# ALARM UNIT (ALM:X0314) FUNCTIONAL DESCRIPTION

#### 1. GENERAL

- 1.01 This section is a cover sheet for the NEC America, Inc., Alarm Unit (ALM:X0314) Functional Description. This section is reproduced with permission of NEC America, Inc., and is equivalent to NEC practice NECA 365-407-402, Issue 1.
- 1.02 Whenever this section is reissued the reason(s) for reissue will be listed in this paragraph.
- 1.03 This section provides a general description of the Alarm Unit (ALM:X0314-).
- 1.04 If corrections are required in the attached document, use Form-3973 as described in Section 000-010-015.
- 1.05 If equipment design and/or manufacturing problems should occur, refer to Section SW 010-522-906 for procedures on filing an Engineering complaint.

#### ORDERING PROCEDURE

- 2.01 The Alarm Unit (ALM:X0314) may be ordered via the Southwestern Inventory Management System (SWIMS).
- 2.02 To order additional copies of this practice, use NECA 365-407-813SW as the section number.

#### 3. REPAIR/RETURN

3.01 Malfunctioning units may be returned to NEC America, Inc., for repair.

Attachment: NEC America, Inc.

Alarm Unit (ALM:X0314)
Functional Description

#### PROPRIETARY

Not for use or disclosure outside Southwestern Bell Telephone Company except under written agreement.



NECA 365-407-402 Issue 1, December 1986

ALARM UNIT (ALM: X0314)

**FUNCTIONAL DESCRIPTION** 

# **NEC America, Inc.**Transmission Division

14040 Park Center Road Herndon, Virginia 22071 Phone No: (703) 834-4000 Fax No: (703) 481-6904

Telex No: 899498 TWX No: 710-831-0639 Easylink No: 62939917

# ♦ ALARM UNIT (ALM:X0314) ♦ FUNCTIONAL DESCRIPTION

|              | CONTENTS                                             | Page   |
|--------------|------------------------------------------------------|--------|
| 1.           | GENERAL                                              | . 2    |
| 2.           | DESCRIPTION                                          | . 2    |
| 3.           | FUNCTIONAL OPERATION                                 | . 4    |
|              | C. Setting of DISP Switch                            | . 14   |
| 4.           | CONTROLS AND INDICATORS                              | . 16   |
| 5.           | STRAPPING SELECTION                                  | . 20   |
|              | ILLUSTRATIONS                                        |        |
| Fig          | ure Title                                            | Page   |
| <b>3-</b> 1  | Block Diagram of ALM Unit (Grp:0A00, 0A01 and 0B00)  | . 5 ¶  |
| 3-2          | •                                                    |        |
| 3-3          | DISP SW Location on Sub-2 PWB of ALM Unit Grp:AA00   | . 8    |
| 3-4          |                                                      |        |
| 3-5          |                                                      |        |
| 4-1          |                                                      |        |
| 4-2          | •                                                    |        |
| <b>♦</b> 4-3 | ALM Unit (Grp:AA00 and AB00) Controls and Indicators | . 19 ( |

Copyright © 1986 by NEC America Inc. All rights reserved.

This document is not an offer to sell. The information contained in this document is subject to change without notice.

#### TABLE

| Table | Title                                      | Page |
|-------|--------------------------------------------|------|
| 2-1   | ALM Unit Group                             | 3    |
| 3-1   | Relay Contact Alarm Output Items           | 11   |
| 3-2   | Scan Display for Local Station Assignment  | 12   |
| 3-3   | Scan Display for Remote Station Assignment | 13   |
| 4-1   | ALM Unit Controls and Indicators           | 20   |

#### 1. GENERAL

- 1.01 This practice provides a general description of Alarm unit (ALM; X0314-) and contains the following information.
  - Description
  - Functional operation
  - Controls and indicators
  - Strapping selection
- 1.02 Whenever this practice is reissued, the reason for reissue will be listed in this paragraph.

#### 2. DESCRIPTION

- 2.01 This unit consists of three epoxy-glass printed wire board (PWB); main assembly, sub-1 assembly and sub-2 assembly and associated circuit components. Printed circuit wiring is etched on both sides of the PWB. On the left side surface of the board (viewed from front), the components are located. Flat jumper cable with connectors are used for connection between these PWBs.
- 2.02 LEDs and switches for controlling and indicating the operational status are located on the front edge of sub-1 and sub-2 assembly board.
- 2.03 This unit is mounted in E8980A shelf of the FD-2240A with back board connectors J3 (main assembly) and J4 (sub assembly). This unit inputs and outputs are terminated at the connector on the rear of main and sub-2 boards.

