LINE BALANCING NETWORK DATA

CONTENTS PAGE

1. GENERAL 1
2. DESCRIPTION OF NETWORKS 2
3. BALANCE CONSIDERATIONS 3
4. EQUIPMENT CONSIDERATIONS 4
5. ATTACHMENTS 5

1. GENERAL

1.01 This addendum to Section 332-851-102, Issue

1 , provides data on line balancing networks for B and $\mathrm{H}-88-50$ loaded cable circuits; 16-gauge B- 22 cable circuits; 22 -gauge BSA B- $135-\mathrm{N}$ cable circuits; 114 -mil open-wire circuits, with various wire spacings; and modifications of the 108A, B, and C networks for use on 6 -inch spaced open-wire circuits.
1.02 The networks for B and H-88-50 loaded cable circuits are as follows:

network Code	type facilities
$113 \mathrm{P}^{*}$	19-Gauge H-88 Side
$113 \mathrm{R}^{*}$	19-Gauge H-50 Phantom
D-92945	19-Gauge B-88 Side
D-92946	19-Gauge B-50 Phantom

* Replacing the D-92947 and D-92948 networks.

These networks were designed particularly for use with 19-gauge conductors. It appears that H-88-50 loading may be used to a small extent with 16-gauge conductors. Although better return losses at low frequencies could be obtained by the use of networks designed especially for 16 -gauge facilities, it is believed that the use of 19-gauge networks for 16 -gauge facilities will, in this case, give satisfactory results in the circuit layouts with which these facilities are likely to be used.
1.03 A network for 16 -gauge B-22 circuits was developed some time ago for trial purposes but never standardized. No field of use has developed for this type of network but mention of it is being made in this addendum inasmuch as some inquiry has been made of it mainly for completion test purposes. It is coded D-87801. (A schematic diagram and the constants of this network are shown in Fig. 1; and its impedance, in Fig. 2. The same equipment considerations apply to the 102 - and 104 -types. No further mention is made of this network in the addendum.
1.04 The network for 22-gauge BSA B-135-N circuits is coded 113 S and is provided with adjustable elements to compensate for the impedance effects caused by deviation of average loading section capacitance from the normal value. These adjustments are made by strapping terminals provided in the rear of the network.

Note: A network for 19-gauge CNB B-135-N facilities has been designed but not standardized. Arrangements can be made for its manufacture if needed.
1.05 The networks for use with 114-mil, nonloaded, open-wire circuits are coded 114A and 114B for the side and phantom circuits, respectively. These networks are arranged so their impedance may be adjusted to various values in order that a good degree of impedance simulation may be obtained between them and the impedance of $114-\mathrm{mil}$ open-wire circuits having spacings between wires of from 8 to 30 or more inches. The impedance of the network is changed by adjusting the resistance component, the reactance component remaining unchanged. This arrangement does not, of course, give exact impedance simulation for the variously spaced circuits for which these networks may be used. However, the network can be adjusted to give sufficiently close simulation so that a reasonably good balance can be obtained, provided the line facilities are free from serious irregularities.
1.06 Open-wire circuits with 6 -inch spacing may be balanced with modified 108 -type networks. Networks for the above circuits may be standardized
in connection with the possible redesign of all open-wire networks to 113 -types. This modification consists of a resistance shunt of $20,000,15,000$, and 12,000 ohms, respectively, across the terminals of the 108A ($104-\mathrm{mil}$), 108B ($128-\mathrm{mil}$), and 108 C (165 -mil) networks. These are resistances per KS-7843 and can be supported by their own leads connected to the network terminals.

2. DESCRIPTION OF NETWORKS

Networks for B and H-88-50 Facilities

2.01 The electrical configuration of the networks for B-88-50 side and phantom circuits is shown in Fig. 3. The capacitances employed are standard coded condensers. The resistors and coils are mounted in a single unit and are potted as one assembly, all being enclosed under a common can cover and arranged for stud mounting. These networks have been designed to simulate to a high degree the characteristic impedance of B-88-50 side and phantom circuits at half-coil termination over a frequency range from 100 Hz to above 3500 Hz .
2.02 The electrical configuration and constants of the networks for $\mathrm{H}-88-50$ side and phantom circuits are shown in Fig. 4. This figure also shows the proper terminal strapping for various values of average capacitance per load section. These networks, without building-out capacitance, simulate the impedance of $\mathrm{H}-88-50$ side and phantom facilities when terminated at 0.18 load section. The design of the networks has been such, however, that when built out with proper capacitance alone they will simulate the impedance of $\mathrm{H}-88-50$ circuits for any loading section from 0.18 to full load section. Since these facilities normally terminate in 0.5 section, these networks have been designed to give the most accurate simulation when built out to 0.5 loading section. The networks for $\mathrm{H}-88-50$ circuits are of the 113-type, in which form networks for various exchange lines have already been made available. (See Section 332-851-103.)
2.03 The impedances of the B-88-50 side and phantom circuit networks at half-coil termination are given in tabular form in Fig. 3. Table I gives the basic impedance of the H-88-50 networks and also the midsection impedance for various strappings of terminals to simulate cable having nominal and other than nominal capacitance.

