837B NETWORK
 INSTALLATION AND PRESCRIPTION SETTINGS

CONTENTS

PAGE

1. GENERAL 1
2. INSTALLATION 1
3. PRESCRIPTION SETTINGS 1

1. GENERAL

1.01 This section gives the installation procedures and prescription settings for the 837B (900 ohm) network, which is used at the far end as an impedance compensator on 19-, 22-, and 24-gauge high-capacitance cable with H88 loading; 19-, and 24-gauge low-capacitance cable with H88 loading, or any gauge high-capacitance cable with D88 loading. These settings are also found in Section 851-300-101.
1.02 The 837B network description is found in Section 332-206-152.

2. INSTALLATION

2.01 The 837 B network is stud mounted on a shelf near the point where the cable pairs are brought out to the panel wiring boards.
2.02 Terminals 1 and 2 connect to the cable pair and terminals 3 and 4 connect to the trunk circuit.

3. PRESCRIPTION SETTINGS

3.01 Table A shows the line building-out capacitor (LBOC) settings for equivalent endsection lengths of H 88 high-capacitance 19-, 22-, and 24-gauge cable. Table B shows the LBOC settings for equivalent endsection lengths of H88 low-capacitance 19 -, and 24 -gauge cable. Table C shows the LBOC settings for equivalent endsection lengths of any gauge D88 high-capacitance cable. Table D shows the BOC screw capacitance settings by capacitance values.
3.02 The prescription settings will usually be adequate if the echo structural return loss of the line is high. The 837 B network will need to be touched up for maximum return loss through use of a KS-20501 return loss measuring set (RLMS) or a 54 C RLMS only if the terminal balance requirement is not met.
3.03 The 837B network also features a drop build-out capacitor (DBOC) to equalize the office capacitance for switching between 2 -wire trunks. When terminal balance is required, the DBOC may need adjusting. For more information on terminal balance testing, see Section 660-47Y-502.
3.04 The low-frequency corrector should be set
for the particular cable gauge used. If the end section contains mixed gauge cable or differs from the predominant gauge of the line, the low-frequency corrector must be set by means of return loss measurement.

TABLE A
837B* NETWORK (900 -OHM)
BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH FOR H88 HIGH-CAPACITANCE CABLE

EQUIVALENT \dagger END SECTION LENGTH (FEET)	19, 22, 24 GA		EQUIVALENT \dagger END SECTION LENGTH (MILES)	19, 22, 24 GA	
	BOC $(\mu \mathrm{F})$	SCREWS DOWN \ddagger		${ }_{(\mu \mathrm{F})}$	SCREWS DOWN \ddagger
0	. 080	BCFG	0.00	. 080	BCFG
200	. 077	ABFG	. 05	. 076	BFG
400	. 074	FG	. 10	. 071	BDEG
600	. 070	ADEG	. 15	. 067	ACEG
800	. 067	ACEG	. 20	. 062	EG
1000	. 064	BEG	. 25	. 058	BDG
1200	. 060	CDG	. 30	. 054	ACG
1400	. 057	ADG	. 35	. 049	G
1600	. 054	ACG	. 40	. 045	DEF
1800	. 050	AG	. 45	. 040	BEF
2000	. 047	BDEF	. 50	. 036	CDF
2200	. 044	BCEF	. 55	. 032	DF
2400	. 040	BEF	. 60	. 027	BF
2600	. 037	ACDF	. 65	. 023	ABDE
2800	. 034	BDF	. 70	. 018	ACE
3000	. 031	BCF	. 75	. 014	AE
3200	. 028	ABF	. 80	. 010	ABD
3400	. 025	F	. 85	. 007	D
3600	. 022	BDE	. 90	. 004	C
3800	. 019	BCE	. 95	. 001	A
4000	. 016	$\overline{\mathrm{ABE}}$	1.00	0.000	-
4200	. 013	E			
4400	. 010	ABD			
4600	. 007	D			
4800	. 004	C			
5000	. 001	A			
5200	. 000	-			
5400	. 000	-			
5600	. 000	-			
5800	. 000	-			
6000	0.000	-			

Notes:

* 837B network has drop BOC available. The 837B also has BOR screws available which should be turned down unless otherwise specified.
\dagger The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.).
\ddagger See Table D for screw combinations for networks giving capacitance values rather than letters.

