SECTION 403-323-500
Issue 1, May, 1942
AT\&TCo Standard

HIGH SEAS AND OVERSEAS RADIO B3 PRIVACY DEVICE MAINTENANCE

1. GENERAL
1.01 The B-3 Privacy unit, when used in a radiotelephone circuit, is normally connected permanentiy in the control terminal and is energized continuously. Jacks are provided in the control terminai so that a spare priveoy unit may be patched into the circuit when the regular unit is to be taken out of service fne rinntenance tests.

2. DESCRIPTION OF TESTS AND ADJUSTMENTS

(A) A-C In

2.01 Fower shall be conneoted to the oircult for at least two minutes before the heater voltage tests are made. at time of the initial installation (unless the average ilne voltage is already known, measurements of the a-c line voltage shall be made over a period of at least 24 hours. At the end of the test period, the average enc line voltage shall be determined, neglecting short time sarges in the voltage, and appropriate connections made to the transformer terminal blook which is mounted beneath the protective oover associated with the power supply unit on the panel.

> Caution: The voltages under the protective cover on the rear of the panelare dangerous. This cover may beremoved wlth the ald of acrewdriver; but the pourar lead must frst be disconnected and not reconnected uatil the cover has been replaced.

2.02 Apparatus

A-c Voltmeter, :Veston Model 341, 0-50150V (or equivalent)
Screwdriver, 4-inch
2.03 Proce:Jure
(1) Disconnect a-c power lead and, with voltmeter plugged into the body at the end of the lead, measure the a-c line voltage.
(2) : With lead still disconnected, remove protective cover and observe to what terminals on the power transformer the incoming leads are connected.

Requirements:

Connections to the transformer Y terminal blook shall be made in accordance with the following table:

For Average A-C Line		Connect to Transformer Term.
Vol	ge rrom	Blook Punohings
96	- 104	4 and 5
104	- 111	4 and 6
111	- 119	4 and 7
119	126	and

(3) Reconnect the input leads as required, replace cover and reconnect the a-c power lead.
(4) After power has been applied for at least two minutes, measure the a-c heater voltage of each vacuum tube with the voltmeter connected to the indicated socket terminals.

Requirements:

(B) Grid Blas Voltage
2.04 The grid blas voltage for the transmitting and the receiving amplifier tubes T and R is obtalned through cathode resistance drop so that it is a measure of the plate currents in the tubes. Since the settines of the T GAIN and R GAIN potentiometers effect not only the gain but the grid bias on the associated tube, specific values oannot be given for all operating conditions. Extreme grid bias voltage values are given for maximum and minimum gain settings of the potentiometers.

2.05 Apparatus

D-c Voltmeter :ieston Volt-Ohmmeter Nodel 564, KS-7. 5 , 1000 ohms per volt (or equivalent)
Screwdriver, 4-inch
2.06 Procedure
(1) Note the normal settings of the T GAIN and R GAIN potentiometers and turn them first to their full clockwise and then to their full counterclockwise positions.
(2) Measure voltage drop across the "E" and "K" resistances which are designatedillB50c and looated on the rear of the panel at the right of the m GAIN and $?$ GAIN potentiometers respectively.

Requirements:

For Maximum Gain Setting of Potentiometer (Full (lockwise Pos.)	Porinimum Gain Sotting of Potentiometer (Full Counter- Clockwise Pos.)
$1.6-4.5 \mathrm{~V}$	$3.7-7.1 \mathrm{~V}$

(3) Restore potentiometers to normal settings.

(C) Plate Voltage

2.07 Apparatus

D-o Voltmeter, Y Yeston	Volt-Ohmmeter
Model 564,	
volt (or equivalent),	

2.08 Procedure

(1) Measure between socket terminals 3 and 4 of the OSC tube.

Requirement: The plate voltage shall be in the range of 115-150 volts.
(D) Vacuum Tubes
2.09 Apparatus

Hickok Model 530B Tube Tester (or equivalent)

2.10 Procedure

(1) Remove each vacuum tube from its socket and test it in the tube tester in accordance with BSP 100-640-101.