Networks for 22-Gauge BSA B-I35-N Facilities

2.04 The electrical configuration and constants of the network (also of the 113-type) for 22-gauge BSA B-135-N facilities are shown in Fig. 5. This figure also shows the way in which the terminals should be strapped for various values of loading section capacitance. The basic end section of this network is 0.186 . The network impedance for the various strappings is shown in Table J.

Networks For 114-Mil Open-Wire Circuits

2.05 A schematic diagram of the 114A network for use with side or physical circuits, either nompole pair or pole pair, is shown in Fig. 6, and a similar diagram of the 114B network for use with phantom circuits is shown in Fig. 7. The network configuration in each case consists of two elements in parallel, each element consisting of a capacitor and resistor in series, this combination being in series with another resistor. The variable feature of the network is provided by adjustment of this later resistor, the adjustment being accomplished by strapping certain terminals which are available on the exterior of the network. This permits the absolute impedance and also the resistance component of the network impedance to be changed but does not affect the reactance component. By proper strapping of the available terminals, the resistance component may be varied in 10 -ohm steps, the series resistance being adjustable from 0 to 150 ohms.
2.06 Typical impedance characteristics are shown in Fig. 6 and 7 for the 114A and 114B networks, respectively. The $1000-\mathrm{Hz}$ value of the resistance component is given for all values of the variable resistance, and the absolute impedance is given for a number of frequencies for certain strappings which frequently occur in practice.

Networks for 6-Inch Spaced, Open-Wire Facilities

2.07 Typical impedance characteristics of the 108 -type network modified for use with 6 -inch spaced facilities are shown in Table K.

3. BALANCE CONSIDERATIONS

Networks for B and H-88-50 Facilities

3.01 Since the B-88-50 facilities terminate in half-coil, only a small building-out capacitor will generally be required, the amount depending only upon the capacitance on the office side of the last loading coil. In the case of the H-88-50 facilities, it will be necessary to build out the network not only for the office cabling capacitance but also for the capacitance of the line facilities where the termination of the line is in excess of 0.18 load section. Figure 8 shows the nominal value of the building-out capacity required corresponding to different cable end sections for $\mathrm{H}-88-50$ facilities. This figure covers both the D-specifications and the 113 -type networks, the basic end sections of which are different.
3.02 In certain cases where the average capacitance of the cable for one or more loading sections is slightly lower than the average nominal cable capacitance for which the B-88-50 networks have been designed, somewhat improved return losses will be obtained if the building-out capacitance is supplemented by a series resistance as indicated in the building-out arrangement shown in Fig. 3. Resistances are provided along with the building-out capacitance so that 18,39 , or 57 ohms may be obtained in series with the networks. Where the larger of the first two resistances is required (that is, 39 ohms), it will probably be best to connect it between the building-out capacitor and the network. For the smaller of the two resistances, the position is usually not important. Where the maximum resistance value is required, the building-out capacitance should be connected to the center point of the two resistances. The above also applies to the old D-specifications networks for H - $88-50$ circuits. The 113-type network for $\mathrm{H}-88-50$ circuits has provisions for adjustments to simulate cable having either higher or lower than the nominal 0.062 $\mu \mathrm{F} /$ mile capacitance. The appropriate strappings for the various conditions are shown in Fig. 4.
3.03 The minimum return losses of the B and H-88-50 networks against theoretical line impedances, half-coil termination for B loaded circuits, and half-section termination for the H loaded circuits are as follows:

FREQUENCY - HZ	MINIMUM RETURN LOS5 - DB	
	 D-92946	113 \& \& 113R*
$100-200$	38	38
$200-300$	40	40
$300-2500$	44	44
$2500-3000$	44	44
$3000-3500$	35	32

* Same values apply to the replaced D-92947 and D-92948.

The minimum return loss of any one network against any other network of the same type should be 38 dB for the frequency range of 300 to 3000 Hz when measured with the 3 A return loss measuring set.

