FD-2240A
 6.3MB OPTICAL LINE TERMINATING MULTIPLEXER GENERAL DESCRIPTION

1. GENERAL
1.01 This section is a cover sheet for the NEC America, Inc., FD-2240A 6.3MB Optical Line Terminating Multiplexer General Description. This section is reproduced with permission of NEC America, Inc., and is equivalent to NEC practice NECA 365-407-100, Issue 3.
1.02 Whenever this section is reissued the reason(s) for reissue will be listed in this paragraph.
1.03 This section provides a general description of the FD-2240A 6.3MB Optical Line Terminating Multiplexer (6.3MB O-LTM).
1.04 If corrections are required in the attached document, use Form-3973 as described in Section 000-010-015.
1.05 If equipment design and/or manufacturing problems should occur, refer to Section SW 010-522-906 for procedures on filing an Engineering complaint.
2. ORDERING PROCEDURE
2.01 To order additional copies of this practice, use NECA 365-407-804SW as the section number.

3. REPAIR/RETURN

3.01 Malfunctioning units may be returned to NEC America, Inc., for repair.

Attachment: NEC America, Inc. FD-2240A 6.3MB Optical Line
Terminating Multiplexer
General Description

PROPRIETARY

Not for use or disclosure outside Southwestern Bell
Telephone Company except under written agreement.

FD-2240A 6.3MB OPTICAL LINE TERMINATING MULTIPLEXER GENERAL DESCRIPTION

14040 Park Center Road Herndon, Virginia 22071
Phone No: (703) 834-4000
Fax No: (703) 481-6904
Telex No: 899498
TWX No: 710-831-0639
Easylink No: 62939917
J. Orderwire Equipment Interface 46
K. External Clock Interface 46
L. Environmental Requirements 46
M. Power Supply Specifications 47
N. Mechanical Construction 47
5. COMMON LANGUAGE EQUIPMENT IDENTIFICATION CODES 48
ILLUSTRATIONS
Figure Title Page
1-1 FD-2240A 6.3MB Optical Line Terminating Multiplexer, Front View (Cover Closed) 4
1-2 FD-2240A 6.3MB Optical Line Terminating Multiplexer, Front View (Cover Open) 4
1-3 FD-2240A 6.3MB Optical Line Terminating Multiplexer, Rear View 5
3-1 FD-2240A Simplified Block Diagram (with OPT INF Unit) 9
3-2 FD-2240A Simplified Block Diagram (with DS2 INF Unit) 11
3-3 Optical Line System 13
3-4 M12 MUX System 1 13
3-5 Interfacing to Other NEC Equipment 14
3-6 Physical Configuration of FD-2240A (DSI/DSIC-6.3MB OPT) 16
3-7 Physical Configuration of FD-2240A (DS1/DS1C-DS2) 17
4-1 DSX-1 Isolated Pulse Template 21
4-2 DSX-2 Isolated Pulse Template 24
4-3 DSiC Signal Frame Format 28
4-4 DS2 Signal Frame Format 29
4-5 Link Loss Parameters Without FDF/FDP 32
4-6 Link Loss Parameters With FDF/FDP 33
TABLES
Table Title Page
3-1 Component Unit List of DC Power Supply 18
3-2 Component Unit List of AC Power Supply 19

TABLES
Table Title Page
4-1 Optical Sources and Detectors 25
4-2 CO Alarm and SV Alarm Items for Parallel Interface 35
4-3 Serial Alarm and Status Items for Local Station 36
4-4 Serial Alarm and Status Indications for Local Station 37
4-5 Serial Alarm and Status Items for Remote Station 41
4-6 Serial Alarm and Status Indications for Remote Station 42
5-1 FD-2240A 6.3MB 0-LTM CLEI Codes 48

1. INTRODUCTION
1.01 This practice provides a general description of the FD-2240A 6.3MB OpticalLine Terminating Multiplexer (6.3MB 0-LTM). Included are equipmentconfigurations, features and specifications.
1.02 Issue 3 of this practice supersedes Issue 2 of NECA 365-407-100. Thepractice provides expanded coverage and corrects errors and omissions inthe superseded document.1.03 Whenever this practice is reissued, the reason for reissue will be listedin this paragraph.
1.04 The FD-2240A 6.3MB 0-LTM, shown in Figures $1-1$ through $1-3$, is a multi-purpose $6.312 \mathrm{Mb} / \mathrm{s}$ digital transmission terminating equipment.1.05 For high speed interface (HS INF) unit of the FD-2240A, 6M OPT INF unitand DS2 INF unit are prepared in order to accommodate optical line andbipolar DS2 line respectively.
1.06 The Description for the shelf of the FD-2240A 0-LTM is given in the NECA 365-407-101.

Figure 1-1 FD-2240A 6.3MB Optical Line Terminating Multiplexer, Front View (Cover Close)

Figure 1-2 FD-2240A 6.3MB Optical Line Terminating Multiplexer, Front View (Cover Open)

Figure 1-3 FD-2240A 6.3MB Optical Line Terminating Multiplexer, Rear View
2. EQUIPMENT FEATURES
A. AT \& T Compatibility
2.01 The FD-2240A is fully compatible with the specifications of AT\&T Technical Reference PUB 43803 on Facility Maintenance Features Required for Interoffice Digital Transmission Equipment, Technical Advisory (TA) No. 34 (Compatibility Bulletin No. 119) Issue 3 on Interconnection Specifications for Digital Cross-Connects at DS1, DS1C and DS2 Rates, and TA No. 50, Issue 5 on M12 Multiplex Compatibility Specifications.
B. System Flexibility
2.02 The FD-2240A can easily be configured as an 0-LTM or an M12 MUX. If requirements should change after the equipment has been installed, the FD-2240A can easily be reconfigured by replacing plug-in units in the shelf.
C. Protection System
2.03 When the FD-2240A is configured as an 0-LTM, the high speed optical interface units, MUX and DMUX units which include low speed channel sections, and optical transmission line can be protected on a one-for-one basis. When the FD-2240A is configured as a MUX, the high speed interface units and MUX and DMUX units can be also protected on a one-for-one basis.
2.04 The DC power units operate in parallel to duplicate the power supplied, therefore, the service is not affected even if a power unit fails. As only one $A C$ power unit can be installed in the shelf of this equipment, protection for output low voltage cannot be in this case.

D. Monitoring Function

2.05 The FD-2240A features a monitoring function which constantly monitors equipment operation. The online units, offline units, monitoring circuit, and optical transmission line are monitored. Unit monitoring is performed at
the $1.544 \mathrm{Mb} / \mathrm{s}$ level using bit-by-bit signal comparison processed in the MUX and DMUX units. Both online and offline optical transmission line monitoring is performed by bit error rate.

E. Remote Loopback

2.06 The FD-2240A provides a remote loopback function which loops the DSI or DSIC channels and DS2 level of OPT INF at the distant end. The remote loopback feature of the FD-2240A enhances the maintainability of any communication system.

F. Alarm and Display

2.07 The alarm and display methods of the FD-2240A are completely compatible with Bell System PUB 43803. All alarm status information originating in the $\mathrm{FD}-2240 \mathrm{~A}$ is shown on alphanumeric displays under microprocessor control.
G. Orderwire System
2.08 The FD-2240A provides an optional orderwire system. The orderwire system, which easily interfaces with the $F D-2240 A$, transmits and receives one $128 \mathrm{~Kb} / \mathrm{s}$ data using overhead bits inserted in the main bit stream. The overhead bits are inserted using the Code Mark Inversion (CMI) Code Rule Violation method.

H. Supervisory Function

2.09 The FD-2240A is equipped with an optional Supervisory (SV) unit to provide a surveillance function without extra transmission lines. With the SV unit, the FD-2240A installed in a central office displays alarm and status information of the $F D-2240 \mathrm{~A}$ on customer premises at remote station. The surveillance function enhances $F D-2240$ A maintenance and reliability through this centralized supervisory capability.