Note: The tube tester settings and test requirements for the three types of tubes as given in BSP 100-640-101 should be used rather than those indicated on the tester roll chart.
(2) Replace any tube that does not meet the requirements.
(E) Oscillator Frequency
2.11 :hen the panel is manuraotured, the oscillator frequency is adjusted to within 0.6 cps of its nominal value. It should not be necessary to change this adjustment (unless the strapping of the 030 condenser becomes broken) until the aging of the cirouft elements causes the frequency to depart from its nominal value by more than 5 cps .

Note: If no precision osaillator is avallable for the frequency test, the test shall not be made since the frequency change attributable to aging is less than the probatie error in the ordinary oscillator.

2.12 Apparatus
 Osoillator, 6010 B (or equivalent)
 Telephone Receiver, 528 equifped with 2N2A Cord
 or
 Volume Indicator, 753-B (or equivalent) Resistance, 300-ohm Patch Cord, 3F14B
 2.13 Procedure
 (1) Temporarily connect a 300-ohm resistance between terminals 12 and 14 on the T terminal strip so as to apply a portion of the precision osoillator output direotly to terminals 13 and 14 on the T terminal strip.
 (2) Adjust precision osoillator for 1 Mur of $1500-\mathrm{cps}$ tone, if H condenser is an AL6, or $1625-\mathrm{cps}$ tone, if H condenser is an ANIl.
 (3) Connect precision oscillator output to TR jacks, if terminals 11 and 12 on the T terminal stripare connected to terminals 9 and 10 or to 3 and 4; otherwise use TA IN jacks.
 (4) Connect telephone recelver or volume indicator to TA OUT jacks, if terminals 13 and 14 on the T terminal strip are connected to t erminals 15 and 16; otherwise use TR jacks.
 (5) Listen at the receiver or observe the volume indicator meter needle as the portion of the precision oscillator output that has passed through the modulator beats against the unmodulated portion; and adjust CSC condenser by strapping for "zero beat".
 Note: Do not apply a soldering iron to the condenser terminals until the proper strapping has been completely determined.
 (6) Remove 300-ohm resistance.
 (F) Oscillator Output Voltage
 2.14 Apparatus
 40B Tranamission Measuring System or
 fa Transmission Measuring set Patch Cord, 2iN24A
 2.15 Procedure

(1) Sonnect input of measuring set to terminal 8 of transformer T IN and center terninal "3" of potentiometer T BAL.
(2) Calibrate measuring set for 3000 cps, if H condenser is an AL6, cr 3250 cps , if H condenser is an ANIl, and messure level.

Requirement: The oscillator out pit level shall be at leest +11 dbm (2.8 7).
(3) Make same measurement for the conneotion to terminal 8 of transformer R IN and center terminal "3" of potentiometer R BAL.

(C) Gain-Frequency Characteristics

2.16 The privacy gain measurements are
divided into three parts: Amplifier alone, Kodulator alone, Amplifier plus Modulator. Only those tests that correspond with the arrangements actually used in the oiroult need be made. However, for trouble looetion tests, it may be desirable to test the individual parts. The tests are based on the privacy wired for operation in a 600ohm impedence oirouit.

2.17 Apparatus

40B Transmission Measuring System 19 C or 13A Oso11lator
or
6A Transmission Measuring Set 13A oscillatnr
2 - Fatch Sords, 3P14B
2 - Patch Jords, 2iv24A Sorewdriver, 4-inoh
2.18 Procedure (Amplifler)
(1) Patoh from SEND jacks of measuring set to TA IN or RA IN jacks of transmitting or receiving amplifier; and from TA OUT or RA OUT jacks to REC jacks of measuring set.
(2) Observe to which terminal of amplifier input transformer TA IN or RA IN the flexible lead from the grid cap of the assoolated amplifier vecuum tube is connected. Refer to table below and use corresponding tone input power.
(3) Note the normal settings of the T GAIN and R GAIN potentlometers and turn thom P1rst to their full olockwise and then to their full counterolookwise positions.
(4) Heasure output of each amplifier at 200, 1000 and 3000 cps for both maximum and minimum galn conditions. Check to see that amplifier gain is within the correct ranges for the input transformer terminal in use.