Networks for 22-Gauge BSA B-135-N Facilities

3.04 The network for 22 -gauge BSA B-135-N facilities likewise includes provisions for simulating loading section capacitance higher or lower than nominal. The strapping arrangements are shown in Fig. 5. With suitable strapping, the return loss between the network and the theoretical cable impedance will be greater than 35 dB from 200 to 3200 Hz and at least 25 dB at 100 and 3600 Hz .

Networks for 114-Mil Open-Wire Circuits

3.05 In Fig. 6 and 7 are shown, in tabular form, the network connections which will give impedances simulating the nominal impedances of 114 -mil open-wire circuits for the wire spacing indicated. Various factors such as transpositions, spacing between crossarms, spacing between pairs, etc., may affect the impedance so that some network connection other than the one shown on the table may give better results. The proper connection to be used may be determined by return-loss measurements or by measurements of the line impedance, comparing this with the table of network impedances in order that the best combination may be selected. When such tests are made, it will be desirable to remove all equipment from the line and terminate the distant end in substantially characteristic line impedance.
3.06 The design of these networks is such that when the proper network terminals are used,
return losses of 25 dB or more over the frequency range of 200 to 3000 Hz can be obtained for lines which are free from irregularities such as pieces of nonloaded cables, etc., and which are terminated at the distant end in characteristic line impedance.
3.07 Where the open-wire line is brought into the repeater office through nonloaded cable or twisted pair, or where a considerable length of office cabling may be involved, the return loss can usually be improved by the addition of a building-out capacitance connected across the network terminals as is done for other nonloaded open-wire networks.

Networks for 6-Inch Spaced, Open-Wire Facilities

3.08 The return losses of the modified 108-type networks for use with 6 -inch spaced circuits against the nominal dry weather impedance of such circuits are as follows (values for wet weather in general are somewhat lower):

FREQ - HZ	return loss between b-inch spaced CIRCUITS AND NETWORKS		
	$\begin{gathered} (104-\mathrm{MLL}) \\ 108 \mathrm{~A}+20000 \end{gathered}$	$\begin{gathered} (128-\mathrm{MIL}) \\ 108 \mathrm{~B}+15000 \end{gathered}$	(165-MIL) $108 \mathrm{C}-12000$
300	34	37	36
500	36	35	38
1000	37	37	41
1500	38	39	39
2000	37	40	40
3000	37	40	40

Building-Out Section Adjustments-113-Type Networks

3.09 In general, in connection with the 113-type network, it is preferable to make adjustments of the building-out sections in accordance with capacitance data on the cable in question, or, in absence of such data, by means of return-loss measurements over the important frequency range from about 200 to 300 Hz . The optimum adjustment should be determined at frequencies below about 500 Hz for the building-out resistance, and above 1500 Hz for the building-out capacitance.
3.10 If return-loss measuring apparatus is not available, the adjustment can be made by means of measuring the impedance on a few of the circuits and comparing the average of these
measurements with the impedance of a network adjusted in various ways. The adjustments may also be made by means of 21 test singing point measurements but, because of the effect of phase shift, adjustments so made may not always be optimum. One likely source of error is the use of too much building-out resistance and compensating this with adjustment of the building-out capacitor, with the result that the return loss will be high at the singing frequency but lower than might otherwise be obtained at other frequencies.

4. EQUIPMENT CONSIDERATIONS

Networks for B and \mathbf{H}-88-50 Facilities

4.01 The networks for B-88-50 (also the old D-specifications networks for $\mathrm{H}-88-50$) facilities are each $3-3 / 8$ inches wide by $5-1 / 8$ inches long and $3-11 / 15$ inches high. Five networks may be mounted in a horizontal row on a 19-1/24 inch relay rack. The mounting arrangements of the networks and associated building-out units are shown on drawings ED-63666-02 and ED-63666-03. The first mentioned drawing applies to the earlier installations, which employed 80 -type building-out resistances, and the second drawing covers the arrangements now standard, employing 18- or 19-type building-out resistors.
4.02 The 113 -type networks for $\mathrm{H}-88-50$ circuits are similar to the other networks of the 113-type. The structure consists of a bracket assembly having a formed channel into which are assembled the various resistance, capacitance, and inductance elements of the networks. In this same channel are assembled the building-out capacitor and resistors used to build out these networks to the end section corresponding to the loading end section of the cable and for simulating other than nominal capacitance conditions. The network dimensions are:

Overall length	$6-15 / 16$ inches
Depth (projection from panel)	$4-13 / 32$ inches
Width	$1-19 / 32$ inches

These networks are arranged for stud mounting on $1-3 / 4$ inch by 7 -inch centers. They can be mounted on 600 A mounting plates drilled as specified, one or two networks per plate, or mounting bars

Page 4

per ED-90185-01, Fig. 2, for 19 -inch relay racks, each bar accommodating ten networks per 7 inches of vertical space. The terminals for strapping the building-out resistor appear in the rear of the networks; those for the building-out capacitor may be reached from the front by removing the front cover.