3. DESCRIPTION

3.01 The $F D-2240 \mathrm{~A}$ is an equipment to multiplex DSl (or DS1C) data signal to DS2 data signal and demultiplex DS2 signal to DS1 (or DSIC) signal. This equipment is available for configuration of not so large scale communication network.
3.02 The FD-2240A is designed to be mounted in a standard EIA l9-inch relay rack.
3.03 The FD-2240A is available for up to 4 systems in non-redundant configuration or up to 2 systems in redundant configuration. Selection of redundant or non-redundant configuration can be done by strapping position on the unit.
3.04 Figures $3-1$ and $3-2$ show simplified block diagrams of the FD-2240A with OPT INF unit and with DS2 (BP) INF unit. Either OPT INF unit or DS2 (BP) INF unit is available for this equipment.
DSX-1
or
DSX-1C

Page 9

A. 0-LTM Configuration

3.05 The 0-LTM configuration combines low speed $1.544 \mathrm{Mb} / \mathrm{s}$ or $3.152 \mathrm{Mb} / \mathrm{s}$ serial data signals into a single $6.312 \mathrm{Mb} / \mathrm{s}$ electrical signal. The $6.312 \mathrm{Mb} / \mathrm{s}$ electrical signal is then converted to a $6.3 \mathrm{Mb} / \mathrm{s}$ optical signal and transmitted over optical fiber lines. The remote 0 -LTM receives the optical signal, converts it to an electrical signal, and demultiplexes the electrical signal to the original low speed signals.
3.06 In O-LTM configuration, channel sections in MUX and DMUX units provide low speed side interface. Channel sections are available for DS1 and DS1C bipolar interface. Interleaving and positive stuffing techniques are utilized to produce the high speed $6.312 \mathrm{Mb} / \mathrm{s}$ signal.
3.07 Two types of MUX units are available, MUX DSI and MUX DSIC. The MUX DS1 unit includes four DS1 bipolar interfaces which convert DS1 signals to $1.544 \mathrm{Mb} / \mathrm{s}$ unipolar signals. The MUX DSIC unit includes two DSIC bipolar interfaces which convert DSIC signals to $1.544 \mathrm{Mb} / \mathrm{s}$ unipolar signals. These $1.544 \mathrm{Mb} / \mathrm{s}$ data signals are multiplexed to a single unipolar $6.312 \mathrm{Mb} / \mathrm{s}$ data signal. The Optical Interface (OPT INF) unit converts the uniplar $6.312 \mathrm{Mb} / \mathrm{s}$ data signal to an optical signal (line code is CMI) and sends it to the optical fiber transmission line.
3.08 Receive side signal processing is performed in reverse order of that done on the transmit side. The OPT INF unit converts the optical signal to unipolar data. The DMUX unit demultiplexes the $6.312 \mathrm{Mb} / \mathrm{s}$ unipolar data to four $1.544 \mathrm{Mb} / \mathrm{s}$ data signals. The $1.544 \mathrm{Mb} / \mathrm{s}$ data signals are then converted to bipolar signals.
3.09 As shown in Figure 3-1, 0-LTM configuration equipment can provide redundant protection. The protection arrangement utilizes redundant optical transmission over separate fiber lines. The protection switching functions shown are performed by the Control (CTRL) unit.

B. MUX Configuration

3.10 The MUX configuration equipment multiplexes DSI or DSIC low speed signals to a $6.312 \mathrm{Mb} / \mathrm{s}$ bipolar DS2 signal and transmits the DS2 signal. It also receives and demultiplexes the DS2 signal to the low speed signals multiplexed at the distant end. Figure $3-2$ shows MUX configuration equipment operation.
3.11 In MUX configuration equipment, MUX unit and DMUX unit operations are the same as 0-LTM configuration equipment except that the DS2 Interface (DS2 INF) unit replaces OPT INF.
3.12 The protection switching functions shown in Figure 3-2 are performed by the CTRL unit. The CTRL unit performs both low speed and high speed side switching.
C. System Applications
3.13 The FD-2240A is available for the communcation circuit network with not so large capacity. And this equipment is used either in an independent communication system or in an branch circuit of main trunk line with a large transmission capacity.
3.14 Transmission capacity of the FD-2240A, when full systems are installed, is 16 DSI data signals or 8 DSIC data signals in non-redundant configuration and 8 DS1 signals or 4 DSIC signals in redundant configuration. The FD-2240A multiplexes the input signals of each system into one $6.3 \mathrm{Mb} / \mathrm{s}$ data signal and sends it to line side.
3.15 There are two types of high speed interface unit for the $F D-2240 A$, one is OPT INF unit and another is DS2 INF (BP) unit. In accordance with the usage, either unit is used.
3.16 System applications of the FD-2240A are shown in Figures 3-3 through 3-5.

- Figure 3-3 Optical Line System

- Fig. 3-4 M12 MUX System

Figure 3-5 Interfacing to Other NEC Equipment

D. Plug-in Units

3.17 The plug-in units for up to 4 systems can be installed in the FD-2240A. Figures 3-6 and 3-7 show unit location of this equipment.
3.18 The units are classified into three types such as low speed interface, high speed interface and common unit. Low speed interface type contains MUX and DMUX unit and high speed type involves 6M OPT INF and DS2 INF unit. CTRL, ALM, SV and PWR unit belong to common type.
3.19 By combination of various types of unit (as listed in Tables 3-1 and 3-2), the $F D-2240 \mathrm{~A}$ is available for versatile use.

```
D. Plug-in Units
```

3.17 The plug-in units for up to 4 systems can be installed in the FD-2240A. Figures $3-6$ and $3-7$ show unit location of this equipment.
3.18 The units are classified into three types such as low speed interface, high speed interface and common unit. Low speed interface type contains MUX and DMUX unit and high speed type involves $6 M$ OPT INF and DS2 INF unit. CTRL, ALM, SV and PWR unit belong to common type.
3.19 When mounting the control (CTRL) unit in this equipment, the following combinations of CTRL, MUX and DMUX units should be considered depending on O-LTM configuration (OPT INF) or MUX (DS2 INF) configuration, and which CTRL unit (X0316 or X7387) is mounted:
(1) O-LTM configuration (OPT INF) with DC input power (Applicable to MCX, DMUX)

(2) MUX configuration (DS2 INF) with DC input power (Applicable to MUX, DMUX)

CTRL UNIT	MUX UNIT	DMUX UNIT	DCV
X0316 (OBOO)	X0300 (0A00)	X0301 (0A00/0A01)	-48V
X0316 (OB00)	X0300 (OB00)	X0301 (0B00)	$-24 \mathrm{~V}$
X 7387 (OBOO)	X0300 (0A02)	X0301 (0A02)	-48V
X7387 (OBOO)	X0300 (OB02)	X0301 (0B02)	-24V
X 7387 (OBOO)	X0300 (0A02)	X0301 (0A00/0A01)	-48V
X7387 (OBOO)	X0300 (OB02)	X0301 (OB00)	-24V

(3) O-LTM Configuration (OPT INF) operating at 117 VAC
CTRL UNIT
MUX UNIT
DMUX UNIT

X0316 (OAOO/OAO1) X0300 (OAOO) X0301 (0A00/OAO1)
X 7387 (OAOO) X0300 (OAO2) X0301 (0A02)
X7387 (OAOO) X0300 (0A02) X0301 (0A00/0A01)
(4) MUX Configuration (DS2 INF) operating at 117 VAC

CTRL UNIT	MUX UNIT	DMUX UNIT
X0316 (OBOO)	X0300 (0A00)	X0301 (0A00/0A01)
X7387 (0B00)	X0300 (0A02)	X0301 (0A02)
X7387 (OBOO)	X0300 (0A02)	X0301 (0A00/0A01)

3.20 By combination of various types of unit (as listed in Table 3-1 and 3-2), the $\mathrm{FD}-2240 \mathrm{~A}$ is available for versatile use.