- 2.04 The unit designation, unit code, manufactured date and serial number are printed on the right side surface of the main board connector.
- 2.05 The lower front edge of main and sub-2 assembly boards are fitted with ejectors to facilitate insertion and removal of the boards from the shelf. A CLEI and bar code label is placed on the surface of main PWB ejector. See Figure 4-1.
- 2.06 Five groups are provided with the ALM unit. Table 2-1 lists these ALM unit groups.

♦ Table 2-1 ♦
ALM Unit Group

|   | No. | Group and<br>Unit Code | Power<br>Voltage | Remarks                 |
|---|-----|------------------------|------------------|-------------------------|
|   | 1   | X0314A                 | -48 V            | Parallel SV alarm       |
|   | 2   | X0314A1                | -48 V            | Parallel SV alarm       |
| • | 3   | X0314B                 | -24 V            | New version of Grp:0A00 |
| ٠ | 4   | ● X0314AA              | -48 V            | Serial SV alarm         |
| ٠ | 5   | X0314AB                | -24 V            | Serial SV alaim         |

#### 3. FUNCTION OPERATION

- 3.01 The Alarm (ALM) unit is a microprocessor controlled alarm system. It monitors the alarm status of all units. When a failure occurs, the ALM unit analyzers the resulting alarms and display an alphanumeric alarm message. The displayed message indicates the type of failure, and the unit which should be replaced to correct the failure. ALM unit specifies two types, one is to close office and SV alarm relays when a failure occurs, and another is to close office relays and serially send and receive alarm information according to TBOS protocol when a failure occurs. Figures 3-1 and 3-2 show diagrams of two types of ALM unit.
- RAM. Bidirectional data buses are utilized to read alarm data signals from the FD-2240A's various alarm detection circuits and to send data to circuitry that in turn generates the alphanumeric displays appearing on the front of the shelf or to circuitry that transfers data to the far-end station. CPU output data signals from other ports go to the various on-board decoding circuits which generate control signals necessary for reading data, light LED indicators and energize alarm relays. Also, CPU for Grp. X0314AA/AB¢ sends out serial alarm data.

## A. Alarm Signal Polling

- 3.03 The CPU sends polling addresses to a decoder (DEC) circuit which generates strobe signals. Most of the strobe signals go to the outer units, where they enable the alarm output circuits. The remaining strobe signals go to a selection gate (SEL GATE) circuit. The SEL GATE circuit selects other data signals for application to the data bus. These data signals include the following:
  - (1) PWR unit failure alarm signals
  - (2) Fuse alarm signal
  - (3) Unit insertion status signals
  - (4) Remote loopback (RLB) detection signals
  - (5) Alarm cutoff (ACO), maintenance (MAINT) and scroll (SCRL) signals

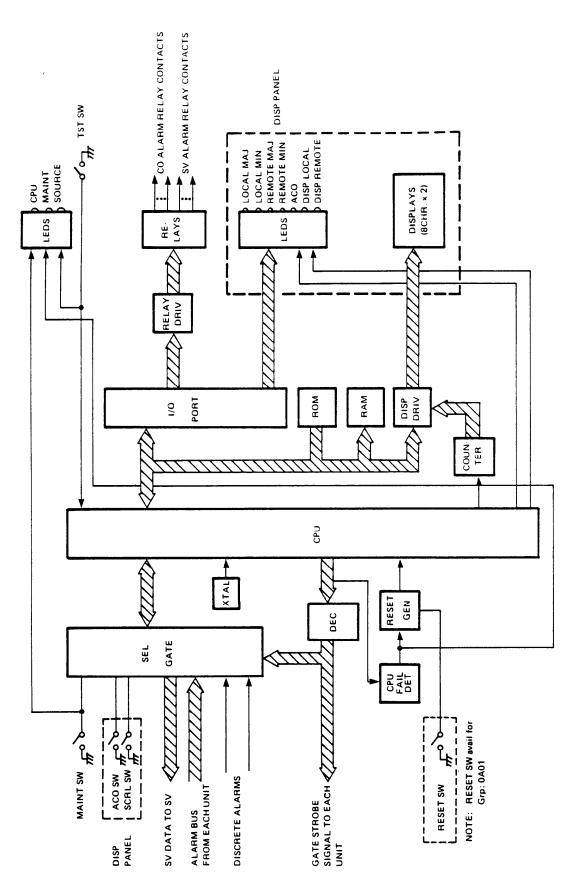



Figure 3-1 Block Diagram of ALM Unit (Grp: 0A00, 0A01 and 0B00)