Network for 22-Gauge BSA B-135-N Facilities

4.03 The network for 22 -gauge BSA B-135-N
facilities is also of the 113-type and the same dimensions and mounting details given in 4.02 are applicable.

Networks for 114-Mil Open-Wire Circuits

4.04 The networks for 114 -mil open-wire circuits are $4-9 / 32$ inches long, $1-11 / 16$-inches wide, and 4-3/4 inches high. The terminals for the network appear on the top side and two tapped holes spaced 1-3/4 inches apart, for use in mounting the network, are located on the bottom side. These networks may be obtained assembled on 3-5/32 inch by $8-11 / 16$ inch plates and may then be mounted on mounting bars on relay racks in the same manner as 102-, 104-, and similar-type networks.

Network for 6-Inch Spaced, Open-Wire Circuits

4.05 As already indicated, the only additional equipment consideration involved in the modification of 108 -type networks for 6 -inch spaced circuits is the bridging resistance across the terminals of the 108 -type network. The resistance can be supported by its own leads connected to the network terminal.

5. ATTACHMENTS

List of Tables Attached

Revision sheet containing: (a) changes to existing Tables A, D, E, F, and G of Section

332-851-102, Issue 1; and (b) an additional table, Table B.1.

Table I-Nominal Impedance of 113P and 113R (added) Balancing Networks for Balancing 19-Gauge H-88-50 Loaded Quadded Toll Cable as per Fig. 4

Table J-Nominal Impedance of 113S Balancing (added) Network for Balancing 22 -Gauge BSA B-135 Loaded Cable Circuits

Table K-Nominal Impedance Values of 108-Type (added) Balancing Networks Modified for Balancing 6-Inch Spaced, Open-Wire Conductors

List of Figures Attached

Fig. 1-2-Wire Circuits Employing 16-GA B-22 Cable Pairs-Schematic of Balancing Network

Fig. 2-Impedance Characteristic of D-87801 Balancing Network-This Network is Designed to Balance 16-GA B-22 Cable Pairs with Midcoil Termination

Fig. 3-Balancing Networks for B-88-50 Circuits
Fig. 4-113-Type Balancing Networks for Balancing 19-GA H-88-50 Quadded Toll Cable Circuits-Nominal Side Circuit Capacitance is $0.062 \mu \mathrm{~F}$ per Mile

Fig. 5-113-Type Balancing Network for Balancing $22-\mathrm{GA}$ BSA, B-135-N Cable Circuits

Fig. 6-114A Balancing Network for 114-Mil Nonloaded Side or Physical Circuit

Fig. 7-114B Balancing Network for 114-Mil Nonloaded Phantom Circuit

Fig. 8-Network Building-Out Capacity vs Cable End-Section for H-88-50 Balancing Networks

```
REVISION OF TABLES A, D, E, F, AND G
OF SECTION 332-851-102, ISSUE 1, AND
NEW TABLE B.1
```

Table A - Standard Precision Type Balancing Networks - Relay Rack Mounting Designed for Nonteaded Open-Wire Impedanoe

Add New Table B. 1 as follows:
Table B. 1 - Standard Precision Cable Networks of 113-type - Stud-Mounting

Gauge	Nominal		Circuit	Network		
	Cap. Mile	Loading		Code	End Section	Replacing
19 AWG	0.062	H-88-S	Side	113-P	0.18	D-92947
19 AWG	0.100	$\mathrm{H}-50-\mathrm{P}$	Phantom	113-R	0.18	D-92948
22 AWG	0.078	$\mathrm{B}-135-\mathrm{N}$	Physical	113-S	0.186	

Table D - Specifications Networks Obtainable on Order
Add:

Facility	Gauge	Loading	Circuit	Type of Network	Specifi- cation Number	Former Designation
Cable	19	B-88-50	Side	(Precision)	D-92945	-
Cable	19	B-88-50	Phantom	(Balancing)	D-92945	-
				(Relay Rack)		-
				(Stud-mounting)		-
Cable	16	B-22	Physical		D-87801	-

Table E - Basic Networks Rated A. and M. Only - Coil Rack Mounting Designed for Nonloaded Open-Wire Circuits

Delete Networks 17-A, B, C, D, E, F and G; 18-A; 11-A, B, C, and D; $12-A, B, D, E, F, G, H, J, K$ and L; and $20-A$.