Figure 3.6 Physical Configuration of FD-2240A (DS1/DS1C - 6.3MB OPT)

Fig. 3-7 Physical Configuration of FD-2240A (DS1/DS1C - DS2)

Page 17

- Table 3-1

Component Unit List of DC Power Supply

ShelfEquipment Composition and InterfaceSystem Compo- Sition		Redundant				Non-Redundant								Remarks
		OPT INF		BP INF		OPT INF				BP INF				
		$\begin{gathered} 1 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 2 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 1 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 2 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 1 \\ S Y S \end{gathered}$	$\begin{gathered} 2 \\ S Y S \end{gathered}$	$\begin{gathered} 3 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 4 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 1 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 2 \\ S Y S \end{gathered}$	$\begin{gathered} 3 \\ S Y S \end{gathered}$	$\begin{gathered} 4 \\ \text { SYS } \end{gathered}$	
SHELF	E8980A	1	1	1	1	1	1	1	1	1	1	1	1	
MUX	X0300A	4^{2}	4	2	4	1	2	3	4	1	2	3	4	-48V, DSI,
	X0300A2													
	$\frac{\mathrm{X} 0300 \mathrm{~B}}{\mathrm{X} 0300 \mathrm{~B} 2}$													-24V, DSI
DMUX	X0301A	2	4	2	4	1	2	3	4	1	2	3	4	
	X0301A1													-48V, DS1,
	X0301A2													
	X0301B													-24V, DSi
	X0301B2													
$\begin{aligned} & \text { 6M OPT } \\ & \text { INF } \end{aligned}$	X0306E	2	4	-	-	1	2	3	4	-	-	-	-	LED-PIN, LW, MM
	X0306F	2	4	-	-	1	2	3	4	-	-	-	-	LED-PIN,
	X0306Fl													LW, S. 1
	X0307B	2	4	-	-	1	2	3	4	-	-	-	-	$\begin{aligned} & L D-A P D, \\ & L W,: T! \end{aligned}$
	X0307C	2	4	-	-	1	2	3	4	-	-	-	-	$\overline{L D-A P D},$
	X0307Cl													LW, S. 4
-	X0308A	-	-	2	4	-	-	-	-	1	2	3	4	$\frac{-48 \mathrm{~V}}{-24 \mathrm{~V}}$
DS2 INF	X0308A1													
-	X0308B													
CTRL	X0316A	1	2	-	-	-	-	-	-	-	-	-	-	* OPT INF
	X0316A1													
	X7387A													
	X0316B	-	-	1	2	-	-	-	-	-	-	-	-	** DS2 INF
	X3787B													
ALM	X0314A	1	1	1	1	1	1	1	1	1	1	1	1	-48V,
	X0314A1													Parallel
	X0314B													Parallel
	X0314AA	1	1	1	1	1	1	1	1	1	1	1	1	$-48 \mathrm{~V},$ Serial
	X0314AB													-24 Serial
SV	X0315A	1	1	-	-	1	1	1	1	-	-	-	-	
PWR	X0319A	2	2	2	2	2	2	2	2	2	2	2	2	-48V
	X0319B													-24V

*: Refer to Paragraph 3.19 (1)

- Table 3-2

Component Unit List of AC Power Supply

EquipmentCompositionSigh speedIndInterface		Redundant				Non-Redundant								Remarks
		OPT	INF	BP	INF	OPT INF				BP INF				
		$\begin{gathered} 1 \\ S Y S \end{gathered}$	$\begin{gathered} 2 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 1 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 2 \\ S Y S \end{gathered}$	$\begin{gathered} 1 \\ S Y S \end{gathered}$	$\begin{gathered} 2 \\ S Y S \end{gathered}$	$\begin{gathered} 3 \\ S Y S \end{gathered}$	$\begin{gathered} 4 \\ \text { SYS } \end{gathered}$	$\begin{gathered} 1 \\ S Y S \end{gathered}$	$\left\|\begin{array}{c} 2 \\ S Y S \end{array}\right\|$	$\begin{gathered} 3 \\ S Y S \end{gathered}$	$\begin{gathered} 4 \\ \text { SYS } \end{gathered}$	
SHELF	E8980A	1	1	1	1	1	1	1	1	1	1	1	1	
MUX	$\begin{aligned} & \hline \mathrm{X} 0300 \mathrm{~A} \\ & \mathrm{X0300A} 2 \end{aligned}$	2	4	2	4	1	2	3	4	1	2	3	4	DS 1
DMUX	$\begin{aligned} & \mathrm{X0301A} \\ & \hline \mathrm{X0301Al} \\ & \hline \mathrm{X0301A2} \end{aligned}$	2	4	2	4	1	2	3	4	1	2	3	4	DS 1
6M OPT INF	X0306E	2	4	-	-	1	2	3	4	-	-	-	-	$\begin{aligned} & \text { LED-PIN, } \\ & \text { LW, MM } \end{aligned}$
	$\frac{\mathrm{X} 0306 \mathrm{~F}}{\mathrm{X} 0306 \mathrm{Fl}}$	12	4	-	-	1	2	3	4	-	-	-	-	$\begin{aligned} & \text { LED-PIN, } \\ & \text { LW, SM } \end{aligned}$
	X0307B	2	4	-	-	1	2	3	4	-	-	-	-	$\begin{aligned} & \text { LD-APD, } \\ & \text { LW, } \mathrm{MM} \end{aligned}$
	$\frac{\mathrm{X} 0307 \mathrm{C}}{\mathrm{X} 0307 \mathrm{Cl}}$	12	4	-	-	1	2	3	4	-	-	-	-	$\begin{aligned} & \text { LD-APD, } \\ & \text { LW, SM } \\ & \hline \end{aligned}$
DS2 INF	$\frac{\mathrm{X} 0308 \mathrm{~A}}{\mathrm{X} 0308 \mathrm{Al}}$	-	-	2	4	-	-	-	-	1	2	3	4	
CTRL	$\mathrm{X0316A}$ $\mathrm{X0316A1}$ X 7387 A $\mathrm{X0316B}$ X 7387 B	1	2	-	-	-	-	-	-	-	-	-	-	* OPT INF
		-	-	1	2	-	-	-	-	-	-	-	-	** DS2 INF
ALM	$\begin{aligned} & \mathrm{X0314A} \\ & \hline \mathrm{X} 0314 \mathrm{Al} \\ & \hline \end{aligned}$	1	1	1	1	1	1	1	1	1	1	1	1	Parallel
	X0314AA	1	1	1	1	1	1	1	1	1	1	1	1	Serial
SV	X0315A	1	1	-	-	1	1	1	1	-	-	-	-	
PWR	X1914A	1	1	1	1	1	1	1	1	1	1	1	1	AC

*: Refer to Paragraph 3.19 (3)
**: Refer to Paragraph 3.19 (4)

```
NECA 365-407-100
```


CHANGE-2

4. SPECIFICATIONS SUMMARY

4.01 The following are specifications summary of the $F D-2240 \mathrm{~A}$.

A. System Parameters

4.02 FD-2240A system parameters are as follows:

- System capacity
- Channel capacity
- Clock
: Max. 4 systems in non-redundant or 2 systems in redundant
: $4 \times$ DS 1 or $2 \times$ DSIC per line
: Internally or externally supplied (TTL level)
- Average reframe time
: Less than 7 ms at DS2 level
- High speed interface
: $6.312 \mathrm{Mb} / \mathrm{s}$ optical or bipolar (DS2)
B. DSX-1 Interface
4.03 FD-2240A DSI input/output ports meet the Bell System DSX-l cross-connect specifications.
- Line rate
$: 1.544 \mathrm{Mb} / \mathrm{s} \pm 130 \mathrm{ppm}$
- Line code
- Impedance
: Bipolar with at least 12.5% average ones density and no more than 15 consecutive zeros or Bipolar with eight-zero substitution (B8ZS)
- Cable compensation

Output port : Step equalizers for up to 200 m (655 ft) of 22 to 24 AWG ABAM cable to DSX-1 cross-connect

Input port
: None

- Pulse shape
shown in Figure $4-1$. The pulse amplitude is between 2.4 and 3.6 volts and scaled by a constant factor to fit the template.

