837A NETWORK

INSTALLATION AND PRESCRIPTION SETTINGS

	CONTENTS PAGE		2.02 Terminals 1 and 2 connect to the cable pair and terminals 3 and 4 connect to the trunk
1.	GENERAL	. 1	equipment.
2.	INSTALLATION	. 1	
3	PRESCRIPTION SETTINGS	1	

1. GENERAL

1.01 This section gives the installation procedure and prescription settings for the 837A (900 ohm) network, which is used at the far end as an impedance compensator on 19-, 22-, and 24-gauge high-capacitance cable with H88 loading; 19-, and 24-gauge low-capacitance cable with H88 loading, or any gauge high-capacitance cable with D88 loading. These settings are also found in Section 851-300-101.

1.02 The description of the 837A network is found in Section 332-206-151.

2. INSTALLATION

2.01 The 837A network is stud-mounted on a shelf near the point where the cable pairs are brought out to the panel wiring boards.

3. PRESCRIPTION SETTINGS

3.01 Table A shows the building-out capacitor settings for equivalent endsection lengths of H88 high-capacitance 19-, 22-, and 24-gauge cable. Table B shows the building-out capacitor settings for equivalent endsection lengths of H88 low-capacitance 19-, and 24-gauge cable. Table C shows the building-out capacitor settings for equivalent endsection lengths of any gauge D88 high-capacitance cable. Table D shows the BOC screw capacitance settings by values.

3.02 The prescription settings will usually be adequate if the echo structural return loss of the line is high. The 837A network will need to be touched up for maximum return loss through use of a KS-20501 return loss measuring set (RLMS) or a 54C RLMS only if the terminal balance requirement is not met.

TABLE A

837A NETWORK (900-OHM) BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH FOR H88 HIGH-CAPACITANCE CABLE

EQUIVALENT :	19, 22, 2	14 GA	EQUIVALENT*	19, 22, 24 GA	
SECTION LENGTH (FEET)	BOC (μF)	SCREWS DOWN [†]	SECTION LENGTH (MILES)	BOC (μ F)	SCREWS DOWN [†]
0	.080	BCFG	0.00	.080	BCFG
200	.077	\mathbf{ABFG}	.05	.076	BFG
400	.074	\mathbf{FG}	.10	.071	BDEG
600	.070	ADEG	.15	.067	ACEG
800	.067	ACEG	.20	.062	EG
1000	.064	BEG	.25	.058	BDG
1200	.060	CDG	.30	.054	ACG
1400	.057	ADG	.35	.049	G
1600	.054	\mathbf{ACG}	.40	.045	DEF
1800	.050	\mathbf{AG}	.45	.040	BEF
2000	.047	BDEF	.50	.036	CDF
2200	.044	BCEF	.55	.032	DF
2400	.040	${f BEF}$.60	.027	BF
2600	.037	\mathbf{ACDF}	.65	.023	ABDE
2800	.034	BDF	.70	.018	ACE
3000	.031	BCF	.75	.014	AE
3200	.028	\mathbf{ABF}	.80	.010	ABD
3400	.025	${f F}$.85	.007	D
3600	.022	BDE	.90	.004	C
3800	.019	$\mathrm{BC}\mathbf{E}$.95	.001	A
4000	.016	ABE	1.00	0.000	
4200	.013	${f E}$			1
4400	.010	$\mathbf{A}\mathbf{B}\mathbf{D}$			
4600	.007	D			
4800	.004	\mathbf{C}			
5000	.001	A	1		
5200	.000				
5400	.000				
5600	.000				

Notes:

5800

6000

.000

0.000

- * The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.).
- † See Table D for screw combinations for networks giving capacitance values rather than letters.