Table F - Networks and Low-Frequency Correctors Rated A. and M. Only - Designed for Cable Circuits

Delete Networks 13-R, and 21-A.
Table G - Basic Networks Rated Manufacture Discontinued - Coil and Relay Rack Mounting

Add Networks deleted from Tables E and F as above. Also Add:

Cable	19 Ga	$\mathrm{H}-88-\mathrm{S}$	Side	(Precision, Relay)	$\mathrm{D}-92947$	- 113 P
Cable	19 Ga	$\mathrm{H}-30-\mathrm{P}$	Phantom (Rack, Stud-Mounting)	$\mathrm{D}-92948$	- 113 R	

TABLE I
NOMINAL IMPEDANCE OF 113 P BALANCING NETWORKS FOR BALANCING
19-GAUGE H-88-50 LOADED QUADDED TOLL CABLE
NETWORKS AS PER FIG. 4

Midsection Impedance
(Impedance Between Terminals 1 and 2)

BOR - Ohms Terminals Strapped $\mathrm{BOC}-\mathrm{UF}$	$\begin{gathered} 0 \\ 2-3 \\ 0.0226 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 3-4 \\ 0.0226 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 2-4 \\ 0.0216 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ \text { None } \\ 0.0216 \\ \hline \end{gathered}$	$\begin{gathered} \text { Basic Net. } \\ 2-3 \\ \text { None } \\ \hline \end{gathered}$
Frea (Hz)					
100	1389-j809	1389-j809	1409-j809	1429-j809	1400-3791
140	1272-j621	1292-j621	1313-j621	1333-j621	1303-35 5
200	1204-j459	1224-j459	1245-j460	1265-j460	1235-j422
300	1161-j31?	1181-j317	1201-j319	1221-j319	1190-j262
500	1139-j195	1159-j195	1179-j197	1199-j197	1164-3193
700	1138-j139	1158-j139	1178-j144	1198-3144	1156-j10
1000	1150-j99	1170-j99	1189-j104	1209-j104	$1152+390$
1500	1193-j66	1213-j66	1230-j72	1250-j72	$1152+j 231$
2000	1271-j47	1291 - j47	1307-j54	1327-j54	$1153+j 375$
2500	1412-j41	1432-j41	1443-j48	1463-j48	$1157+3549$
2800	1550-j55	1570-j55	1578-j59	1596-j59	$1162+j 678$
3000	1677-j83	1697-j83	1699-j84	1719-j84	$1166+3780$
3200	1842-j143	1862-j143	1861-j136	1881-j136	$1171+3900$
3500	2181-j366	2201-j366	2198-j334	2218-j334	$1183+41188$

NOMINAL IMPEDANCE OF $113 R$ BALANCING NETWORKS
FOR BALANCING 19-GAUGE H-88-50 LOADED QUADDED TOLL CABLE

Midsection Impedance
 (Impedance Between Terminals 1 and 2)

BOR - Ohms Terminals Strapped BOC - UF	$\begin{gathered} 0 \\ 2-3 \\ 0.0372 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 3-4 \\ 0.0372 \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ 2-4 \\ 0.0355 \\ \hline \end{gathered}$	$\begin{array}{r} 45 \\ \text { None } \\ 0.0355 \\ \hline \end{array}$	$\begin{gathered} \text { Basic Net. } \\ 2-3 \\ \text { None } \\ \hline \end{gathered}$
Freg (Hz)					
100	786-j436	801-j436	818-j436	831-j436	802-jl26
140	$730-j 327$	745-j327	760-j328	775-j328	746-j318
200	696-j237	711 - j237	726-j238	741-j238	711 - j216
300	676-j161	691-j161	706-j163	721-j163	691-j130
500	668-j98	683-j98	698-j100	713-j100	679-j46
700	669-j71	684-j71	698-j74	713-j74	677 + j3
1000	675-j50	690-j50	705-j55	720-j55	$675+357$
1500	699-j34	714-j34	727-j40	742 - j40	$675+j 134$
2000	$740-j 24$	755-j24	766-j33	781-j33	$676+j 212$
2500	812-j21	827-j21	835-j31	850-j31	$678+j 303$
2800	880-j27	895-j27	900-j37	915-j37	$680+j 372$
3000	940-j38	955-j38	958-j47	973-j47	$681+j 424$
3200	1019-j60	1034-j60	1034-j67	1049-j67	$684+j 483$
3500	1181-j141	1196-j141	1190-j139	1205-j139	$689+j 596$

