CONTENTS
2. GENERAL .

To avoid having the middle of a span over a road, alley, or driveway when drop wire sags exceed 2 or 3 feet, poles should be placed within 50 feet of the edge of a road, alley, or driveway. A pole located within 50 feet of the edge of the road, alley, or driveway (distance A, Fig. 1) will permit the overhead clearance to conform to requirements related to Fig. 1.

Fig. 1-Wire Crossing Public Road-Pole at Road Edge
1.06 The clearance values specified in this section are in accord with the requirements of the 1984 edition of the National Electrical Safety code. These clearances should be used unless the work order or local requirements call for other values. This may occur when engineering forces recognize factors not allowed for in this section or because of local requirements, etc. Clearances for span lengths, voltages, and conditions not covered in this section are an engineering responsibility and will be shown on the work order or detailed plans.
1.07 Clearances over public and private swimming pools are covered by the 1984 edition of the National Electrical Safety Code, rule 234E1. For reasons of safety, sanitation, and appearance, aerial drop wire crossings over swimming pools should be avoided.
2.01 The following is a brief description of conditions applicable to drop wire clearance requirements:
(a) Storm Loading Areas: Figure 2 identifies the three storm loading areas based upon studies made from records of wire using companies and data from the United States Weather Bureau. The frequency, severity, and effects of ice and windstorms in various sections of the country were the elements considered in establishing the loading area zones. As a result of the weather differences, allowances must be made for the stretching of conductors in their respective loading zones when placing a drop wire.
(b) Drop Wire Sag: The sag in a drop wire is measured by comparing the line of sight established by the drop wire attachments and the lowest point in the span. Stringing sags for drop wire is shown in Section 462-400-200.
(1) Normal Drop Wire Sag: Drop wires are to be strung with normal sags when adequate clearances can be attained. Technicians on poles can obtain these sags with normal hand pulling.
(2) Minimum Drop Wire Sag: A minimum sag in a drop wire can be strung where clearance is limited and normal sags cannot be attained. These smaller sags result in higher stringing tensions in the wire; therefore, pulling tools are required to enable the technician to pull the wire up to tension.
(c) Placing Clearances: Placing value of clearance is the height the drop wire is to clear when placed or replaced.
(d) Placing Clearances on Jointly Used Poles: Placing clearances on jointly used poles are the clearances required between drop wires and drop wire attachments and foreign equipment and foreign equipment attachment apparatus.
(e) Maintenance Clearances: Maintenance clearance is the clearance that should exist after the wire has been exposed to one or more cycles of storm loading and the temperature returns to $60^{\circ} \mathrm{F}$.

$$
\begin{gathered}
\cup \\
\cup
\end{gathered}
$$

(f) Drop Wire Crossing Above Railroad Tracks:
(1) Generally: This is the clearance required when the drop wire does not parallel a contact wire for a streetcar or electrified bus.
(2) Special Case: This is the clearance required when the drop wire parallels a contact wire used by a streetcar or electrified bus (Fig. 3)
(g) Drop Wire Crossing Above Public Roads, Public Alleys, or Residential Drives:
(1) Generally: This is the clearance required when the drop wire is attached to a pole further than 50 feet from the far edge of the traveled roadway (Fig. 4).
(2) Pole at Road Edge: This is the clearance required when the drop wire is attached to a pole located within 50 feet of the far edge of a traveled roadway (distance $A, F i g$. 1).

Fig. 3-Wire Crossing Railroad Tracks-Special Case

Fig. 4-Service Drop Over Residential St.
(h) Major Overhang: A drop wire which passes over 6 feet or more of the ordinarily traveled part of a roadway is a major overhang (Fig. 5).
(i) Minor Overhang: A drop wire which passes over less than 6 feet of the ordinarily traveled part of a roadway is a minor overhang (Fig. 5).
(j) No Overhang-Back of Obstruction: A pole line located in back of a fence, ditch, embankment, etc., so that the ground beneath the line can ordinarily be traveled by pedestrians only, is not considered to be an overhang (Fig. 6).
(k) No Overhang-Not Back of Obstruction: This category is a pole line not back of a fence, ditch, embankment, etc., and does not overhang the normal traveled road. This category is meant to include ground not ordinarily traveled in both rural (Fig. 7) and nonrural (Fig. 8) areas that can be reached by vehicles. If farm machinery is likely to pass under the line, sufficient clearance must be provided so that the drop wire will be 2 feet above the highest part of such machinery or the loads it will carry.

Fig. 7-Wire Running Along, But Not Overhanging Public Roads (Not Back of Obstruction))

Fig. 8-Wire Running Along, But
Not Overhanging, Nonrural Public Roads (Not Back of Obstruction)

3. DROP WIRE CLEARANCES

3.01 The following factors must be considered when determining proper wire clearances:
(a) Placing or Maintenance Clearances: The clearances for drop wires to be placed or replaced are identified as placing clearances. The clearances for existing drop wires, in place, are identified as maintenance clearances.
(b) The Storm Loading Area: Determine the storm loading area applicable to the locality where the drop wire exists or is to be placed. Storm loading areas are defined in Fig. 2.
(c) Drop Wire Sag: Drop wires are placed or in-service with a normal or minimum sag.
(d) Specific Condition Encountered: The specific condition encountered, such as placing the drop wire above or along roadways, rails, and buildings, or above or below power facilities, foreign equipment, and neon signs, will determine the drop wire clearances.
(e) Clearances on Jointly Used Poles: These are clearances to be maintained between telephone company facilities and power company or licensee attachments.

minimum clearance to	GROUNDEd	not Grounded
Streetlight fixtures, span wires (Fig. 9, 10, 11, \& 12)	4 inches	20 inches
Streetlight drip loops (Fig. 9)	12 inches	
Drive hooks, bridlewire rings, brackets, etc. (Fig. 10)	4 inches	16 inches
Telephone Company guys	3 inches	
Licensee attachments (Fig. 13)	12 inches	
Grounded neutrual on common crossing poles (Fig. 14)	40 inches	

TO BE GROUNDED. FIXTURE MUST
BE BONDED TO A GROUNDED
STRAND OR TO A GROUND WIRE
OF AN MGN SYSTEM.