TABLE B
837B* NETWORK (900-OHM)
BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH FOR H88 LOW-CAPACITANCE CABLE

EQUIVALENT \dagger END SECTION LENGTH (FEET)	19, 24 GA		$\begin{aligned} & \text { EQUIVALENT } \dagger \\ & \text { END } \\ & \text { SECTION } \\ & \text { LENGTH } \\ & \text { (MILES) } \end{aligned}$	19, 24 GA	
	$\begin{aligned} & \text { BOC } \\ & (\mu \mathrm{F}) \end{aligned}$	SCREWS DOWN \ddagger		BOC (μF)	SCREWS DOWN \ddagger
0	. 069	DEG	0.00	. 069	DEG
200	. 067	ACEG	. 05	. 066	CEG
400	. 064	BEG	. 10	. 062	EG
600	. 062	EG	. 15	. 059	ABDG
800	. 060	CDG	. 20	. 056	DG
1000	. 057	ADG	. 25	. 052	ABG
1200	. 055	BCG	. 30	. 049	
1400	. 052	ABG	. 35	. 046	ADEF
1600	. 050	AG	. 40	. 043	ACEF
1800	. 047	BDEF	. 45	. 039	AEF
2000	. 045	DEF	. 50	. 036	CDF
2200	. 042	CEF	. 55	. 033	ADF
2400	. 040	BEF	. 60	. 029	CF
2600	. 038	EF	. 65	. 026	AF
2800	. 035	ABDF	. 70	. 023	ABDE
3000	. 033	ADF	. 75	. 020	$\overline{\mathrm{DE}}$
3200	. 030	ACF	. 80	. 016	ABE
3400	. 028	ABF	. 85	. 013	E
3600	. 025	F	. 90	. 010	ABD
3800	. 023	ABDE	. 95	. 007	D
4000	. 020	DE	1.00	. 004	C
4200	. 018	ACE	1.05	. 001	A
4400	. 015	BE	1.10	0.000	-
4600	. 013	E			
4800	. 010	ABD			
5000	. 008	AD			
5200	. 006	BC			
5400	. 003	$A B$			
5600	. 000	-			
5800	. 000	-			
6000	0.000	-			

Notes:

[^0]TABLE C
837B* NETWORK (900-OHM)
BUILDING-OUT CAPACITOR ADJUSTMENT
VERSUS EQUIVALENT END-SECTION LENGTH FOR
ANY GAUGE D88 HIGH-CAPACITANCE CABLE

EQUIVALENT \dagger END SECTION IENGTH (FEET)	any gauge		Equivalent \dagger END SECTION LENGTH (MILES)	any gauge	
IENGTH (FEET)	$\begin{aligned} & \text { BOC } \\ & (\mu F) \end{aligned}$	SCREWS DOWN \ddagger		$\begin{aligned} & \text { BOC } \\ & (\mu \mathrm{F}) \end{aligned}$	sCREWS DOWN \ddagger
0	. 069	$\begin{aligned} & \text { DEG } \\ & \text { CEG } \end{aligned}$	0.00	. 069	DEG
200	. 066				
400	. 063		.05 .10	. 065	$\begin{aligned} & \text { ABEG } \\ & \text { CDG } \end{aligned}$
600	. 060	CDG	$\begin{aligned} & .10 \\ & .15 \end{aligned}$. 060	
800	. 056			$\begin{aligned} & .056 \\ & .052 \end{aligned}$	ABG
			. 20		
1000	. 053	CG	. 25		ABDEF
1200	. 050	AG	. 30	. 043	
1400	. 047	BDEF		$.039$	ACEF
1600	. 044	BCEF	. 35		AEF
1800	. 041	ABEF	. 45	. 030	$\begin{aligned} & \mathrm{ABDF} \\ & \mathrm{ACF} \end{aligned}$
$\begin{aligned} & 2000 \\ & 2200 \\ & 2400 \\ & 2600 \\ & 2800 \end{aligned}$	$\begin{aligned} & .038 \\ & .034 \\ & .031 \\ & .028 \\ & .025 \end{aligned}$	EF BDF $B C F$ ABF F	$\begin{aligned} & .50 \\ & .55 \\ & .60 \\ & .65 \\ & .70 \end{aligned}$	$\begin{aligned} & .026 \\ & .022 \\ & .018 \\ & .013 \\ & .009 \end{aligned}$	$\begin{aligned} & \mathrm{AF} \\ & \mathrm{BDE} \\ & \mathrm{ACE} \\ & \mathrm{E} \\ & \mathrm{BD} \end{aligned}$
$\begin{aligned} & 3000 \\ & 3200 \\ & 3400 \\ & 3600 \\ & 3800 \end{aligned}$					
	$\begin{aligned} & .022 \\ & .019 \\ & .016 \\ & .012 \\ & .009 \end{aligned}$	$\begin{aligned} & \mathrm{BDE} \\ & \mathrm{BCE} \\ & \mathrm{ABE} \\ & \mathrm{ACD} \\ & \mathrm{BD} \end{aligned}$	$\begin{aligned} & .75 \\ & .80 \\ & .85 \\ & .90 \\ & .95 \end{aligned}$. 005	
					AC
				. 000	-
				. 000	-
				$\begin{aligned} & .000 \\ & .000 \end{aligned}$	-
$\begin{aligned} & 4000 \\ & 4200 \\ & 4400 \end{aligned}$	$\begin{array}{r} .006 \\ .003 \\ 0.000 \end{array}$	$\begin{aligned} & \mathrm{BC} \\ & \mathrm{AB} \\ & - \end{aligned}$	1.00	0.000	-

Notes:

* 837B network has drop BOC available. The 837 B also has BOR screws available which should be turned down unless otherwise specified.
\dagger The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.).
\ddagger See Table D for screw combinations for networks giving capacitance values rather than letters.

TABLE D
837B NETWORKS
BOC-SCREW CAPACITANCE SETTINGS

[^0]: * 837 B network has drop BOC available. The 837 B also has BOR screws available which should be turned down unless otherwise specified.
 \dagger The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (ip cable, cross-connections, office wiring, etc.).
 \ddagger See Table D for screw combinations for networks giving capacitance values rather than letters.