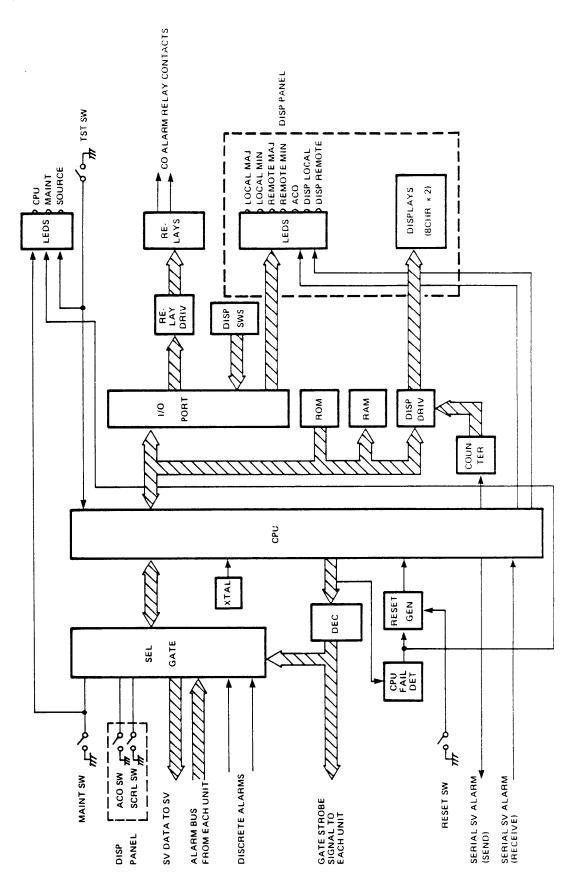
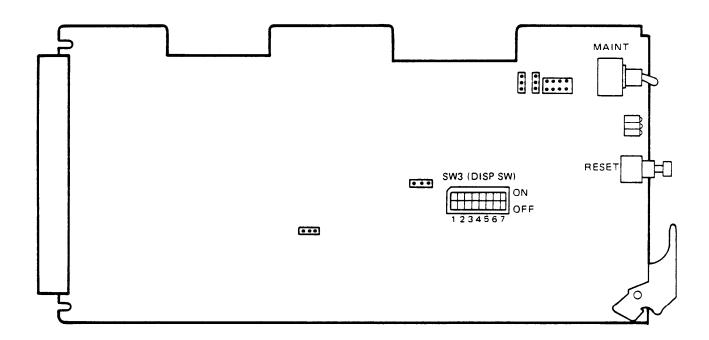




Figure 3.2 Block Diagram of ALM Unit (Grp. AA00 and AB00)

#### B. Alarm Function

- 3.04 The CPU reads data from the data bus and determines if a failure has occurred. If a failure is detected, the CPU analyzes the received alarm data, first to determine the type of failure, and then to determine the locations of the faulty circuit. The CPU then sends data to a display driver (DRIV) circuit which in turn generates the appropriate display. Failures occurred at the local station are indicated on the LOCAL DISP and those at remote station are on the REMOTE DISP. When the CPU detects more than one failure condition for the same station, the highest priority (most critical) failure is indicated and other failures, if required, can be viewed by depressing SCRL SW on the DISP panel.
- 3.05 The CPU also sends failure data to an I/O port circuit, along a clock signal. The I/O port circuit receives the eight bits data at a time from the CPU and shifts the data to its output side. Some outputs go to a relay driver (RELAY DRIV) circuit. RELAY DRIV outputs signals set the central office (CO) and supervisory (SV) alarm relays (Grp:OAOO, OAOI; parallel interface version) or CO alarm relays only (Grp:AAOO; serial interface version).
- 3.06 In the serial interface version, SV alarm is sent out as serial data in replay to the request from supervisory equipment. This serial data transmission is based on TBOS protocol and one display is assigned for local alarms and, when the high speed side of the FD-2240A is optical, one display is assigned for remote alarms. These display numbers are set by the DISP SW operation. Figure 3-3 shows the location of DISP SW.

And when the high speed side is an optical interface, the local alarm data signals are sent to SV unit through alarm bus and then are sent out to ALM unit of the remote station via optical transmission line.



♦ Figure 3-3 DISP SW Location on Sub-2 PWB of ALM Unit Grp, AA00, AB00 ♦

- 3.07 Alarm indications start and stop as follows:
  - (1) Alphanumeric displays and LED indicators on the display panel indicate when failure detection occurs and go out when failure condition is cleared. On LOCAL or REMOTE DISP, such failure condition is displayed and when an alarm is Major alarm, the LED flickers.
  - (2) Visual alarm relays close when failure detection occurs and open when failure condition is cleared.
  - (3) Audible alarm relays close 2.5, 5, 10 or 20 seconds\* after failure detection and open when failure condition is cleared.
  - (4) Supervisory alarm relays (except PWR MAJ and ALM CCT) close 2.5, 5, 10 or 20 seconds\* after failure detection and open when failure condition is cleared, unless this happens before they have been closed for 2.5, 5, 10 or 20 seconds\*. These relays remain closed for at least 2.5, 5, 10 or 20 seconds\*. (Grp:OAOO, OAOI, ♦ OBOO ♦)

\*NOTE: The above delay times are selectable by timer strapping terminal.

