837F NETWORK

INSTALLATION AND PRESCRIPTION SETTINGS

	CONTENTS									PAGE		
1.	GENERAL .		٠			•	•		•	•		1
2.	INSTALLATION						•					1
3.	PRESCRIPTION SETTINGS								•	•	•	1

1. GENERAL

- 1.01 This section gives the installation procedures and prescription settings for the 837F (600 ohm) network, which is used at the far end as an impedance compensator on repeatered CO-PBX links using 19-, 22-, or 24-gauge D88 or H88 loaded cable where terminal balance is required and drop build-out capacitance (DBOC) is needed. The prescription settings are also found in Section 851-300-101.
- **1.02** The description of the 837F network is found in Section 332-206-156.

2. INSTALLATION

2.01 The 837F network is stud-mounted on a shelf near the point where the cable pairs are brought out to the panel wiring boards.

2.02 Terminals 1 and 2 connect to the cable and terminals 3 and 4 connect to the trunk circuit.

3. PRESCRIPTION SETTINGS

- 3.01 Table A shows the line building-out capacitor (LBOC) settings for equivalent endsection lengths of H88 high-capacitance 19-, 22-, and 24-gauge cable. Table B shows the LBOC settings for equivalent endsection length of H88 low-capacitance 19-, and 24-gauge cable. Table C shows the LBOC settings for equivalent endsection lengths of any gauge D88 high-capacitance cable. Table D shows the BOC-screw capacitor settings by values.
- 3.02 The prescription settings will usually be adequate if the echo structural return loss of the line is high. The 837F network will need to be touched up for maximum return loss through use of a KS-20501 return loss measuring set (RLMS) or a 54C RLMS only if the terminal balance requirement is not met.
- 3.03 The 837F network also features a drop build-out capacitor (DBOC) to equalize the office capacitance for switching between 2-wire trunks. When terminal balance is required, the DBOC may need adjusting. For more information on terminal balance testing, see Section 660-47Y-502.

TABLE A 837F* NETWORK (600-OHM) BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH FOR H88 HIGH-CAPACITANCE CABLE

EQUIVALENT† END SECTION	19, 22, 24 GA		EQUIVALENT†	19, 22, 24 GA		
LENGTH (FEET)	BOC (μF)	SCREWS DOWN‡	SECTION LENGTH (MILES)	BOC (μF)	SCREWS DOWN‡	
0	.080	BCFG	0.00	.080	BCFG	
200	.077	\mathbf{ABFG}	.05	.076	BFG	
400	.074	\mathbf{FG}	.10	.071	BDEG	
600	.070	ADEG	.15	.067	ACEG	
800	.067	\mathbf{ACEG}	.20	.062	EG	
1000	.064	BEG	.25	.058	BDG	
1200	.060	CDG	.30	.054	ACG	
1400	.057	ADG	.35	.049	G	
1600	.054	\mathbf{ACG}	.40	.045	DEF	
1800	.050	\mathbf{AG}	.45	.040	BEF	
2000	.047	BDEF	.50	.036	$\overline{\mathrm{CDF}}$	
2200	.044	BCEF	.55	.032	DF	
2400	.040	${f BEF}$.60	.027	BF	
2600	.037	\mathbf{ACDF}	.65	.023	ABDE	
2800	.034	BDF	.70	.018	ACE	
3000	.031	BCF	.75	.014	AE	
3200	.028	\mathbf{ABF}	.80	.010	ABD	
3400	.025	${f F}$.85	.007	D	
3600	.022	BDE	.90	.004	C	
3800	.019	BCE	.95	.001	A	
4000	.016	ABE	1.00	0.000		
4200	.013	${f E}$			<u> </u>	
4400	.010	ABD				
4600	.007	D				
4800	.004	\mathbf{C}				
5000	.001	A	1			
5200	.000					
5400	.000					
5600	.000					
5800	.000					
6000	0.000					

Notes:

- * 837F networks have drop BOC available.
- † The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.).
- \ddagger See Table D for screw combinations for networks giving capacitance values rather than letters.