Requirements:

a. Grid Cap SendConnected to ing Input Trans. Tone Terminal Power hax. Caln Min.Gein dbm $\begin{array}{llll}-30 & 33 & -37 & 26.7-322 \\ -30 & 28.5-33.5 & 22.2-28.6\end{array}$ $\begin{array}{lll}-30 & 28.5-33.5 & 22.2-28.6 \\ -30 & 24.5-295 & 18.2-24.6\end{array}$ -20 20.5-25.5 14.2-20.6 -20 16.5-21.5 10.2-16.6 $-20 \quad 12.5-17.5 \quad 6.2-12.6$
b. The gain at 200 cps shall not differ from the measured value of 1000-0ps maximum gain by more than +0.4 to -1.6 db and from the measured value of mindmur gain by more than 0 to -2 db .
c. The gain at 3000 ops shall not differ from the measured value of 1000-ops maximum gain by more than 0 to -1 db and from the measured value of minimum gain by more than +0.3 to -1.5 db.
(5) Restore the GAIN potentiometers to their normal operating settings.

2.19 Procedure (Modulator)

(1) Temporarily disconnect straps from terminals $11,12,13$ and 14 on the T and R terminal strips.
(2) Conneat the SEND Jaoks of the measuring set to terminals 11 and 12 on the T or R terminal strip (for transmitting or reoeiving modulator); and conneot terminals 13 and 14 on the T or R terminal strip to the REC jaoks of the measuring set.

Note: If 6A TMS is used, it will be neoessary, for each test frem quency used, to adjust its SEND and CAL positions with its oscillatar set for the output frequency to be measured and then to adjust its SEND position for the input frequenoy to be used. Its key is then operated directly from the SEND to the MEAS position when the loss measurament 18 to be made.
(3) Send 1 Nw of tone at the frequencies shown below, measure the out put (oalibrating the measuring set at the frequencies of column 2 or 3) and caloulate the loss in the modulator.

Requirements:

Input Freg.	Output Frequency	
	If	18 an
	AL6	ANI 1
cps	Opa	Op8
1500	1500	1750
250	2750	3000
2750	250	-
3000	-	250

Loss at
$\frac{1500 \text { aps }}{d b}$
$8.3-11.3$
$=$
$=$

Loss Relative to
Measured Value of
$1500-0$ ops Loss

(4) Reconneot straps to terminals il, 12, 13 and 14 on T and R terminal strips.
2.20 Procedure (Amplifier and Modulator)
(1) If the amplifier follows the modulator, patch from the SBND jacks of the moasuring set to the TR or REC jaoks (for the transmitting or reoelving side of the privacy) and from the TA OUT or RA OUT jacks to the REC Jaoks of the measuring set.
(2) If the amplifier precedes the modulator, patch from the SEND jaoks of the measuring set to the TA IN or RA IN jaoks and from the TR or REC Jaoks to the REC jacks of the measuring set. (See Note under step (2) of Paragraph 2.19)
(3) Observe the designated number of the terminal of amplifier input transformer TA IN or RA IN to which the flexible lead from the grid cap of the amplifier vacuum tabe T or R is oonnected.
(4) Note the normal setting of the assooiated GAIN potentiometer and turn it to full clockwise position for maximum gain.
(5) Send tone at -25 dhm and at the frequencies shown below, measure the output (calibrating the measuring set at the rrequencies of column 2 or 3) and calculate the gain of the amplifier and modulator.