TABLE J

NOMINAL IMPEDANCE OF 1135 BALANCING NE TWORK FOR
BALANCING 22-GAUGE BSA B-135 LOADED CABLE CIRCUITS

Midsection Impedance
(Impedance Between Terminals 1 and 2)

BOR - Ohms	0	37	102	Basic Net.
Terminals Strapped	$2-4$	$2-3$	None	None
BOC - UF	$\underline{0.01462}$	$\underline{0.01391}$	$\underline{0.01302}$	None

Freq (Hz)

100	$1727-j 975$	$1765-j 975$	$1830-j 976$	$1860-j 956$
250	$1726-j 393$	$1764-j 393$	$1830-j 393$	$1858-j 327$
300	$1728-j 329$	$1765-j 328$	$1831-j 329$	$1858-j 248$
500	$1733-j 202$	$1771-j 201$	$1836-j 202$	$1857-j 63$
1000	$1765-j 109$	$1802-j 106$	$1866-j 107$	$1857+j 178$
1500	$1828-j 76$	$1864-j 71$	$1926-j 72$	$1858+j 351$
2000	$1943-j 55$	$1976-j 46$	$2035-j 45$	$1859+j 579$
2400	$2099-j 43$	$2129-j 29$	$2183-j 23$	$1861+j 780$
2600	$2212-j 44$	$2241-j 24$	$2290-j 14$	$1863+j 899$
2800	$2361-j 54$	$2387-j 27$	$2432-j 10$	$1866+j 1035$
3000	$2560-j 86$	$2583-j 47$	$2621-j 18$	$1869+j 1194$
3200	$2828-j 162$	$2849-j 105$	$2881-j 56$	$1874+j 1383$
3600	$3649-j 716$	$3698-j 575$	$3737-j 426$	$1891+j 1906$

Page 8

TABLE K

NOMTNAL IMPEDANGE VALUES OF 108-TYPE
BALANCING NETWORKS MODIFIED FOR BALANCING 6-in. SPACED
OPEN-WIRE CONDUCTORS

Line Conductors	104-Mil		128-Mil		165Mil	
Balancing Network	108-A		108-B		108-C	
Shunt Resistance	20,000 Ohms		15,000 Ohms		12,000 Ohms	
Frequency (Hz)	R	-jx	P	-jx	R	-jx
100	1030	767	853	573	691	400
200	804	503	684	362	590	232
300	718	375	634	262	583	167
500	649	249	595	168	544	103
1000	611	132	575	86	537	56
1500	600	90	570	61	535	34
2000	599	68	567	45	535	26
2500	598	54	567	38	535	21
3000	598	44	567	30	534	18

This network is designed to balance 16-gauge $\mathrm{B}-22$ cable pairs with midcoil termination.

Fig. 1-2-Wire Circuits Employing 16-GA B-22 Cable Pairs-Schematic of Balancing Network

Fig. 2-Impedance Characteristic of D-87801 Balancing Network-This Network is Designed to Balance 16-GA B-22 Cable With Midcoil Termination

Note: Network end-section termination is half coil.

NETWORK IMPEDANCE

$\begin{aligned} & \text { FREQ } \\ & (\mathrm{Hz}) \end{aligned}$	D-92945 SIDE			D-92946 PHANTOM		
	RESISTANCE (OHMS)	REAC TANCE (OHMS)	IMPEDANCE and ancle (OHMS/DEGREES	RESIS TANCE (OHMS)	REAC TANCE (OHMS)	IMPEDANCE AND ANGLE (OHMS/DEGREES
100	1714	- 3694	$1849 \angle 22$	997	- 3342	$1054 \angle 18.9$
140	1643	- j 512	$1721 \angle 17.3$	975	- 3248	$1008 / 14.3$
200	1602	- j366	$1644 \quad 12.9$	954	- j 179	$971 / 10.6$
300	1578	- j250	$1598 \angle 9.0$	943	- 3122	$951 / 7.4$
400	1569	- $j 191$	$1581 / 6.9$	939	- j92	944
500	1553	- $\mathrm{j157}$	$1571 / 5.7$	936	- j74	$939 \triangle 4.5$
700	1553	- 3119	1557×4.4	931	- 354	933 13.3
1000	1539	- j 93	$1542 \quad 3.5$	924	- 340	92512.5
1500	1505	- j76	$1507 \not 2.9$	906	- j30	$907 / 1.9$
2000	1458	- j69	$1460 \lcm{2.7}$	882	- j23	$882 / 1.5$
2500	1395	- j63	$1397<2.6$	849	- 318	849 /1.2
3000	1317	- 353	$1318<2.3$	807	- j 12	$807 / 10.9$
3500	1222	- 335	$1222 \not 1.6$	755	- 34	$755 \quad 10.3$

