	BD						
5200	.010	ABD	.006	BC						
5400	.008	AD	.004	C						
5600	.005	AC	.002	В						
5800	.003	AB	.001	A						
6000-up	0.000		0.000							

Note:

* The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.). For mixed gauges, use the rules given in paragraph 3.02.

Page 2

TABLE B

830B NETWORK BUILDING-OUT RESISTOR ADJUSTMENT VERSUS RESISTANCE OF END SECTION FOR H88 LOW-CAPACITANCE CABLE

RESISTANCE OF OUTSIDE END SECTION PLUS OFFICE CABLING (OHMS)	BOR (OHMS)	SCREWS DOWN	LBO LOSS (DB)				
GA SCREWS SET AT 19 GA							
0-8 9-30 31-97	56 28 0	1, 3 & 1, 3 1, 2 & 1, 2 All	1.2 1.1 1.0				
GA SCREWS SET AT 22 GA FOR 24-GA CABLE							
0-21 22-49 50-70 71-96 97-112 113-132 133-164 165-up	198 168 140 112 84 56 28 0	3 & 3 2 & 2 2, 3 & 2, 3 1 & 1 1, 3 & 1, 3 1, 2 & 1, 2 All	$1.7 \\ 1.6 \\ 1.5 \\ 1.4 \\ 1.3 \\ 1.2 \\ 1.1 \\ 1.0$				

Notes:

.

` .- 1. For mixed gauges, use category for which the GA screw was chosen. See paragraph 3.02.

2. Resistor screws must always be adjusted in pairs, viz. 1 & 1, 2 & 2, 3 & 3, never singly.

TABLE C

830B NETWORK BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH IN FEET OF D88 HIGH-CAPACITANCE CABLE

EQUIVA- LENT* END	19 GA		22	GA	24 GA		
SECTION LENGTH (FEET)	вос (µF)	SCREWS DOWN	вос (µF)	SCREWS DOWN	вос (µF)	SCREWS DOWN	
0	.073	CDEG	.071	BDEG	.068	BCEG	
200	.070	ADEG	.068	BCEG	.066	CEG	
400	.067	ACEG	.065	ABEG	.063	AEG	
600	.063	AEG	.062	EG	.060	CDG	
800	.060	CDG	.059	ABDG	.057	ADG	
1000	.057	ADG	.056	DG	.054	ACG	
1200	.053	CG	.053	CG	.051	BG	
1400	.050	AG	.050	AG	.048	ABDEF	
1600	.047	BDEF	.047	BDEF	.045	DEF	
1800	.044	BCEF	.043	ACEF	.042	CEF	
2000	.041	ABEF	.040	BEF	.039	AEF	
2200	.038	EF	.037	ACDF	.036	CDF	
2400	.034	BDF	.034	BDF	.033	ADF	
2600	.031	BCF	.031	BCF	.030	ACF	
2800	.028	ABF	.028	ABF	.027	BF	
3000	.025	F	.025	F	.024	CDE	
3200	.022	BDE	.022	BDE	.021	ADE	
3400	.019	BCE	.019	BCE	.019	BCE	
3600	.016	ABE	.016	ABE	.016	ABE	
3800	.012	ACD	.013	Е	.013	E	
4000	.009	BD	.010	ABD	.010	ABD	
4200	.006	BC	.007	D	.007	D	
4400	.003	AB	.005	AC	.004	C	
4600	0.000		.002	В	.002	В	
4800-up	—		0.000	—	0.000	—	

* The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.) For mixed gauges, use the rules given in paragraph 3.02.

Page 4

TABLE D

830B NETWORK BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH IN MILES OF D88 HIGH-CAPACITANCE CABLE

EQUIVA- LENT* END	19 GA		22	GA	24 GA		
LENGTH (MILES)	BOC (µF)	SCREWS DOWN	BOC (μ F)	SCREWS DOWN	BOC (μF)	SCREWS DOWN	
0.00	.073	CDEG	.071	BDEG	.068	BCEG	
.05	.069	DEG	.067	ACEG	.065	ABEG	
.10	.064	BEG	.063	AEG	.061	ACDG	
.15	.060	CDG	.059	ABDG	.057	ADG	
.20	.056	DG	.055	BCG	.053	CG	
.25	.052	ABĠ	.051	BG	.049	G	
.30	.047	BDEF	.047	BDEF	.045	DEF	
.35	.043	ACEF	.043	ACEF	.041	ABEF	
.40	.039	AEF	.039	AEF	.037	ACDF	
.45	.034	BDF	.035	ABDF	.033	ADF	
.50	.030	ACF	.031	BCF	.029	CF	
.55	.026	AF	.027	BF	.025	F	
.60	.022	BDE	.023	ABDE	.021	ADE	
.65	.017	CE	.020	DE	.018	ACE	
.70	.013	Ε	.016	ABE	.014	AE	
.75	.009	BD	.012	ACD	.010	ABD	
.80	.004	С	.008	AD	.006	BC	
.85	.000		.004	C	.002	В	
.90	.000		.000		.000		
.95	.000		.000		.000		
1.00	0.000	—	0.000	—	0.000		

* The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.) For mixed gauges, use the rules given in paragraph 3.02.

*

TABLE E

830B NETWORK BUILDING-OUT RESISTOR ADJUSTMENT VERSUS RESISTANCE OF END SECTION FOR D88 HIGH-CAPACITANCE CABLE

RESISTANCE OF OUTSIDE END SECTION PLUS OFFICE CABLING (OHMS)	BOR (OHMS)	SCREWS DOWN	LBO LOSS (DB)						
GA SCREWS SET AT 19 GA	GA SCREWS SET AT 19 GA								
0-up	0	All	1.0						
GA SCREWS SET AT 22 GA									
0-16 17-42 43-up	56 28 0	1, 3 & 1, 3 1, 2 & 1, 2 All	1.2 1.1 1.0						
GA SCREWS SET AT 22 GA FOR 24-GA CABLE									
0-10 11-39 40-69 70-83 84-up	112 84 56 28 0	2, 3 & 2, 3 1 & 1 1, 3 & 1, 3 1, 2 & 1, 2 All	1.4 1.3 1.2 1.1 1.0						

Notes:

1. For mixed gauges, use category for which the GA screw was chosen. See paragraph 3.02.

2. Resistor screws must always be adjusted in pairs, viz. 1 & 1, 2 & 2, 3 & 3, never singly.

i.

Page ó ó Pages