- (5) PWR MAJ and ALM CCT relay contacts close when failure detection occurs and open when failure condition is cleared.
- (6) Serial SV data are periodically scanned by the supervisory equipment and alarm information is sent out when the character including its item is scanned.
- (7) Audible alarm relays and visual alarm relays close for the alarms occurred at the far end station when SC3 strap on the Sub-2 PWB is set to ON.
- 3.08 When the CPU detects ACO activation signal (ACO SW closes when failure condition exists), it disables the audible alarm relays and visual alarm relays, if on-board strap terminal SCl on the Sub-2 PWB is strapped to ON. The ACO indicator LED lights and remains as long as the alarm condition exists. If the CPU detects an additional failure, or operation of the RESET SW, it resets the ACO circuits.

- 3.09 When TST SW is set to ON, all LEDs on this equipment are lit and "\*\*NEC\*\*\*" and "FD-2240A" are displayed on the character displays (lamp test) if SC2 on the Sub-2 PWB is set to LAMP. If SC2 strap is set to ALM, alarm test can be done too (Visual alarm relays immediately close and audible alarm relays close after the delay time preset by TIMER. And when TST SW is turned to OFF, both relays will be open.)
- 3.10 Table 3-1 lists CO and SV alarm items for ALM unit (Grp:0A00/0A01/♦0B00♦, for parallel interface).
- 3.11 Tables 3-2 and 3-3 list alarm items for serial alarm character bits of ALM unit (Grp:AA00/\$\ddot AB00\$\ddot\$, for serial interface).

Table 3-1
Relay Contact Alarm Output Items

| ALM       | No. | Output Alarm                   | Failure                                                         |  |  |  |  |
|-----------|-----|--------------------------------|-----------------------------------------------------------------|--|--|--|--|
|           | 1   | MAJ VIS                        | Visual alarm at service affecting                               |  |  |  |  |
| СО        | 2   | MAJ AUD                        | Audible alarm at service affecting                              |  |  |  |  |
| ALM       | 3   | MIN VIS                        | Visual alarm at nonservice affecting                            |  |  |  |  |
|           | 4   | MIN AUD                        | Audible alarm at nonservice affecting                           |  |  |  |  |
|           | 5   | SYSTEM 1 FAIL                  | Alarm occurred in system l                                      |  |  |  |  |
|           | 6   | SYSTEM 2 FAIL                  | Alarm occurred in system 2                                      |  |  |  |  |
|           | 7   | SYSTEM 3 FAIL                  | Alarm occurred in system 3                                      |  |  |  |  |
|           | 8   | SYSTEM 4 FAIL                  | Alarm occurred in system 4                                      |  |  |  |  |
|           | 9   | LOSS OF ONE LS IN              | Loss of only one DS1 input signal                               |  |  |  |  |
|           | 10  | LOSS OF MORE THAN<br>ONE LS IN | Loss of more than one DS1 input signals                         |  |  |  |  |
|           | 11  | RMT ALM                        | Detection of remote alarm signal                                |  |  |  |  |
| SV<br>ALM | 12  | LOSS OF HS                     | Loss of high speed input signal                                 |  |  |  |  |
| ALM       | 13  | MAJ ALM                        | Service affecting failure in equipment (except PWR MAJ)         |  |  |  |  |
|           | 14  | MIN ALM                        | Nonservice affecting failure in equipment                       |  |  |  |  |
|           | 15  | PWR MAJ                        | Both of PWR unit for DC(-) power and PWR unit for AC power down |  |  |  |  |
|           | 16  | PWR MIN                        | One PWR unit down                                               |  |  |  |  |
|           | 17  | MAINT                          | Condition of MAINT switch ON                                    |  |  |  |  |
|           | 18  | AIS RCV                        | Detection of Alarm Indication Signal in DS2 input signal        |  |  |  |  |
|           | 19  | ALM CCT FAIL                   | Alarm occurred in ALM unit circuit                              |  |  |  |  |