Fig. 3-Balancing Networks for B-88-50 Circuits

COMPONENT	VALUE	
	$\begin{aligned} & \text { 113P NET. FOR } \\ & \text { 19-GA H-88-SIDE } \end{aligned}$	113R NET. FOR 19-GA H-50-PH
L1	0.0288 H	0.0163 H
R1	1135 Ohms	666 Ohms
R2	1226 Ohms	1750 Ohms
R3	41500 hms	1175 Ohms
R_{4}	1450 Ohms	800 Ohms
R5	40 Ohms	30 Ohms
R6	20 Ohms	15 Ohms
01	0.0325 UF	0.0524 UF
G2	1.08 UF	1.08 UF
63	0.54 UF	1.08 UF
Cl_{4}	1.08 UF	2.16 UF
C5	0.001 to 0.085 UF	0.001 to 0.085 UF
Basic End Section	0.18	0.18
Midsection BOC	0.0226 UF	0.0372 UF

$\mathrm{C}_{\text {S }}$		STRAP TERMINALS
H-88-S CIRCUITS 113P NET.	H-50-PH CIRCUITS 113R NET.	
Normal	Normal	3-4
2\% to 5\% below normal	2% to 6% below normal	2-4
More than 2% above normal	More than 2% above normal	2-3
More than 5\% below normal	More than 6\% below normal	None

$* \mathrm{C}_{\mathrm{S}}=$ Average capacitance per loading section.

Fig. 4-113-Type Balancing Networks for Balancing 19-GA H-88-50 Quadded Toll Cable Circuits-Nominal Side Circuit Capacitance is $0.062 \mu \mathrm{~F}$ per Mile

COMPONENT	NOMINAL VALUE
I1	0.0418 H
C1	0.023145 UF
C2	1.08 UF
C3	0.54 UF
C4	0.001 to 0.085 UF
R1	1750 Ohms
R2	37 hms
R3	65 Ohms

65 Ohms

	NOMINAL CABLE CAPACITANCE PER MTLE		
BASIC END SECIIION $=0.186$	0.073 UF	0.078 UF	0.082 UF
MIDSECTION BUILDING-OUT CAPAGITANGE	0.01302 UF	0.01391 UF	$0.01462 \mathrm{UF}^{\text {i }}$

TABLE SHOWING CONNECTIONS TO BE USED FOR VARIOUS AVERAGE LOAD SECTION CAPACITANCES

AVERAGE LOAD SECTION CAPACITANCE (UF)	TERMTNALS	
	CONNECT TO	STRAP
0.042 or Less	$1-2$	NONE
0.042 to 0.044	$1-2$	$3-4$
0.044 to 0.046	$1-2$	$2-3$
0.046 or Greater	$1-2$	$2-4$

Fig. 5-113-Type Balancing Network for Balancing 22-GA BSA, B-135-N Cable Circuits

RESISTANCE ADJUS TMENTS		
TERMINALS STRAPPED	AMOUNT OF RESISTANCE ADDED TO NETWORK (OHMS)	RESISTANCE COMPONENT OF NETWORK IMPEDANCE AT 1000 Hz
3-7	0	614
$4-7$	10	624
3-4 and 5-7	20	634
5-7	30	64
$3-5$ and 6-7	40	654
$4-5$ and 6-7	50	664
3-4 and 6-7	60	674
6-?	70	684
3.8	80	694
4-6	90	704
3-4 and 5-6	100	714
5-6	110	724
3.5	120	734
4-5	130	744
3-4	140	754
None	150	764

NETWORK IMPEDANCE									
$\begin{aligned} & \text { FREQ } \\ & (\mathrm{Hz}) \end{aligned}$	REACTANCE (OMMS) *	TERMINALS STRAPPED							
		3-7		$4-5$ and 6-7		3-6		NONE	
		RES	$2 \underline{0}$	RES	2/8	RES	2/e	RES	2/e
100	- $j 676$	1052	1250/32.7	1102	1293/31.5	1132	1320/30.8	1202	$1382 \underline{29.3}$
200	- j474	799	928/30.?	849	971/29.2	879	995/28.4	949	1039/28.6
300	- j366	710	795/25.7	760	$845 \angle 25.7$	790	869/24.9	860	935/23.0
500	- j230	644	$685 / 19.6$	694	730/18.4	724	$760 / 17.6$	794	825/18.2
800	- $\mathbf{j 1 4 8}$	617	635/13.4	667	633/12.5	697	$715 / 12.0$	767	781/10.9
1000	- $j 119$	614	625/11.0	664	674/10.2	694	$703 \angle 9.7$	764	$772 / 8.9$
1500	- j80	608	613/7.5	658	$681 / 6.9$	688	691/6.6	758	$761 / 6.0$
2000	- j60	606	610/5.7	656	659/5.2	686	690/5.0	756	759 4.5
2500	- j48	605	60744.5	655	6574.2	685	$688 \underline{4.0}$	755	756/3.6
3000	- j40	605	606/3.8	655	$656 / 3.5$	685	$686 / 3.3$	755	$756 / 3.0$

* Reactance is the same for all network combinations.