Requirements:

Input	Output Frequency		Overall Maximum Gain		Gain Relative to Measured Value 1 1500-
			Wth	Without	
	If H Co	Is an	Rep. Coll	Rep. Coil	
Freg.	AL. 6	AN11	T or R	T or R	Cycle Gain
cps	cps	cps	db	do	db
1500	1500	1750	22.7-27.7	23.1-28.1	
			1ess $4(\mathrm{~N}-1)$ *	less 4(N-1)*	
250	2750	3000	-		+0.1 to -3.5
500	2500	2750	-	-	+0.7 to -0.7
1000	2000	2250	-	-	+0.9 to -0.5
2000	1000	1250	-	-	+0.9 to -1.1
2500	500	750	-	-	+0.9 to -2.3
2750	250	-	-	-	-0.5 to -3.7
3000	-	250	-	-	-0.5 to -3.7

* N is the numerical designation of the terminal
on the amplifier input transformer to which
the flexible lead is connected. For example.
if the flexible lead connects to terminal 4 the
overall gain range is 12 db less than that
shown.
(6) Restore the GiIN potentiometers to their normal operating settings.

(H) Carrler Leak

```
2.21 Apparatus
    Telephone Receiver,528 equipped w1th
        2#2A Cord
    8-Patch Cords, 2P13A
    jerewdriver, 4-inch
```


2.22 Procedure

(1) Note their normal settings and turn the T GAIN and R GAIN potentiometers to their full clockwise position for maximum gain.
(2) Note their normal connections and connect flexible leads from caps of T and R vacuum tubes to terminal 1 of TA $\mathbb{I N}$ and RA IN input transformers.
(3) If amplifiers ocme betore modulators, pat oh from TR jacks to TA IN jaoks and from REC jacks to RA IN jacks.
(4) Conneot telephone reveiver to TA OUT jaoks and, ville listening to osoillator tone (3000 or 3250 ops), adjust the T BAI potentiometer until the tone is minimum.

Requirement: The minimum tone shall be barely audible and there shall be s sharp balance.
(5) If this requirement oannot be mot by the adjustment of the potentiometer alone, it will be nedessary to adJust the oapaoity of condenser K and perhaps to ahange its $00 \mathrm{mneo}-$ tion to the T OUT repeating ooil from terminal 3 to terminal 8 or vice versa.
(B) Connect telephone receiver to RA OUT jacks and, using the R BAL potentiometer (and condenser I, if necessary), repeat the test of step (4).
(7) Reatore GAIN potentiometers to their normal sottings and the rlexible leads of the T and R vacumm tubes to their normal terminals on the TA IN and RA IN input transformers.

(I) Noise

2.23 Apparatus

2B Noise Measuring Set (or equivalent)
2 Plugs, 800-ohm 217-D
2 Resistances, $800-0 \mathrm{hm}$
2 Patch Cords, 2P13A
Sorewdriver, 4-inoh

2.24 Prooedure

(1) Note their normal sottings and turn the T GAIN and R GADN potentiometers to their full oloolowise position for maximum gain.
(2) Note their normal oonneotions and connoot flexible leads from caps of T and R raounm tubes to terminal 1 of TA IN and RA IN input transformors.
(3) If amplifiers come after nodulatores, terminate TR and REC jaoks in 600 ohms.
(4) If amplifiers come before modulators, paton from IR jaoks to TA IN jaoks and from REC jaoks to RA IN jacke. Temporarily conneot 600-ohm resistanoes aoross torminals 17 and 18 on the T and R torminal etrips.
(5) Insert masuring set plug in its InE jack, conneot the set in turn to the TA OUT and RA OUT jacks and measure noise.

Requirement: The noise shall be less then 46 db above reference noise (message welghting).
(8) If requirement is not met, oheok the plate supply filter (retard coils A and B and condensers F, F and G).
(7) Remove $600-0 \mathrm{hm}$ terminations, restore GAIN potentiometers to thelr normal settines and the rlexible leads of the T and R vaolum tubes to their normal terminals on the TA IN and RA IN input transformers.