Fig. 9-Clearance From Streetlight Fixture Drip Loop Above Cable or Multiple Line Wire

Fig. 10-Clearances of Drivehooks, Bridlewire Rings, or Brackets From Streetlight Fixtures

NOTE:
TO BE GROUNDED, FIXTURE MUST
BE BONDED TO A GROUNDED
STRAND OR TO A GROUND WIRE OF AN MGN SYSTEM.

Fig. 11-Clearance of Cable From Streetlight Fixture Mounted Above Cable

Fig. 12-Clearances of Cable and Pole-Mounted Terminal From Streetlight Fixture Mounted Below Cable

Fig. 13-Vertical Clearance Between Telephone Company
and Licensee Cables

Fig. 14-Drop Wire Clearance on Common Crossing Pole

TABLE B

Drop Wire Placing Clearances (At $60^{\circ} \mathrm{F}$) Above Ground or Rails - Light and Medium Storm Loading Areas

[^0]- the clearence oyer residenital streets may be reduced 2 feet at the edge of the road If reouired clearence is obinined at THE CENTER OF THE ROAD (FIG. 1)

TABLE C
Drop Wire Placing Clearances (At $60^{\circ} \mathrm{F}$)
Above Ground or Rails - Heavy Storm Loading Areas

- nust be supported by ba strand for spaks oyer 100 fi.
\# Mot recomhended for span lemaths ouer ios fi.
4 mot recohended for spah lemgith ouler 150 ft .
the clearence over residenidal streets hay ae reduced by a feet AI THE EDEE OF THE ROAD IF REOUIRED CLEARENCE IS OBTAINED AT the eemier of the road (f16. 4)

Drop Wire Maintenance Clearances (At $60^{\circ} \mathrm{F}$) Above Ground or Rails - Light and Medium Storm Loading Areas

- hust be supporied oy gh strand foim spans ouer 150 fi.
(must be supported by bK stand for spans derer 125 ft.
\#+ NOI RECOMHEMDED FOR SPAN Lengith OVER 250 fI.
- the clearence oyer aesidentials streets hay be reduced 2 feet at the euge of ihe road if repuired cleanence is obtalned al the center of the road (fig. 1)

TABLE E

Drop Wire Maintenance Clearances ($60^{\circ} \mathrm{F}$)
Above Ground or Rails - Heavy Storm Loading Areas

- husi be supported by bh strand for spans over 100 ft .
+* not recomenended for span lengihs over 175 ft.
the clearence over residential streets may be reaceed er 2 feet
at the egee of the rodo if reourred clearence is obtainea at the cenier of the roho (fig. 4)

4 hot reconnended for span lengihs over iso fi.

HOIE :
haintenance clearences for all span lemgths IN all sionh loading areas hith morhal or hinskuh sag are phe same as specified in COLUHN 1 for the placing clearences.

- voltage to ground, if poher circuit is effectiveer GPOUNBED; vOLTAGE BETLKEE MIRES IF HOT GROUNOED.
- every effort shall be haod to hyodo these siduaitons and estaglish a conkon pule crossing instead.
it same as associaled phase wires.

Drop Wire Placing Clearances

 With Normal or Minimum Sag
drop getow

DROP WIRE ALONGSIDE

HOIE :
mathienance clearences for all span lengihs in all storin loading areas wilh horhal or hinimum sag are the same as specified in coluhn I for the placing ceeabences.

- haxihliu span lemgit 250 Ft.
- span lengit of foreign cable moj ouer 250 fi.

I SPAN LENGTH Of FOREIGN CAELE NOT OYER its fI.

```
4.01 DANGER: To avoid the possibility of electrical shock, technicians placing drop
        wires that may contact power supply wires or cables shall wear insulating
        gloves. In joint construction, any one of the following supply voltages could
        be encountered:
Phase-to-Phase Voltage
    - Secondary distribution - }750\mathrm{ volts or less
    - Primary distribution - 2200 to 34,500 volts
    - Subtransmission - 26,000 to 69,000 volts.
Phase-to-Ground Voltage
    - Primary distribution - 1270 to 20,000 volts
    - Subtransmission - 15,000 to 40,000 volts.
4.02 It is imperative that employees be able to identify supply voltages and take
        additional precautions when exposed to such voltages.
4.03 Power conductors immediately above telephone facilities, if attached to
        spool-type insulators on a metal bracket, can safely be assumed to be secondary
        service, with voltages less than }750\mathrm{ volts.
4.04 Crossarms are usually associated with primary voltages. It is quite common to
        have a primary distribution supply above the secondary distribution with a
        voltage range of 2200 to 34,500 volts.
4.05 Technicians can estimate the voltage of power by observing the size and type of
        insulator, voltage markings on transformer, position of supply conductors on a
        pole, etc. (See Fig. 26, 27, and 28.)
4.06 Technicians should make it a point to acquaint themselves with the power company facilities in localities where they work so they may be able to accurately estimate power facilities.
```


Fig. 26-Typical Power Supply Insulators

Fig. 27-Voltage Marking on Transformer
Page 22
22 Pages

Fig. 28-Position of Supply Conductors

[^0]: 4 nust ae supporied \&y bh strand for gpahs over 150 fI.

 - hust ae supported by bh strand for spans quer 125 fi.
 + + mot recomhended for span lengths oyer 250 ff.

