BELL SYSTEM PRACTICES AT & TCo Standard

837J NETWORK INSTALLATION AND PRESCRIPTION SETTINGS

1. GENERAL

1.01 This section gives installation and prescription settings for the 837J network. This network is for use as an impedance compensator on 25-gauge H88 loaded metropolitan area trunk (MAT) cable at locations with terminal balance requirements. A description of the 837J network is contained in Section 332-206-158.

1.02 When this section is reissued, the reason for reissue will be given in this paragraph.

2. INSTALLATION

2.01 The 837J network is stud mounted on a shelf near the point where the cable pairs are brought out to the panel wiring boards. Terminals 1 and 2 connect to the cable pair and terminals 3 and 4 connect to the trunk equipment.

3. PRESCRIPTION SETTINGS

3.01 Table A gives the prescription settings for the 837J network when used on an end section consisting entirely of 25-gauge H88 loaded MAT cable. The build-out resistance (BOR), build-out capacitance (BOC), and LATTICE settings in the table describe the positions of the 16 screws on the face of the network.

3.02 The following procedure should be used in determining the 837J network settings when the end section contains mixed gauges (MAT cable plus another type of facility).

(a) Calculate or otherwise obtain the resistance of the 25-gauge MAT cable and the resistance
of the other gauge cable. The sum of these is the total cable end section equivalent resistance and is used in Table A to establish BOR and LATTICE settings. (An alternate method is to subtract the sum of the resistance of the two facility types from 393 ohms, which is the resistance of 6000 feet of 25-gauge MAT cable. The resulting value is the amount of LATTICE and BOR resistance needed.) The LATTICE resistance is 196 ohms and the BOR has a maximum resistance of 196 ohms in 28-ohm increments.

(b) Calculate or otherwise obtain the capacitance of the 25-gauge MAT cable and the capacitance of the other gauge cable and add the two together. Subtract this value from 0.071 μ F (the capacitance of 6000 feet MAT cable). This is the value of capacitance which must be added by the LATTICE and BOC. The LATTICE capacitance is 0.036 μ F and the BOC is a maximum of 0.052 μ F adjustable in .001 μ F steps.

(c) It is possible in some cases that the need for resistance as calculated in (a) will conflict with the need for capacitance as calculated in (b), eg, one of the calculations will indicate that the LATTICE be IN while the other indicates that the LATTICE be OUT. When this condition occurs, the requirement for capacitance as calculated in (b) dictates the setting for the LATTICE screws. The resistance value is set as close as possible by the BOR.

NOTICE

Not for use or disclosure outside the Bell System except under written agreement

Printed in U.S.A.

Page 2 2 Pages

(

837J	PRESCRIP	TION SET	TINGS	FOR M	IAT I	CABLE
------	----------	----------	-------	-------	-------	-------

END SECTION		BOC					BOR		LATTICE		TOTAL	LOSS			
LENGTH	Ω	μF	SCREWS DOWN						Ω	SCRE	NS DOWN	X SCREWS	SCREWS	RES . Ω	(dB)
					004	007		025	196					417	3.40
0	0	0.036		002	.004	.007		025	168		- 28			389	3.25
200	13	0.034	_	.002		007	_	.025	168	-	- 28			389	3.25
400	26	0.032		_	004			025	140	_	56 -			361	3.10
600	39	0.029		002			_~	.025	140		56 -			361	3.10
800	52	0.027		.002	004	007	013	-	140	_	56 —			361	3.10
1000	60	0.024	_	002		007	013		112		56 28		[333	3.00
1200	18	0.022		.004	004	.001	013		112		56 28	DOWN	UP	333	3.00
1400	92	0.019		.002	.004	_	013		84	112		1 1		305	2.85
1600	105	0.017		002		_	013	_	84	112	_ ~			305	2.85
1800	110		001	.002	004	007	.010		56	112	- 28			277	2.70
2000		0.012	.001	002		007			56	112	- 28			277	2.70
2200		0.010	.001	.002		007			28	112	56 —			249	2.55
2400	157	0.007	001		004				28	112	56 -			249	2.55
2600	109	0.003	.001	002				-	0	112	56 28			221	2.40
2800	100	0.002		.004		-		_	0	112	56 28		↓ ↓ _	221	2.40
3000	190	0.000							1	<u> </u>					
										r			1	193	2.30
3200	210	0.034		.002		.007		.025	168	-	- 20			193	2.30
3400	223	0.032		_	_	.007	_	.025	168		20 50	' 		165	2.15
3600	236	0.029			.004	.007	_	.025	140		56 —			165	2.15
3800	249	0.027	-	.002				.025	140		56 -			165	2.15
4000	262	0.024	- 1		.004	.007	.013		140		56 28			137	2.00
4200	275	0.022		.002		.007	.013		112		56 28			137	2.00
4400	288	0.019	-	.002	.004	-	.013		84	112		UP	DOWN	109	1.90
4600	301	0.017	-		.004		.010		84	112		Ĩ		109	1.90
4800	314	0.015		.002		007	.013		56	112	- 28			81	1.75
5000	327	0.012	100.	-	.004	.007			56	112	- 28			81	1.75
5200	341	0.010	001	.002	-	.007			20	112	56 -			53	1.60
5400	354	0.007	-			.007			20	112	56 -			53	1.60
5600	367	0.005	001		.004					112	56 29	3		25	1.45
5800	380	0.002	-	.002						112	56 28	3		25	1.45
6000	1 393	0.000							1	1					

SECTION 332-206-258

(

Ł

(