Table 3-2 Scan Display for Local Station Assignment

| Char. | Scan Point (Alarm/Status) |                               |                               |                               |                               |                         |                        |             |
|-------|---------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------|------------------------|-------------|
|       | 1                         | 2                             | 3                             | 4                             | 5                             | 6                       | 7                      | 8           |
| 000   | SYS 1<br>MUX<br>(A)       | SYS 1<br>HS OUT<br>(A)        | SYS 1<br>HS IN<br>(A)         | SYS 1<br>D MUX<br>(A)         | SYS 1<br>MAJ ERR<br>(A)       | SYS 1<br>LD BIAS<br>(A) | SYS 1,2<br>CTRL<br>(A) | PWR MAJ     |
|       | 9                         | 10                            | 11                            | 12                            | 13                            | 14                      | 15                     | 16          |
| 001   | SYS 2<br>MUX<br>(A)       | SYS 2<br>HS OUT<br>(A)        | SYS 2<br>HS IN<br>(A)         | SYS 2<br>D MUX<br>(A)         | SYS 2<br>MAJ ERR<br>(A)       | SYS 2<br>LD BIAS<br>(A) | FUSE<br>CD(2)<br>(A)   | (U)         |
|       | 17                        | 18                            | 19                            | 20                            | 21                            | 22                      | 23                     | 24          |
| 010   | SYS 3<br>MUX<br>(A)       | SYS 3<br>HS OUT<br>(A)        | SYS 3<br>HS IN<br>(A)         | SYS 3<br>D MUX<br>(A)         | SYS 3<br>MAJ ERR<br>(A)       | SYS 3<br>LD BIAS<br>(A) | SYS 3,4<br>CTRL<br>(A) | PWR MIN (A) |
|       | 25                        | 26                            | 27                            | 28                            | 29                            | 30                      | 31                     | 32          |
| 011   | SYS 4<br>MUX<br>(A)       | SYS 4<br>HS OUT<br>(A)        | SYS 4<br>HS IN<br>(A)         | SYS 4<br>D MUX<br>(A)         | SYS 4<br>MAJ ERR<br>(A)       | SYS 4<br>LD BIAS<br>(A) | SV<br>(A)              | (U)         |
|       | 33                        | 34                            | 35                            | 36                            | 37                            | 38                      | 39                     | 40          |
| 100   | SYS 1<br>ON LINE          | SYS 1<br>LS CH 1<br>IN<br>(S) | SYS 1<br>LS CH 2<br>IN<br>(S) | SYS 1<br>LS CH 3<br>IN<br>(S) | SYS 1<br>LS CH 4<br>IN<br>(S) | SYS 1<br>AIS RCV        | SYS 1<br>RMT ALM       | RLB<br>(S)  |
| -     | 41                        | 42                            | 43                            | 44                            | 45                            | 46                      | 47                     | 48          |
| 101   | SYS 2<br>ON LINE          | SYS 2<br>LS CH 1<br>IN<br>(S) | SYS 2<br>LS CH 2<br>IN<br>(S) | SYS 2<br>LS CH 3<br>IN<br>(S) | SYS 2<br>LS CH 4<br>IN<br>(S) | SYS 2<br>AIS RCV        | SYS 2<br>RMT ALM       | MAN SW      |
|       | 49                        | 50                            | 51                            | 52                            | 53                            | 54                      | 55                     | 56          |
| 110   | SYS 3<br>ON LINE          | SYS 3<br>LS CH 1<br>IN<br>(S) | SYS 3<br>LS CH 2<br>IN<br>(S) | SYS 3<br>LS CH 3<br>IN<br>(S) | SYS 3<br>LS CH 4<br>IN<br>(S) | SYS 3<br>AIS RCV        | SYS 3<br>RMT ALM       | ACO<br>(S)  |
|       | 57                        | 58                            | 59                            | 60                            | 61                            | 62                      | 63                     | 64          |
| 111   | SYS 4<br>ON LINE          | SYS 4<br>LS CH 1<br>IN<br>(S) | SYS 4<br>LS CH 2<br>IN<br>(S) | SYS 4<br>LS CH 3<br>IN<br>(S) | SYS 4<br>LS CH 4<br>IN<br>(S) | SYS 4<br>AIS RCV        | SYS 4<br>RMT ALM       | (X)         |

<sup>(</sup>A): Alarm (S): Status (U): Unassigned (X): Reserved

NOTE 1: Bit 64th is assigned for administrative function.

<sup>2:</sup> This Display assignment conforms to STANDARD ATTRIBUTE ASSIGNMENT L128.