Corner Points

Figure 4-1 DSX-1 Isolated Pulse Template

- Power Level
- Pulse imbalance
- Connection terminal
- Utilized cable
: For an all-ones transmitted pattern, the power in a 2 kHz band about 772 kHz is 12.6 to 17.9 dBm and the power in a 2 kHz band about 1544 kHz is at least 29 dB lower
: Ratio of power in positive and negative pulses is $0 \pm 0.5 \mathrm{~dB}$
: Wire wrapping, 70 pin terminal
: AWG 24 to 26 pair cable
C. DSX-1C Interface
4.04 FD-2240A DS IC input/output ports meet the Bell System DSX-1C cross-connect specifications.
- Line rate
- Line code
- Impedance
- Nominal pulse shape
- Nominal pulse amplitude
- Pulse width
- Rise and fall times
- Overshoot
- Zero level
- Power level
- Pulse imbalance
- Connection terminal
- Utilized cable
$: 3.152 \mathrm{Mb} / \mathrm{s} \pm 30 \mathrm{ppm}$
: Bipolar with at least 12.5% ones density over any 150 consecutive bits
: $100 \pm 5 \%$ ohms resistive, balanced
: Rectangular
: 3.0 volts
: 159 ± 20 nsec at 50% amplitude
: Less than 50 nsec from 20 to 80% amplitude; difference between rise and fall is 20 nsec or less
: Less than 10% of amplitude
: Less than 0.1 of peak pulse amplitude
: $16.53 \mathrm{dBm} \pm 2 \mathrm{~dB}$ for an all-ones signal measured over 10 MHz bandwidth about 1.576 MHz
: The ratio of power in positive and negative pulses is $0 \pm 0.5 \mathrm{~dB}$
: Wire wrapping 70 pin terminal
: AWG 22 to 24 pair cable

```
D. DSX-2 Interface
4.05 FD-2240A DS2 input/output ports meet the Bell System DSX-2 cross-connect
    specification.
    e Line rate : 6.312 Mb/s \pm33 ppm
    - Line code : Bipolar with six-zero substitution
    - Impedance : 110 土5% ohms resistive, balanced
    - Cable compensation
    Output port : Step equalizers for up to 305 m (1,000
    ft) of 22 to 24 AWG ABAM cable to DSX-2
    cross-connect
    Input port
    - Pulse shape
    - Power level
    - Connection terminal
: Wire wrapping 70 pin terminal
- Utilized cable
: AWG 22 to 24 pair cable
E. High Speed Optical Interface
4.06 FD-2240A high speed optical input/output ports meet the following

specifications:
- Line rate
```


Figure 4-2 DSX-2 Isolated Pulse Template

Table 4-1 Optical Sources and Detectors

6M OPT INF UNIT	Wavelength Range (nm)	Optical Source	Optical Detector	Mode
X0306E	$1280-1330$	LED	PIN	Multi mode
X0307B	$1290-1330$	Laser Diode	Ge-APD	Multi mode
X0306F/F1	$1280-1330$	LED	PIN	Single mode
$X 0307 C / C 1$	$1290-1330$	Laser Diode	Ge-APD	Single mode

- Wavelength range

$$
\begin{aligned}
& : 1280-1330 \mathrm{~nm} \text { (long wavelength LED) } \\
& 1290-1330 \mathrm{~nm} \text { (long wavelength, LD) } \\
& 1280-1330 \mathrm{~nm} \text { (single mode, LED) } \\
& 1290-1330 \mathrm{~nm} \text { (single mode, LD) }
\end{aligned}
$$

- Optical output power

Laser diode (LD) optical source

Peak power

Average power
: Long wavelength
multimode $;+4.5 \mathrm{dBm}$ or greater
Long wavelength
single mode $\quad ;+2.5 \mathrm{dBm}$ or greater
: Long wavelength
multimode $;+1.5 \mathrm{dBm}$ or greater
Long wavelength
single mode ; -0.5 dBm or greater
Equipment output power
(average power) : Long wavelength
multimode ; $0 \quad \mathrm{dBm}$ or greater
Long wavelength
single mode $\quad ;-2.0 \mathrm{dBm}$ or greater
LED optical source
Peak power : Long wavelength
multimode $;-14.0 \mathrm{dBm}$ or greater
Long wavelength
single mode $;-30.5 \mathrm{dBm}$ or greater

Average power
Equipment output power
(average power)

- Minimum receiving level (average power)

APD optical detector
Equipment input power

APD input power

PIN optical detector
Equipment input power

PIN input power
: Long wavelength
multimode ; -44.5 dBm or less
Long wavelength
single mode $;-44.5 \mathrm{dBm}$ or less

```
: Long wavelength
    multimode ; -17.0 dBm or greater
    Long wavelength
    single mode ; -33.5 dBm or greater
```

 : Long wavelength
 multimode ; -19.5 dBm or greater
 Long wavelength
 single mode \(\quad ;-36.0 \mathrm{dBm}\) or greater
 : Bit error rate \(=10^{-9}\)
 Long wavelength
multimode ; -44.0 dBm or less
Long wavelength
single mode $;-44.0 \mathrm{dBm}$ or less
single mode ; -44.5 dBm or less
: Long wavelength
multimode ; -49.5 dBm or less
Long wavelength
single mode $;-49.5 \mathrm{dBm}$ or less
: Long wavelength
multimode ; -50.0 dBm or less
Long wavelength
single mode $;-50.0 \mathrm{dBm}$ or less

- Optical connector
- Optical fiber
: NEC D4 type receptacle
: 50/125 micron for multi mode
: $10 / 125$ micron for single mode

F. Frame Structure

4.07 Figures 4-3 and $4-4$ show frame structures for DSIC and DS2 data stream.

4 SUBFRAMES EACH WITH 318 TIME SLOTS - 1 M FRAME WITH 1272 TIME SLOTS

- the information bits generated from input 1 and the stuffed bits used to synchronize input i are entered the information bits generated from input 2 AND the stuffed bits used to synchronize input 2 are entered THE INFORMATO THE SLOTS DESIGNATED AS $\phi 2$.

2. THE M FRAME ALIGNMENT BITS ARE ENTERED INTO THE SLOTS DESIGNATED AS FO AND F1. THE FO BITS IN THE FO SLOTS
3. THE MULTIFRAME ALIGNMENT BITS ARE TO BE ENTERED INTO THE SLOTS DESIGNATED AS M1, M2 AND M3. THE BITS TO BE ENTERED INTO THE SLOTS ARE AS FOLLOWS, IN M1 A ZERO, IN M2 A ONE AND IN M3 A ONE, GIVING AN OII SIGNAL. THE SLOT DESIGNATED AS M4) IS THE LOCATION FOR THE CONOITION INDICATOR X BIT. THIS BIT MAY BE USED TO TRANS-
MIT MAINTENANCE INFORMATION BETWEEN MULTIPLEXES.
4. THE STUFF INDICATOR BITS ARE ENTERED INTO THE SLOTS DESIGNATED AS C11, C12, C13, ETC. THE BITS ENTERED INTO
 FING INPUT ONE, ETC.). TF ALL THREE OR TWO OUT OF THREE C BITS ARE ZEROS (0:) THEN THE BIT IN THE SLOTS FOR
STUFFED BITS IS AN INFORMATION BIT. STUFFED BITS IS AN INFORMATIONBIT.

