4066B NETWORK

DESCRIPTION

CONTENTS PAGE

1. GENERAL 1
2. EQUIPMENT DESCRIPTION 1
3. CIRCUIT DESCRIPTION 1

1. GENERAL

1.01 This section describes the 4066B network, which is a plug-in apparatus unit designed for use in V4 telephone repeater applications but is usable also in other repeater applications.
1.02 The 4066B network is an adjustable 2-terminal network. It is normally used in conjunction with a 1-type terminating set to provide the balance for the hybrid when the 2 -wire circuit consists of 26 -gauge high- and low-capacitance (0.079 and $0.069 \mu \mathrm{f} / \mathrm{mi}$) H88 loaded cable facilities. The resulting hybrid balance produces a high loss in the transmission path from one 4-wire leg to the other and thus reduces the possibility of "singing" or oscillations in the 4-wire loop.
1.03 The 24 V 4 C repeater mounting shelf (J 98615 BJ) is equipped with a socket for mounting the 4066-type network. The 4066-type network, when plugged into the network socket, is connected through shelf wiring to the balancing network terminals (10,11) of the 1-type terminating set. Mounting for the 4066 -type network is not provided in older 24 V 4 repeaters. When used with this older equipment, the network is separately mounted, and cross-connected to the repeater as required.

2. EQUIPMENT DESCRIPTION

2.01 The 4066B network (see Fig. 1) consists of an aluminum can containing a printed circuit board, a 20-pin connector plug, and a

Fig. 1 - 4066B Network
plastic faceplate which contains four screw-type switches. The network is approximately 1-3/4 inches high by $1-3 / 4$ inches wide by 7 inches long. Tabs are provided on the front of the can to facilitate removal of the network from the mounting shelf socket by the use of a 602 C or 602D tool.
2.02 The four screw-type switches are identified on the faceplate by letters A, B, C, and D. The components and/or circuits with which the switches are associated are shown in Fig. 2.

3. CIRCUIT DESCRIPTION

3.01 Fig 2 is the schematic of the 4066B network. The circuit consists of resistors, capacitors, and inductors and associated screw-type switches arranged to provide an adjustable impedance across terminals 10 and 11.
3.02 Adjustment of the network for the various capacitance levels encountered in specific 26-gauge cables is accomplished by opening or closing the appropriate faceplate screw-type switches. Table A lists the screw settings required to obtain the precision impedance balance of the cable facilities involved.

table A 4066B NETWORK SCREW SETtINGS FOR BALANCING 26-GAUGE CABLE FACILITIES				
CABLE TYPE	cable capacitance		sCrew closed (TURNED IN)	buildout to HALF-SECTION CAPACITANCE (μ F)
	$\mu \mathrm{F} / \mathrm{SECTIO}$	$\mu \mathrm{F} / \mathrm{MLLE}$		
26H88 LOW CAP. Use this line for \rightarrow Nominal Cap. Cables	<0.0745	<0.0656	None	0.022
	0.0745 to 0.0770	0.0656 to 0.0678	A	0.023
	0.0770 to 0.0796	0.0678 to 0.0700	B	0.024
	>0.0796	>0.0700	AB	0.024
26 H 88 HIGH CAP. Use this line for \rightarrow Nominal Cap. Cables	<0.0844	<0.0742	CD	0.026
	0.0844 to 0.0879	0.0742 to 0.0773	ACD	0.027
	0.0879 to 0.0916	0.0773 to 0.0806	BCD	0.028
	>0.0916	>0.0806	ABCD	0.028

3.03 Fig. 3 through 8 are graphic illustrations of the return loss and impedance characteristics of the 4066 B network. Fig. 3 through 6 illustrate typical return losses of the network
against the impedance of 26 H 88 cable with end sections of several different lengths. The midsection impedance characteristics of the 4066 B network are illustrated in Fig. 7 and 8.

Fig. 2 - 4066B Network - Schematic

Fig. 3 - 40668 Network - Return Loss vs 26 H 88 Cable - End Section $=0.25$

Fig. 4 - 4066B Network - Return Loss vs 26 H 88 Cable - End Section $=\mathbf{0 . 5 0}$ Loading Section

Fig. $5-4066$ Network - Return Loss vs 26 H 88 Cable - End Section $=0.75$

Fig. $6-4066$ B Network - Return Loss vs 26 H 88 Cable - End Section $=1.0$

Fig. 7-4066B Network - Simulating Midsection Impedance of 26H88 High Capacitance Cable

Fig. 8 - 4066B Network - Simulating Midsection Impedance of 26H88 Low Capacitance Cable