TABLE B 837F* NETWORK (600-OHM) BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH FOR H88 LOW-CAPACITANCE CABLE

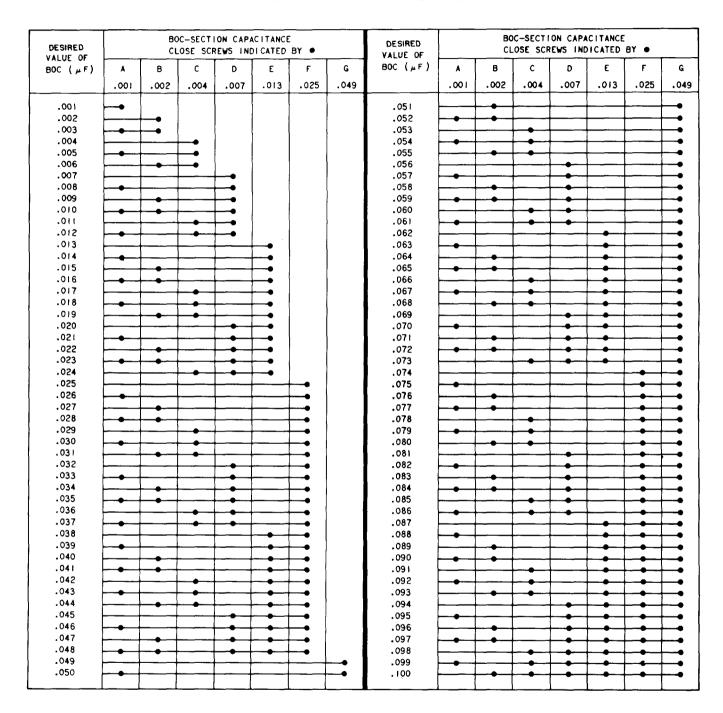
EQUIVALENT† END	19, 24 GA		EQUIVALENT† END SECTION	19, 24 GA			
SECTION LENGTH (FEET)	BOC (μF)			BOC (μF)	SCREWS DOWN‡		
0	.069	DEG	0.00	.069	DEG		
200	.067	\mathbf{ACEG}	.05	.066	\mathbf{CEG}		
400	.064	\mathbf{BEG}	.10	.062	\mathbf{EG}		
600	.062	$\mathbf{E}\mathbf{G}$.15	.059	ABDG		
800	.060	CDG	.20	.056	\mathbf{DG}		
1000	.057	ADG	.25	.052	ABG		
1200	.055	BCG	.30	.049	G		
1400	.052	$\mathbf{A}\mathbf{B}\mathbf{G}$.35	.046	\mathbf{ADEF}		
1600	.050	\mathbf{AG}	.40	.043	\mathbf{ACEF}		
1800	.047	BDEF	.45	.039	\mathbf{AEF}		
2000	.045	DEF	.50	.036	$\overline{\mathrm{CDF}}$		
2200	.042	\mathbf{CEF}	.55	.033	${f ADF}$		
2400	.040	\mathtt{BEF}	.60	.029	\mathbf{CF}		
2600	.038	\mathbf{EF}	.65	.026	\mathbf{AF}		
2800	.035	${\bf ABDF}$.70	.023	ABDE		
3000	.033	ADF	.75	.020	DE		
3200	.030	\mathbf{ACF}	.80	.016	ABE		
3400	.028	ABF	.85	.013	${f E}$		
3600	.025	\mathbf{F}	.90	.010	ABD		
3800	.023	ABDE	.95	.007	D		
4000	.020	DE	1.00	.004	C		
4200	.018	ACE	1.05	.001	A		
4400	.015	BE	1.10	0.000	_		
4600	.013	${f E}$					
4800	.010	ABD					
5000	.008	AD	1				
5200	.006	$_{ m BC}$					
5400	.003	AB					
5600	.000	_					
5800	.000	_					
6000	0.000		1				

Notes:

- * 837F networks have drop BOC available.
- † The equivalent end-section length is made up of the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.).
- ‡ See Table D for screw combinations for networks giving capacitance values rather than letters.

TABLE C 837F* NETWORK (600-OHM) BUILDING-OUT CAPACITOR ADJUSTMENT VERSUS EQUIVALENT END-SECTION LENGTH FOR ANY GAUGE D88 HIGH-CAPACITANCE CABLE

EQUIVALENT†	ANY GAUGE BOC SCREWS (µF) DOWN‡		EQUIVALENT† END	ANY GAUGE		
SECTION LENGTH (FEET)			SECTION LENGTH (MILES)	BOC (μF)	SCREWS DOWN‡	
0	.069	DEG	0.00	.069	DEG	
200	.066	CEG	.05	.065	ABEG	
400	.063	AEG	.10	.060	CDG	
600	.060	CDG	.15	.056	DG	
800	.056	DG	.20	.052	ABG	
1000	.053	CG	.25	.048	ABDEF	
1200	.050	AG	.30	.043	ACEF	
1400	.047	BDEF	.35	.039	AEF	
1600	.044	BCEF	.40	.035	ABDF	
1800	.041	ABEF	.45	.030	ACF	
2000	.038	EF	.50	.026	AF	
2200	.034	BDF	.55	.022	BDE	
2400	.031	BCF	.60	.018	ACE	
2600	.028	ABF	.65	.013	E	
2800	.025	F	.70	.009	BD	
3000	.022	BDE	.75	.005	AC	
3200	.019	BCE	.80	.000		
3400	.016	ABE	.85	.000		
3600	.012	\mathbf{ACD}	.90	.000	<u> </u>	
3800	.009	BD	.95	.000	_	
4000	.006	BC	1.00	0.000		
4200	.003	AB	<u> </u>		<u> </u>	
4400	0.000					


Notes:

^{* 837}F networks have drop BOC available.

[†] The equivalent end-section length is made up the actual length of outside cable in the end section (including bridged taps) plus a fictitious length that would have the same capacitance as the rest of the wiring to the network (tip cable, cross-connections, office wiring, etc.).

[‡] See Table D for screw combinations for networks giving capacitance values rather than letters.

TABLE D 837F NETWORK BOC-SCREW CAPACITANCE SETTINGS