4 SUBFRAMES EACH WITH 294 TIME SLOTS - 1 M FRAME WITH 1176 TIME SLOTS
CONTROL BIT SEQUENCE-EACH CONTROL BIT OCCUPIES A CONTROL BIT TIME SLOT
F1. M1. C11.FO.C12.C13.F1.M2. C21. FO. C22.C23.F1.M3. C31.FO. C32.C33.F1.M4. C41.FO.C42.C43.F1.M1
DS2 NOTE:
5. The information bits from inputs 1, 2, 3, and 4 and the stuffed bits used to synchronize each of the four 2. THE M FRAME ALIGNMENT BITS ARE ENTERED INTO THE SLOTS DESIGNATED AS FO AND F1. THE BITS IN THE FO SLOTS THE MULTIFRAME ALIGNMENT BITS ARE TO BE ENTERED INTO THE SLOTS DESIGNATED AS M1, M2, AND M3. THE BITS TO BE ENTERED INTO THE SLOTS ARE AS FOLLOWS, IN M1 A ZERO, IN M2 A ONE AND IN M3 A ONE, GIVING AN 011 SIGNAL THE SLOT DESIGNATED AS M4 IS THE LOCATION FOR THE CONDITION INDICATOR X BIT. THIS BIT MAY BE USED TO TRANS.
6. THE STUFF INDICATOR BITS ARE ENTERED INTO THE SLOTS DESIGNATED AS C11, C12, C13, ETC. THE BITS ENTERED INTO THE 3 C SLOTS IN EACH SUBFRAME ARE USED TO INDICATE THE SOURCE OF THE BIT PLACED IN THE TIME SLOT AVAILABLE
FOR STUFED BIT IN THAT SUBFRAME. IF ALL THREE OR TWO OUT OF THREE CBITS ARE ONES 1 :I THE BIT IN THE SLOT STUFFING INPUT ONE, ETC.). IF ALL THREE OR TWO OUT OF THREE C BITS ARE ZEROS 10 :) THEN THE BIT IN THE SLOTS FOR STUFFED BITS IS AN INFORMATION BIT.
G. Link Loss Budget
4.08 Link loss budget of the $\mathrm{FD}-2240 \mathrm{~A}$ is estimated as listed below: Refer to Figures 4-5 and 4-6.

- Operating wavelength

| Long wavelength multi mode | $: 1280-1330 \mathrm{~nm}$ |
| :--- | :--- | :--- |
| Long wavelength single mode | $: 1290-1330 \mathrm{~nm}$ |

- Transmitter power (Pt)

LED Long wavelength multi mode : -17.0 dBm or greater (Average)
LD Long wavelength multi mode : +1.5 dBm or greater (Average)
LED Long wavelength single mode : -33.5 dBm or greater (Average)
LD Long wavelength single mode : -0.5 dBm or greater (Average)

- Receiver sensitivity power (Pr)
(BER $=10^{-9}$)
PIN Long wavelength multi mode : -50.0 dBm or less (Average)
APD Long wavelength single mode : -44.5 dBm or less (Average)
PIN Long wavelength single mode : -50.0 dBm or less (Average)
- Power penalty of fiber
band width limitation
LED Long wavelength multi mode : 1.0 dB
- Power penalty of reflection
noise
LD Long wavelength single mode : 0.5 dB
- Connector loss at 0-LTM

TX side (LC1) : 1.5 dB
RX side (LC2) : 0.5 dB
Total (LC1 + LC2) : 2.0 dB

- Connector loss at FDP/FDF

TX side (LC3) : 1.5 dB
RX side (LC4) : 1.0 dB
Total (LC3 + LC4) : 2.5 dB
FDP is NEC FD-0127B and FDF is NEC FD-30001A.

- System margin

LED - PIN Long wavelength multi mode $: 7.0 \mathrm{~dB}$
LD - APD Long wavelength multi mode $: 5.0 \mathrm{~dB}$
LED - PIN Long wavelength single mode $: 6.5 \mathrm{~dB}$
LD - APD Long wavelength single mode : 5.0 dB
LD - PIN Long wavelength single mode $: 5.0 \mathrm{~dB}$

- Total allowable cable loss

LED - PIN Long wavelength multi mode : without FDP/FDF with FDP/FDF

LD - APD Long wavelength multi mode : $23.0 \mathrm{~dB} \quad 20.5 \mathrm{~dB}$

LED - PIN Long wavelength single mode :
39.0 dB
36.5 dB

LD - APD Long wavelength single mode :
8.0 dB
5.5 dB

LD - PIN Long wavelength single mode :
36.5 dB
34.0 dB
42.0 dB
39.5 dB

APD	$:$	Avalanche photodiode
PIN	$:$	Pin photodiode
LC1	$:$	Equipment connector loss (TX)
LC2	$:$	Equipment connector loss (RX)
LD	$:$	Laser diode
LED	$:$	Light emitting diode
O-LTM	$:$	Optical line terminating multiplexer
Pr	$:$	Receiver sensitivity at APD or Pin-PD input
Pt	$:$	Transmit output power at LD or LED output

Figure 4-5 Link Loss Parameters Without FDF/FDP


```
H. Office Alarms and Supervisory Interface
4.09 The FD-2240A meets the following specifications:
Parallel Interface
```

- Output signal
- Maximum current
- Maximum voltage
- Output alarm item

Central office alarm
Supervisory alarm

- Connection terminal
- Used cable

Serial Interface

- Interface
- Data speed
- Transmission system
- Alarm and status item

Central office alarm
Supervisory alarm
: Relay contact closure
: 200 mA
: 100 Vdc
: 4 items
: 15 items
Refer to Table 4-2.
: Wire wrapping pin
: AWG 22 to 24 pair cable
: EIA standard RS-422, TBOS protocol
: 2,400 bps
: Serial data, asynchronous
: 4 items relay contact
: For local station alarm ; 30 alarm and 31 status items
: For remote station alarm; 48 alarms and 8 status items

Refer to Tables 4-3 through 4-6.

- Scan Display

Optical interface

Bipolar interface

- Impedance
- Connection terminal
- Used cable
: For local station alarm ; 1 display
For remote station alarm; l display
: For local station alarm ; 1 display
: 100 ohms
: Wire wrapping pin
: AWG 22 to 24 twisted pair cable

Table 4-2
CO Alarm and SV Alarm Items for Parallel Interface

ALM	NO.	Output Alarm
$\begin{aligned} & \text { CO } \\ & \text { ALM } \end{aligned}$	1	MAJ VIS
	2	MAJ AUD
	3	MIN VIS
	4	MIN AUD
$\begin{aligned} & \text { SV } \\ & \text { ALM } \end{aligned}$	5	SYSTEM 1 FAIL
	6	SYSTEM 2 FAIL
	7	SYSTEM 3 FAIL
	8	SYSTEM 4 FAIL
	9	LOSS OF ONE LS IN
	10	LOSS OF MORE THAN ONE LS IN
	11	RMT ALM
	12	LOSS OF HS
	13	MAJ ALM
	14	MIN ALM
	15	PWR MAJ
	16	PWR MIN
	17	MAINT
	18	AIS RCV
	19	ALM CCT FAIL

Table 4-3
Serial Alarm and Status Items for Local Station

NOTE 1: Bit 64 th is assigned for administrative function.
2: This display assignment confirms to the STANDARD ATTRIBUTE ASSIGNMENT L128.