NETWORK TERMINALS TO BE STRAPPED FOR VARTOUS
PIN SPACINGS OF 114-MIL OPEN-WIRE CIRCUITS

SPACING BETWEEN	TERMINALS TO
WIRES IN INGHES	BE STRAPPED
8-in. NONPOLE PATK	$3-7$
1O-in. NONPOLE PAIR	$5-7$
12-in. NONPOLE PAIR	$4-5$ and $6-7$
14- to 18-in. POLE PAIR	$6-7$
20-in POIE PAIR	$3-6$
22-in. POLE PAIR	$4-6$
$33-i n . ~ P O L E ~ P A I R ~$	NONE

Fig. 6-114A Balancing Network for 114-Mil Nonloaded Side or Physical Circuit

ADDENDUM 332-851-102

RESISTANCE ADJUSTMENTS		
$\begin{aligned} & \text { TERMINALS } \\ & \text { STRAPPED } \end{aligned}$	AMOUNT OF RESISTANCE ADDED 70 NETWORK (OHMS)	RESISTANCE COMPONENT OF NETWORK IMPEDANCE OF 1000 Hz
3-7	0	305
4-7	10	315
3-4 and 5-7	20	325
5-7	30	335
3-5 and 6-7	40	345
$4-5$ and 6-7	50	355
3-4 and 6-7	60	365
6-7	70	375
3-6	80	385
4-6	90	395
3-4 and 5-6	100	405
5-6	110	415
3-5	120	425
$4-5$	130	435
3-4	140	445
NONE	150	455

NETWORK IMPEDANCE									
$\begin{array}{\|l} \mathrm{FRER} \\ (\mathrm{~Hz}) \end{array}$		TERMINALS STRAPPED							
		3-6		4-6		3-4 and 5-6		5-6	
		RES	2/e	RES	2/e	RES	2/e	RES	2/e
100	- j325.3	590	676/28.8	600	683/28.4	610	690/28.1	620	$700 \underline{27.7}$
200	- j233.5	480	535/25.9	490	545225.4	500	$551<25.0$	510	560<24.6
300	- $j 177$	423	458 22.8	433	466/22.3	443	47621.8	453	485<21.4
500	- $\mathbf{j 1 1 1 . 4}$	395	410/15.8	405	420/15.4	415	430/15.0	425	440/14.7
800	- 372.8	387	394/10.7	397	405/10.4	407	415/10.1	417	424/9.9
1000	- 359	385	390/8.7	395	400/8.5	405	409/8.2	415	420/8.1
1500	- 339.5	383	385/5.9	393	396/5.7	403	405/5.6	413	41515.5
2000	- 329.7	382	3844.4	392	3944. 3	402	405/4.2	412	4144.1
2500	- 223.8	381	382/3.6	391	392/3.5	401	402/3.4	411	412/3.3
3000	-30.8	381	$381 / 3.0$	391	392/2.9	401	401/2.8	411	411 2.8

* Reactance is the same for all network combinations.

NETWORK TERMINALS TO BE STRAPPED FOR VARIOUS
PIN SPACINGS OF 114-MIL OPEN-WIRE CIRCUITS

SPACING BETWEEN	THRMINALS TO
WIPES IN INCHES	BE STRAPPED
9-in. NONPOLE PAIR	$3-5$
$10-i n . ~ N O N P O L E ~ P A I R ~$	$3-6$
$12-i n . ~ N O N P O L E ~ P A I R$	$3-4$ and $5-6$
$14-$ to 18-in. POLE PAIR	$4-6$
20-in. POLE PAIR	$4-6$
$22-i n . ~ P O L E ~ P A I R ~$	$3-6$
$33-i n . ~ P O L E ~ P A I R ~$	$6-7$

Fig. 7-114B Balancing Network for 114-Mil Nonloaded Phantom Circuit

Fig. 8-Network Building-Out Capacity vs Cable End-Section for H-88-50 Balancing Networks