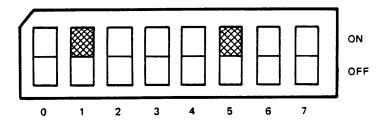
Table 3-3 Scan Display for Remote Station Assignment

| Char. | Scan Point (Alarm/Status) |                         |                    |                         |                         |                         |                    |                          |
|-------|---------------------------|-------------------------|--------------------|-------------------------|-------------------------|-------------------------|--------------------|--------------------------|
|       | 1                         | 2                       | 3                  | 4                       | 5                       | 6                       | 7                  | 8                        |
| 000   | SYS 1<br>CTRL             | SYS 1<br>MUX            | SYS 1<br>OPT OUT   | SYS 1<br>OPT IN         | SYS 1<br>DMUX           | SYS 1<br>MAJ ERR        | SYS 1<br>PWR MIN   | SYS 1<br>OFF LINE<br>MON |
|       | (A)                       | (A)                     | (A)                | (A)                     | (A)                     | (A)                     | (A)                | (A)                      |
|       | 9                         | 10                      | 11                 | 12                      | 13                      | 14                      | 15                 | 16                       |
| 001   | SYS 2<br>CTRL             | SYS 2<br>MUX            | SYS 2<br>OPT OUT   | SYS 2<br>OPT IN         | SYS 2<br>DMUX           | SYS 2<br>MAJ ERR        | SYS 2<br>PWR MIN   | SYS 2<br>OFF LINE<br>MON |
|       | (A)                       | (A)                     | (A)                | (A)                     | (A)                     | (A)                     | (A)                | (A)                      |
|       | 17                        | 18                      | 19                 | 20                      | 21                      | 22                      | 23                 | 24                       |
| 010   | SYS 3<br>CTRL             | SYS 3<br>MUX            | SYS 3<br>OPT OUT   | SYS 3<br>OPT IN         | SYS 3<br>DMUX           | SYS 3<br>MAJ ERR        | SYS 3<br>PWR MIN   | SYS 3<br>OFF LINE<br>MON |
|       | (A)                       | (A)                     | (A)                | (A)                     | (A)                     | (A)                     | (A)                | (A)                      |
|       | 25                        | 26                      | 27                 | 28                      | 29                      | 30                      | 31                 | 32                       |
| 011   | SYS 4<br>CTRL             | SYS 4<br>MUX            | SYS 4<br>OPT OUT   | SYS 4<br>OPT IN         | SYS 4<br>DMUX           | SYS 4<br>MAJ ERR        | SYS 4<br>PWR MIN   | SYS 4<br>OFF LINE<br>MON |
|       | (A)                       | (A)                     | (A)                | (A)                     | (A)                     | (A)                     | (A)                | (A)                      |
|       | 33                        | 34                      | 35                 | 36                      | 37                      | 38                      | 39                 | 40                       |
| 100   | SYS 1<br>MIN ERR<br>(A)   | SYS 1<br>LD BIAS<br>(A) | SYS 1<br>SV<br>(A) | SYS 1<br>ALM CCT<br>(A) | SYS 2<br>MIN ERR<br>(A) | SYS 2<br>LD BIAS<br>(A) | SYS 2<br>SV<br>(A) | SYS 2<br>ALM CCT<br>(A)  |
|       | 41                        | 42                      | 43                 | 44                      | 45                      | 46                      | 47                 | 48                       |
| 101   | SYS 3<br>MIN ERR<br>(A)   | SYS 3<br>LD BIAS<br>(A) | SYS 3<br>SV<br>(A) | SYS 3<br>ALM CCT<br>(A) | SYS 4<br>MIN ERR<br>(A) | SYS 4<br>LD BIAS<br>(A) | SYS 4<br>SV<br>(A) | SYS 4<br>ALM CCT<br>(A)  |
|       | 49                        | 50                      | 51                 | 52                      | 53                      | 54                      | 55                 | 56                       |
| 110   | SYS 1<br>ON LINE<br>(S)   | SYS 1<br>CH IN<br>(S)   | (ប)                | (U)                     | SYS 2<br>ON LINE<br>(S) | SYS 2<br>CH IN<br>(S)   | (U)                | (U)                      |
|       | 57                        | 58                      | 59                 | 60                      | 61                      | 62                      | 63                 | 64                       |
| 111   | SYS 3<br>ON LINE<br>(S)   | SYS 3<br>CH IN<br>(S)   | (U)                | (U)                     | SYS 4<br>ON LINE<br>(S) | SYS 4<br>CH IN<br>(S)   | (U)                | (U)                      |

<sup>(</sup>A) : Alarm

<sup>(</sup>S) : Status (U) : Unassigned (X) : Reserved

NOTE 1: Bit 64th is assigned for administrative function.


<sup>2:</sup> This Display assignment conforms to STANDARD ATTRIBUTE ASSIGNMENT L128.