1 Table 4-4

- Serial Supervisory Alarm and Status Indications for Local Station

Bit No.	Alarm/Status	Description
1	SYS 1 MUX	MUX unit failure alarm of SYS 1.
2	SYS 1 HS OUT	High speed output data loss alarm of SYS 1 transmit side.
3	SYS 1 HS IN	High speed input data loss alarm of SYS l receive side.
4	SYS 1 DMUX	Demultiplexer circuit, low speed channel or on-line RCV monitoring failure alarm of DMUX unit of SYS 1.
5	SYS 1 MAJ ERR	Major error detection alarm in high speed receiving data of SYS 1.
6	SYS 1 LD BIAS	LD current alarm of 6 M OPT INF (X0307) unit of SYS 1.
7	SYS 1, 2 CTRL	Monitoring circuit self-check or CPU failure alarm of CTRL unit of SYS 1 or SYS 2.
8	PWR MAJ	Failure alarm for both $D C$ power unit or $A C$ power unit.
9	SYS 2 MUX	MUX unit failure alarm of SYS 2.
10	SYS 2 HS OUT	High speed output data loss alarm of SYS 2 transmit side.
11	SYS 2 HS IN	High speed input data loss alarm of SYS 2 receive side.
12	SYS 2 DMUX	Demultiplexer circuit, low speed channel or on-line RCV monitoring failure alarm of DMUX unit of SYS 2.
13	SYS 2 MAJ ERR	Major error detection alarm in high speed receiving data of SYS 2.
14	SYS 2 LD BIAS	LD current alarm of 6 M OPT INF (X0307) unit of SYS 2.
15	FUSE (DC 2)	MISC (DC 2) fuse blown alarm.
16	(U)	Not used.
17	SYS 3 MUX	MUX unit failure alarm of SYS 3.
18	SYS 3 HS OUT	High speed output data loss alarm of SYS 3 transmit side.

Table 4-4
Serial Supervisory Alarm and Status Indications for Local Station (cont'd)

Bit No.	Alarm/Status	Description
19	SYS 3 HS IN	High speed input data loss alarm of SYS 3 receive side.
20	SYS 3 DMUX	Demultiplexer circuit, low speed channel or on-line RCV monitoring failure alarm of DMUX unit of SYS 3.
21	SYS 3 MAJ ERR	Major error detection alarm in high speed receiving data of SYS 3.
22	SYS 3 LD BIAS	LD current alarm of 6M OPT INF (X0307) unit of SYS 3.
23	SYS 3, 4 CTRL	Monitoring circuit self-check or CPU failure alarm of CTRL unit of SYS 3 or SYS 4.
24	PWR MIN	One DC power unit failure alarm.
25	SYS 4 MUX	MUX unit failure alarm of SYS 4.
26	SYS 4 HS OUT	High speed output data loss alarm of SYS 4 transmit side.
27	SYS 4 HS IN	High speed input data loss alarm of SYS 4 receive side.
28	SYS 4 DMUX	Demultiplexer circuit, low speed channel or on-line RCV monitoring failure alarm of DMUX unit of SYS 4.
29	SYS 4 MAJ ERR	Major error detection alarm in high speed receiving data of SYS 4.
30	SYS 4 LD BIAS	LD current alarm of 6M OPT INF (X0307) unit of SYS 4.
31	SV	SV unit failure alarm.
32	(U)	Not used.
33	SYS 1 ON LINE	ON LINE status of SYS 1.
34	SYS 1 LS CH 1 IN	Low speed channel 1 input signal loss status of SYS 1.
35	SYS 1 LS CH 2 IN	Low speed channel 2 input signal loss status of SYS 1.

- Table 4-4

Serial Supervisory Alarm and Status Indications for Local Station (cont'd)

Bit No.	Alarm/Status	Description
36	SYS 1 LS CH 3 IN	Low speed channel 3 input signal loss status of SYS 1.
37	SYS 1 LS CH 4 IN	Low speed channel 4 input signal loss status of SYS 1.
38	SYS 1 AIS RCV	Status of Alarm Indication Signal reception in SYS 1.
39	SYS 1 RMT ALM	Status of remote alarm signal detection in SYS 1.
40	RLB	Status of RLB switch activation in any system.
41	SYS 2 ON LINE	ON LINE status of SYS 2.
42	SYS 2 LS CH 1 IN	Low speed channel 1 input signal loss status of SYS 2.
43	SYS 2 LS CH 2 IN	Low speed channel 2 input signal loss status of SYS 2.
44	SYS 2 LS CH 3 IN	Low speed channel 3 input signal loss status of SYS 2.
45	SYS 2 LS CH 4 IN	Low speed channel 4 input signal loss status of SYS 2.
46	SYS 2 AIS RCV	Status of Alarm Indication Signal reception in SYS 2.
47	SYS 2 RMT ALM	Status of remote alarm signal detection in SYS 2.
48	MAN SW	Status of manual switch activation in any system.
49	SYS 3 ON LINE	ON LINE status of SYS 3.
50	SYS 3 LS CH 1 IN	Low speed channel 1 input signal loss status of SYS 3.
51	SYS 3 LS CH 2 IN	Low speed channel 2 input signal loss status of SYS 3.
52	SYS 3 LS CH 3 IN	Low speed channel 3 input signal loss status of SYS 3.

- Table 4-4

Serial Supervisory Alarm and Status Indications for Local Station (cont'd)

Bit No.	Alarm/Status	Description
53	SYS 3 LS CH 4 IN	Low speed channe1 4 input signal loss status of SYS 3.
54	SYS 3 AIS RCV	Status of Alarm Indication Signal reception in SYS 3.
55	SYS 3 RMT ALM	Status of remote alarm signal detection in SYS 3.
56	ACO	Status of Alarm Cut Off switch activation on DISP panel.
57	SYS 4 ON LINE	ON LINE status of SYS 4.
58	SYS 4 LS CH 1 IN	Low speed channel 1 input signal loss status of SYS 4.
59	SYS 4 LS CH 2 IN	Low speed channel 2 input signal loss status of SYS 4.
60	SYS 4 LS CH 3 IN	Low speed channel 3 input signal loss status of SYS 4.
61	SYS 4 LS CH 4 IN	Low speed channel 4 input signal loss status of SYS 4.
62	SYS 4 AIS RCV	Status of Alarm Indication Signal reception in SYS 4.
63	SYS 4 RMT ALM	Status of remote alarm signal detection in SYS 4.
64	(X)	Reserved for administration function.