TABLE B

837A NETWORK (900-OHM) BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH FOR H88 LOW-CAPACITANCE CABLE

EQUIVALENT*	19, 24	GA	GA EQUIVALENT SEND SECTION SCREWS LENGTH DOWN; (MILES)	19, 24 GA	
END SECTION LENGTH (FEET)	BOC (μF)	SCREWS		BOC (μF)	SCREWS DOWN
0	.069	DEG	0.00	.069	DEG
200	.067	\mathbf{ACEG}	.05	.066	\mathbf{CEG}
400	.064	\mathbf{BEG}	.10	.062	\mathbf{EG}
600	.062	$\mathbf{E}\mathbf{G}$.15	.059	ABDG
800	.060	CDG	.20	.056	\mathbf{DG}
1000	.057	ADG	.25	.052	ABG
1200	.055	BCG	.30	.049	G
1400	.052	$\mathbf{A}\mathbf{B}\mathbf{G}$.35	.046	ADEF
1600	.050	\mathbf{AG}	.40	.043	\mathbf{ACEF}
1800	.047	BDEF	.45	.039	\mathbf{AEF}
2000	.045	DEF	.50	.036	$\overline{\mathrm{CDF}}$
2200	.042	\mathbf{CEF}	.55	.033	ADF
2400	.040	\mathtt{BEF}	.60	.029	\mathbf{CF}
2600	.038	EF	.65	.026	AF
2800	.035	${f ABDF}$.70	.023	ABDE
3000	.033	ADF	.75	.020	DE
3200	.030	\mathbf{ACF}	.80	.016	\mathbf{ABE}
3400	.028	ABF	.85	.013	${f E}$
3600	.025	F	.90	.010	ABD
3800	.023	ABDE	.95	.007	D
4000	.020	DE	1.00	.004	C
4200	.018	ACE	1.05	.001	Α
4400	.015	BE	1.10	0.000	
4600	.013	${f E}$			L
4800	.010	ABD			
5000	.008	AD	1		
5200	.006	BC			
5400	.003	AB			
5600	.000				
5800	.000	_			

Notes:

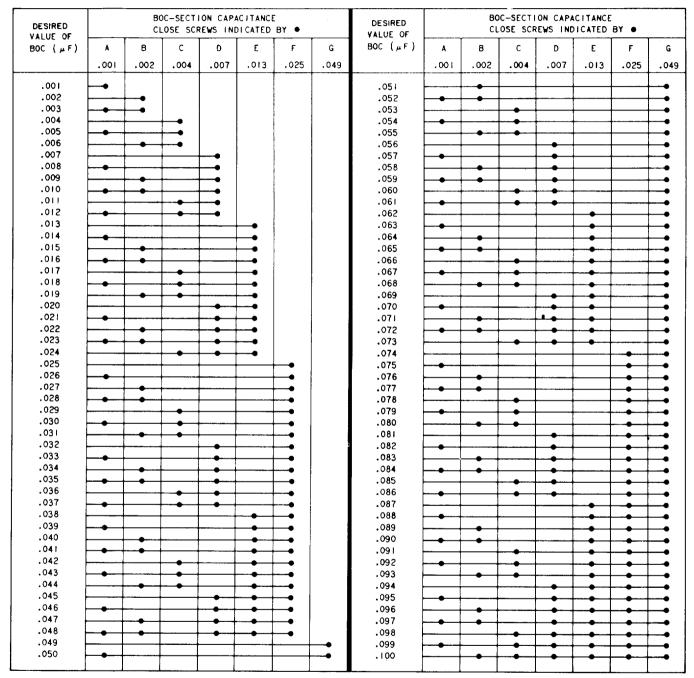
6000

0.000

- * The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.).
- † See Table D for screw combinations for networks giving capacitance values rather than letters.

TABLE C

837A NETWORK (900-OHM) BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH FOR ANY GAUGE D88 HIGH-CAPACITANCE CABLE


EQUIVALENT :: END	ANY G	AUGE	EQUIVALENT :: END SECTION LENGTH (MILES)	ANY GAUGE	
SECTION LENGTH (FEET)	BOC (μF)	SCREWS DOWN 守		BOC (μF)	SCREWS DOWN ?
0	.069	DEG	0.00	.069	DEG
200	.066	CEG	.05	.065	ABEG
400	.063	\mathbf{AEG}	.10	.060	CDG
600	.060	CDG	.15	.056	\mathbf{DG}
800	.056	DG	.20	.052	ABG
1000	.053	CG	.25	.048	ABDEF
1200	.050	AG	.30	.043	\mathbf{ACEF}
1400	.047	BDEF	.35	.039	AEF
1600	.044	BCEF	.40	.035	ABDF
1800	.041	ABEF	.45	.030	ACF
2000	.038	EF	.50	.026	AF
2200	.034	BDF	.55	.022	BDE
2400	.031	BCF	.60	.018	\mathbf{ACE}
2600	.028	ABF	.65	.013	${f E}$
2800	.025	F	.70	.009	BD
3000	.022	BDE	.75	.005	AC
3200	.019	BCE	.80	.000	
3400	.016	ABE	.85	.000	
3600	.012	ACD	.90	.000	
3800	.009	BD	.95	.000	
4000	.006	BC	1.00	0.000	
4200	.003	AB		L	l
4400	0.000		1		

Notes:

- * The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.).
- † See Table D for screw combinations for networks giving capacitance values rather than letters.

TABLE D

837A NETWORK
BOC-SCREW CAPACITANCE SETTINGS