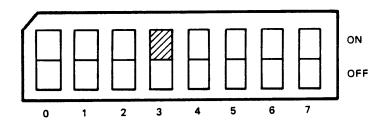
## C. Setting of DISP Switch

3.12 When the equipment configuration is O-LTM, for assignment of local station and remote station, two elements of DISP SW on the ALM unit (Grp:AA00, for serial interface) are used and when in MUX configuration, one element is used for setting local station.

### O-LTM Configuration

3.13 Two DISP SW Nos. are assigned for local station and remote station when the equipment is in O-LTM configuration. When two numbers out of eight numbers (0 - 7) are set to ON, the smaller one is for local station and larger one is for remote station. See Figure 3-4.




DISP No.1 : Local station
DISP No.5 : Remote station

NOTE: When only one is set, this means setting for local station. And when more than two are set, the smallest No. is for local station and the next number is for remote station and other numbers will be ignored.

Figure 3-4 Example of DISP SW Setting for Local and Remote Station

# MUX Configuration

3.13 Setting of DISP SW No. in MUX configuration enables only for local station.



DISP No.3: Local station

NOTE: When more than one numbers are set, only the smallest number is valid and rest are ignored.

Figure 3-5 Example of DISP SW Setting for Local Station

# 4. CONTROLS AND INDICATORS

- 4.01 Figures 4-1 through 4-3 show controls and LED indicators of three groups of the ALM unit respectively. Table 4-1 lists functions of them. For physical location of controls and indicators, refer to Figures 4-1 through 4-3.
- 4.02 RESET switch is located on the ALM unit (Grp:0A01, AA00, ♦0B00 and AB00♠), and not mounted on the unit (Grp:0A00). Functions of controls and indicators are common for all groups.