Table 4-5
Serial Alarm and Status Items for Remote Station

Char.	Scan Point (Alarm/Status)							
000	1	2	3	4	5	6	7	8
	SYS 1 CTRL (A)	SYS 1 MUX (A)	SYS 1 OPT OUT (A)	SYS 1 OPT IN (A)	SYS 1 DMUX (A)	SYS 1 MAJ ERR (A)	SYS 1 PWR MIN (A)	SYS 1 OFF LINE MON (A)
001	9	10	11	12	13	14	15	16
	SYS 2 CTRL (A)	SYS 2 MUX (A)	SYS 2 OPT OUT (A)	SYS 2 OPT IN (A)	SYS 2 DMUX (A)	SYS 2 MAJ ERR (A)	SYS 2 PWR MIN (A)	SYS 2 OFF LINE MON (A)
010	17	18	19	20	21	22	23	24
	SYS 3 CTRL (A)	SYS 3 MUX (A)	SYS 3 OPT OUT (A)	SYS 3 OPT IN (A)	SYS 3 DMUX (A)	SYS 3 MAJ ERR (A)	SYS 3 PWR MIN (A)	SYS 3 OFF LINE MON (A)
011	25	26	27	28	29	30	31	32
	SYS 4 CTRL (A)	SYS 4 MUX (A)	SYS 4 OPT OUT (A)	SYS 4 OPT IN (A)	SYS 4 DMUX (A)	SYS 4 MAJ ERR (A)	SYS 4 PWR MIN (A)	SYS 4 OFF LINE MON (A)
100	33	34	35	36	37	38	39	40
	SYS 1 MIN ERR (A)	SYS 1 LD BIAS (A)	SYS 1 SV (A)	SYS 1 ALM CCT (A)	SYS 2 MIN ERR (A)	SYS 2 LD BIAS (A)	SYS 2 SV (A)	SYS 2 ALM CCT (A)
101	41	42	43	44	45	46	47	48
	SYS 3 MIN ERR (A)	SYS 3 LD BIAS (A)	$\begin{aligned} & \text { SYS } 3 \\ & \text { SV } \end{aligned}$ (A)	SYS 3 ALM CCT (A)	SYS 4 MIN ERR (A)	SYS 4 LD BIAS (A)	SYS 4 SV (A)	SYS 4 ALM CCT (A)
110	49	50	51	52	53	54	55	56
	SYS 1 ON LINE (S)	SYS 1 CH IN (S)	(U)	(U)	SYS 2 ON LINE (S)	SYS 2 CH IN (S)	(U)	(U)
111	57	58	59	60	61	62	63	64
	SYS 3 ON LINE (S)	SYS 3 CH IN (S)	(U)	(U)	SYS 4 ON LINE (S)	SYS 4 CH IN (S)	(U)	(X)

(A) : Alarm (S) : Status (U) : Unassigned (X) : Reserved

NOTE 1: Bit 64 th is assigned for administrative function.
2: This display assignment conforms to the STANDARD ATTRIBUTE ASSIGNMENT L128.

Table 4-6
Serial Supervisory Alarm and Status Indications for Remote Station

Bit No.	Alarm/Status	Description
1	SYS 1 CTRL	Monitoring circuit self-check failure or CPU failure alarm of CTRL unit and MISC (DC 2) fuse blown alarm of SYS 1 at remote station.
2	SYS 1 MUX	MUX unit fallure alarm of SYS 1 at remote station.
3	SYS 1 OPT OUT	Optical output signal loss alarm of SYS 1 at remote station.
4	SYS 1 OPT IN	Optical input signal loss alarm of SYS 1 at remote station.
5	SYS 1 DMUX	Demultiplexer circuit failure, low speed channel failure or on-line RCV monitoring failure alarm of DMUX unit of SYS 1 at remote station.
6	SYS 1 MAJ ERR	Major error detection alarm in high speed receiving data of SYS 1 at remote station.
7	SYS 1 PWR MIN	Power supply minor alarm of SYS 1 at remote station.
8	SYS 1 OFF LINE MON	OFF LINE monitoring circuit failure alarm of SYS 1 at remote station.
9	SYS 2 CTRL	Monitoring circuit self-check failure or CPU failure alarm of CTRL unit and MISC (DC 2) fuse blown alarm of SYS 2 at remote station.
10	SYS 2 MUX	MUX unit failure alarm of SYS 2 at remote station.
11	SYS 2 OPT OUT	Optical output signal loss alarm of SYS 2 at remote station.
12	SYS 2 OPT IN	Optical input signal loss alarm of SYS 2 at remote station.
13	SYS 2 DMUX	Demultiplexer circuit failure, low speed channel failure or on-line RCV monitoring failure alarm of DMUX unit of SYS 2 at remote station.
14	SYS 2 MAJ ERR	Major error detection alarm in high speed receiving data of SYS 2 at remote station.

Table 4-6
Serial Supervisory Alarm and Status Indications for Remote Station (Cont'd)

Bit No.	Alarm/Status	Description
15	SYS 2 PWR MIN	Power supply minor alarm of SYS 2 at remote station.
16	SYS 2 OFF LINE MON	OFF LINE monitoring circuit failure alarm of SYS 2 at remote station.
17	SYS 3 CTRL	Monitoring circuit self-check failure or CPU failure alarm of CTRL unit and MISC (DC 2) fuse blown alarm of SYS 3 at remote station.
18	SYS 3 MUX	MUX unit failure alarm of SYS 3 at remote station.
19	SYS 3 OPT OUT	Optical output signal loss alarm of SYS 3 at remote station.
20	SYS 3 OPT IN	Optical input signal loss alarm of SYS 3 at remote station.
21	SYS 3 DMUX	Demultiplexer circuit failure, low speed channel failure or on-line RCV monitoring failure alarm of DMUX unit of SYS 3 at remote station.
22	SYS 3 MAJ ERR	Major error detection alarm in high speed receiving data of SYS 3 at remote station.
23	SYS 3 PWR MIN	Power supply minor alarm of SYS 3 at remote station.
24	SYS 3 OFF LINE MON	OFF LINE monitoring circuit failure alarm of SYS 3 at remote station.
25	SYS 4 CTRL	Monitoring circuit self-check failure or CPU failure alarm of CTRL unit and MISC (DC 2) fuse blown alarm of SYS 4 at remote station.
26	SYS 4 MUX	MUX unit failure alarm of SYS 4 at remote station.
27	SYS 4 OPT OUT	Optical output signal loss alarm of SYS 4 at remote station.
28	SYS 4 OPT IN	Optical input failure alarm of SYS 4 at remote station.
29	SYS 4 DMUX	Demultiplexer circuit failure, low speed channel failure or on-line RCV monitoring alarm of DMUX unit of SYS 4 at remote station.

Table 4-6
Serial Supervisory Alarm and Status Indications for Remote Station (Cont'd)

Bit No.	Alarm/Status	Description
30	SYS 4 MAJ ERR	Major error detection alarm in high speed receiving data of SYS 4 at remote station.
31	SYS 4 PWR MIN	Power supply minor alarm of SYS 4 at remote station.
32	SYS 4 OFF LINE MON	OFF LINE monitoring circuit failure alarm of SYS 4 at remote station.
33	SYS 1 MIN ERR	Minor error detection alarm in high speed receiving data of SYS 1 at remote station.
34	SYS 1 LD BIAS	LD current alarm of SYS 1 at remote station.
35	SYS 1 SV	SV unit receiving circuit failure alarm of SYS 1 at local station.
36	SYS 1 ALM CCT	Alarm circuit failure alarm of SYS lat remote station.
37	SYS 2 MIN ERR	Minor error detection alarm in high speed receiving data of SYS 2 at remote station.
38	SYS 2 LD BIAS	LD current alarm of SYS 2 at remote station.
39	SYS 2 SV	SV unit receive circuit failure alarm of SYS 2 at local station.
40	SYS 2 ALM CCT	Alarm circuit failure alarm of SYS 2 at remote station.
41	SYS 3 MIN ERR	Minor error detection alarm in high speed receiving data of SYS 3 at remote station.
42	SYS 3 LD BIAS	LD current alarm of SYS 3 at remote station.
43	SYS 3 SV	SV unit receive circuit failure alarm of SYS 3 at local station.
44	SYS 3 ALM CCT	Alarm circuit failure alarm of SYS 3 at remote station.
45	SYS 4 MIN ERR	Minor error detection alarm in high speed receiving data of SYS 4 at remote station.
46	SYS 4 LD BIAS	LD current alarm of SYS 4 at remote station.

Table 4-6
Serial Supervisory Alarm and Status Indications for Remote Station (Cont'd)

Bit No.	Alarm/Status	Description
47	SYS 4 SV	SV unit receive circuit failure alarm of SYS 4 at local station.
48	SYS 4 ALM CCT	Alarm circuit failure alarm of SYS 4 at remote station.
49	SYS 1 ON LINE	ON LINE status of SYS 1 at remote station.
50	SYS 1 CH IN	Low speed input loss status in any channel of SYS 1 at remote station.
51	(U)	Not used.
52	(U)	Not used.
53	SYS 2 ON LINE	ON LINE status of SYS 2 at remote station.
54	SYS 2 CH IN	Low speed input loss status in any channel of SYS 2 at remote station.
55	(U)	Not used.
56	(U)	Not used.
57	SYS 3 ON LINE	ON LINE status of SYS 3 at remote station.
58	SYS 3 CH IN	Low speed input loss status in any channel of SYS 3 at remote station.
59	(U)	Not used.
60	(U)	Not used.
61	SYS 4 ON LINE	ON LINE status of SYS 4 at remote station.
62	SYS 4 CH IN	Low speed input loss status in any channel of SYS 4 at remote station.
63	(U)	Not used.
64	(X)	Reserved for administrative function.

J. Orderwire Equipment Interface
4.10 The FD-2240A orderwire equipment interface meets the following specifications:

- Level
- Connection terminal
- Used cable
: TTL level
: Wire wrapping 70 pin terminal
: AWG 22 to 24 twisted pair cable

K. External Clock Interface

4.11 The FD-2240A external clock interface meets the following specification:

- Clock
- Interface level
- Connection terminal
- Used cable
$: 6.312 \mathrm{MHz}$
: TTL level
: Wire wrapping 70 pin terminal
: AWG 22 to 24 pair cable
L. Environmental Requirements
4.12 The FD-2240A operates with no performance degradation over any combination of the following range of external conditions:
- Long-term temperature range

DS2 bipolar interface : 0 to $45^{\circ} \mathrm{C}\left(32\right.$ to $\left.113^{\circ} \mathrm{F}\right)$
Optical interface with LED : 0 to $45^{\circ} \mathrm{C}\left(32\right.$ to $\left.113^{\circ} \mathrm{F}\right)$
Optical interface with LD $\quad: 0$ to $45^{\circ} \mathrm{C}$ (32 to $113^{\circ} \mathrm{F}$)

- Short-term temperature range $\quad: 0$ to $50^{\circ} \mathrm{C}$ (32 to $122^{\circ} \mathrm{F}$) (less than 72 hours continuously and 15 days in one year)
- Humidity : Up to 90% at $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$
- Altitude : -61 to 3,657m(-200 to $12,000 \mathrm{ft})$

```
M. Power Supply Specifications
4.13 FD-2240A power supply specifications are as follows:
    - Primary power supply voltage : -42 to -56 Vdc, -21 to -27 Vdc, or 117
                                    \pm10% Vac
    - Power consumption per fully
    equipped shelf
        Bipolar or optical interface : 1A maximum current for -48 Vdc input
                                2A maximum current for -24 Vdc input
    - Battery noise
                                    : 55 dBm maximum in any 3.1 kHz band from
                                    3 kHz to 10 MHz
- Battery noise, single frequency : 55 dBm maximum
- Battery hum : 40 dBm maximum
- Battery output
: 4 V maximum at a rate of change of
                                    200 V per millisecond
```



```
N. Mechanical Construction
4.15 The FD-2240A has the following mechanical construction:
    - Shelf dimension
            Height : }177\textrm{mm}\mathrm{ (7 in.)
            Width : 482.6 mm (19 in.)
            Depth : 305 mm (12 in.)
    - Weight
    - Wiring access
```

```
: 16 kg (35.3 1b)
```

: 16 kg (35.3 1b)

```
: Rear access for electrical connection
```

: Rear access for electrical connection
Front access for optical connection

```
    Front access for optical connection
```

NECA 365-407-100
CHANGE-7

5. COMMON LANGUAGE EQUIPMENT IDENTIFICATION CODES

5.01 The Common Language Equipment Identification (CLEI) codes for FD-220A 6.3MB O-LTM are listed in Table 5-1. Bar code labels are located on the unit ejector.

Table 5-1 FD-2240A 6.3MB 0-LTM CLEI Codes

UNIT	DESCRIPTION	CLEI CODE	BAR CODE
E8980A	SHELF	M2 MM 5001	CRR\#368315
X0300A	MUX UNIT (DS1, -48V)	M2 PMC 112AA	620571-5
X0300B	MUX UNIT (DS,$~-24 V)$	M2 PMC 122AA	636838-2
X0300A2	MUX UNIT (DS $1,-48 \mathrm{~V}$)	M2 PMC 142AA	642088-9
X0300B2	MUX UNIT (DS,$~-24 V)$	NOT AVAILABLE	NOT AVAILABIE
X0301A	DMUX UNIT (DSI, -48V)	M2 PMD 112AA	621705-5
X0301A1	DMUX UNIT (DS ${ }^{\text {d }}-48 \mathrm{~V}$)	M2 PMD 112AB	642613-i
X0301B	DMUX UNIT (DS1, -24V)	M2 PMD 122AA	625500-4
X0301A2	DMUX UNIT (DSl, 48 V)	M2 PMD 142AA	642091-3
X0301B2	DMUX UNIT (DSI, -24V)	NOT AVAILABLE	NOT AVALLABLE
X0306E	$\begin{aligned} & \text { 6M OPT INF } \\ & (1300 \mathrm{~nm}, \mathrm{MM}, \text { LED-PIN }) \end{aligned}$	M2 OTH 631AA	635557-8
X0306F	$\begin{aligned} & \text { 6M OPT INF } \\ & (131.0 \mathrm{~nm}, \mathrm{SM}, \mathrm{LED}-\mathrm{PIN}) \end{aligned}$	M2 OTH 711AA	632512-3
X0306Fl	```6M OPT INF (1310 nm, SM, LED-PIN)```	M2 OTH 711AB	632512-3
X0307B	$\begin{aligned} & \text { 6M OPT INF } \\ & \text { (1300 nm, MM, LD-APD) } \end{aligned}$	M2 OTJ 631AA	633138-4
X0307C	$\begin{aligned} & \text { 6M OPT INF } \\ & (1310 \mathrm{~nm}, \mathrm{SM}, \mathrm{LD}-\mathrm{APD}) \end{aligned}$	M2 OTJ 711AA	635909-3
X 0307 Cl	$\begin{aligned} & \text { 6M OPT INF } \\ & (1310 \mathrm{~nm}, \mathrm{SM}, \mathrm{LD}-\mathrm{APD}) \end{aligned}$	M2 OTJ 711 AB	635909-3
X0308A1	DS 2 INTERFACE	M2 LS 3002AB	623458-9
X0314A	ALM UNIT (-48V), PARALLEL	M2 ACB 022AA	623403-7
X0314A1	ALM UNIT (-48V), PARALLEL	M2 ACB 012AB	640803-1
X0314B	ALM U., T (-24 V) , PARALLEL	M2 ACB 022AA	623403-7
X0314AA	ALM UNIT (-48V), SERIAL	M2 ACB 142AA	642118-8
X0314AB	ALM UNIT (-24V), SERIAL	NOT AVAILABLE	NOT AVAILABLE
X0315A	SV UNIT	M2 CPS 004AA	626222-9

- Table 5-1 FD-2240A 6.3MB O-LTM CLEI Codes

UNIT	DESCRIPTION	CLEI CODE	BAR CODE
X0316A	CTRL UNIT	M2 CPT 004AA	$641200-1$
X0316AI	CTRL UNIT	M2 CPT 004AB	$620213-5$
X0316B	CTRL UNIT	F2 CUA 001AA	$646150-2$
X7887A	CTRL UNIT	NOT AVAILABLE	NOT AVAILABLE
X7887B	CTRL UNIT	NOT AVAILABLE	NOT AVAILABLE
X0319A	PWR UNIT (-48V)	M2 PUT 012AA	$622397-0$
X0319B	PWR UNIT (-24V)	M2 PUB 022AA	$626557-7$
X1914A	PWR UNIT (115VAC)	M2 PUB 132AA	$640042-7$