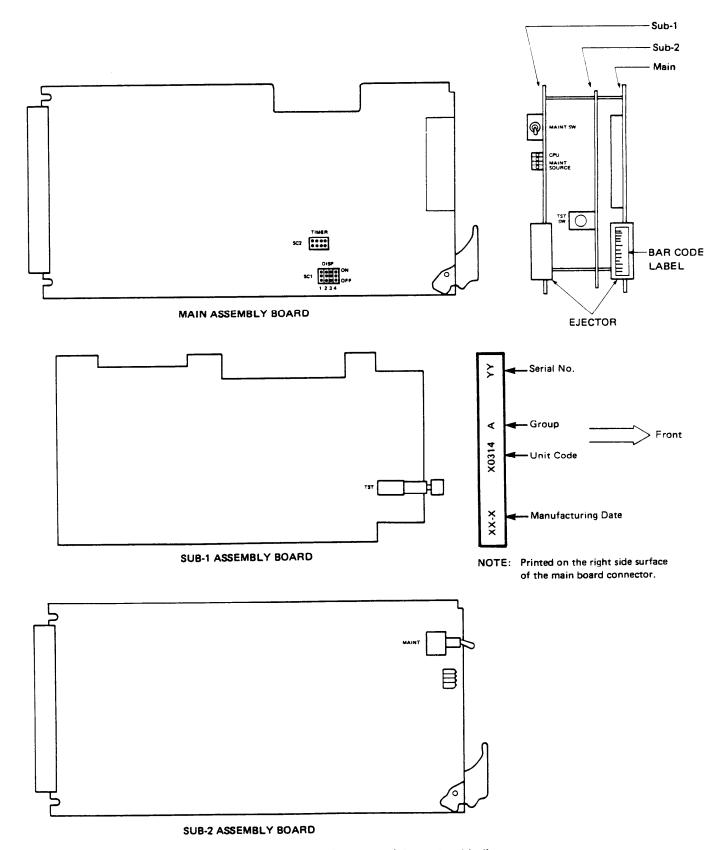
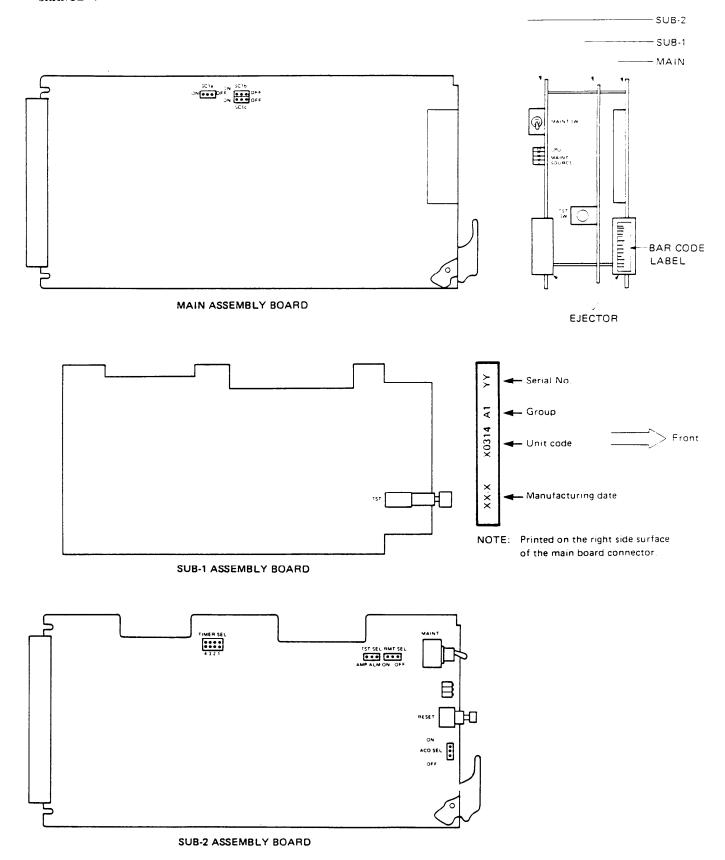
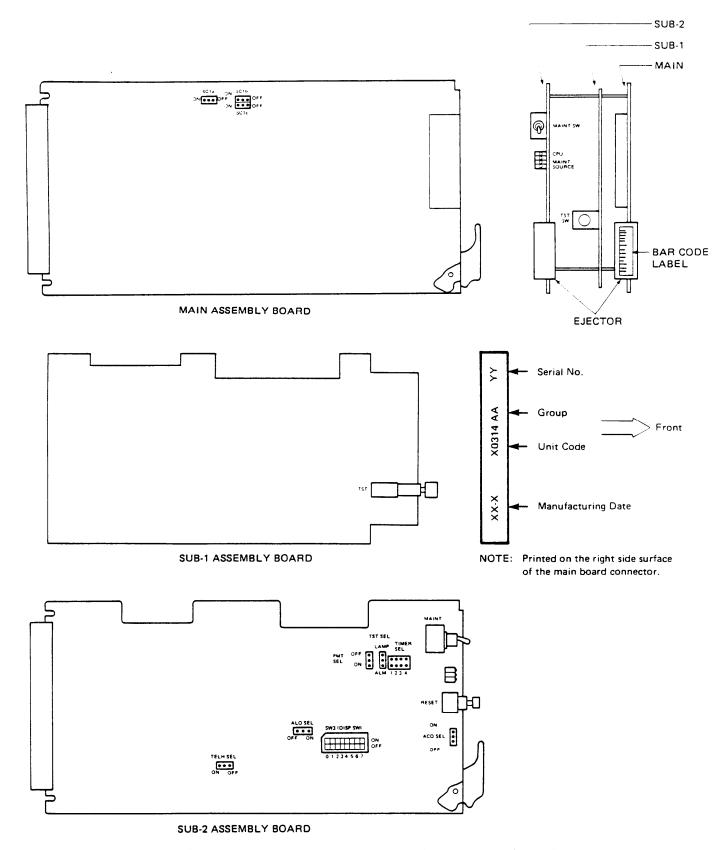





Figure 4-1 ALM Unit (Grp: 0A00) Control and Indicators



♦ Figure 4-2 ALM Unit (Grp: 0A01, 0B00) Control and Indicators ♦



₱ Figure 4-3 ALM Unit (Grp: AA00, AB00) Control and Indicator ♦

Table 4-1
ALM Unit Controls and Indicators

| Feature   | Type                       | Control/<br>Indicator | Function                                                                                                                                                                        |
|-----------|----------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alarm     | Red LED                    | CPU                   | Lights when CPU on the ALM unit is faulty.                                                                                                                                      |
|           | Red LED                    | MAINT                 | Lights when MAINT switch is ON.                                                                                                                                                 |
| Status    | Green LED                  | SOURCE                | Lights when -48 Vdc is supplied to this unit.                                                                                                                                   |
| Test      | Pushbutton<br>switch       | TST                   | LEDs on the units are lit when this switch is depressed.                                                                                                                        |
|           | Two position toggle switch | MAINT                 | For manual switching RESET SW operation or remote loopback, this switch set to ON.  During maintenance work, this switch is kept ON.                                            |
| Operation | Pushbutton<br>switch       | RESET                 | When this switch is pushed, temporary release of alarm condition is enabled. And to turn off still lighting LED even if alarm condition is resorted, this switch is despressed. |

# 5. STRAPPING SELECTION

5.01 As shown in Figures 4-1 through 4-3, there are strapping locations on the ALM units. Selection of strapping positions are described in NEC practice NECA 365-407-203.