CIRCUIT VOLTAGE LIMITS GENERAL EQUIPMENT REQUIREMENTS

CONTENTS PAGE CONTENTS PAGE2
SCOPE 2
DEFINITION OF TERMS 3
2. SUPPLEMENTARY INFORMATION 4
3. DRAWINGS 4
4. SWITCHING SYSTEMS 4
STEP-BY-STEP (SXS) SYSTEMS 4
PANEL SYSTEM 7
CROSSBAR SYSTEMS (CSBR)-LOCAL 7
CROSSBAR SYSTEMS - TANDEM 7
CROSSBAR SYSTEMS - TOLL 7
ELECTRONIC TRANSLATOR SYSTEM (ETS) 8
NO. 1 ELECTRONIC SWITCHING SYSTEM (ESS) 9
NO. 2 ESS 10
NO. 3 ESS 11
NO. 101 ESS CONTROL UNIT 12
5. SIGNAIING CIRCUITS AND EQUIPMENT 14
MUITIFREQUENCY SIGNAIING 14
SINGLE FREQUENCY SIGNALING 14
6. TRAFFIC SERVICE SYSTEMS 16
SWITCHBOARDS 16
DESKS 16
AUXILIARY SERVICES POSITIONS 17
TRAFFIC SERVICE POSITION SYSTEM (TSPS)
NO. 1 17
AUTOMATIC INTERCEPT SYSTEM (AIS) 18
7. TRAFFIC MANAGEMENT SYSTEMS 19
TRAFFIC MEASUREMENT SYSTEM NO. IA 19
TRAFFIC DATA RECORDING SYSTEM NO. IA 19
SERVICE OBSERVING SYSTEMS 19
AUTOMATIC MESSAGE ACCOUNTING CENTER NO. I 19
ANNOUNCEMENT SYSTEMS 20
TEST DESKS 21
TESTBOARDS 22
SWITCHED MAINTENANCE ACCESS SYSTEMS (SMAS) 22
8. "TOUCH-TONE"' CALIING 23
9. REPEATERS AND CARRIERS 24
VF REPEATERS 24
WIDEBAND LOOP REPEATERS (WLRs) 24
AMPLIFIERS 24
ECHO SUPPRESSORS 24
MUITIPORT CONFERENCE BRIDGE (J68657) 24

CONTENTS

PAGE
C CARRIER 25
J AND K CARRİERS - MAIN OR TERMINAL STATIONS 25 .
J AND KI CARRIERS - AUXILIARY STATION 25
K2 CARRIER-MAIN, TERMINAL, AND AUXILIARY STATIONS 26
K2 CARRIER-AUXILIARY STATIONS 26
II CARRIER-MAIN AND TERMINAL STATIONS 26
I3 CARRIER - MAIN AND TERMINAL STATIONS 26
13 CARRIER - TELEVISION TERMINALS 26
14 CARRIER 27
15 CARRIER 27
CARRIER TELEPHONE TERMINALS 27
N1 CARRIER SYSTEM 27
N2 CARRIER SYSTEM 28
N3 CARRIER SYSTEM 28
N3-L JUNCTIONS 28
0.1 CARRIER 28
U-1 CARRIER TERMINAL 28
MISCELLANEOUS CARRIER EQUIPMENT 29
10. RADIO TELEPHONE SYSTEMS 29
11. TELEVISION SYSTEMS 30
12. MICROWAVE RADIO TELEPHONE SYSTEMS 31
13. SURVEILLANCE AND CONTROL SYSTEMS 32
SUPERVISORY CONTROL 32

CONTENTS
PAGE
14. DIGITAL TRANSMISSION FACILITIES 33
TIANDTIC DIGITAL LINES 33
T2 DIGITAL LINE 33
D-TYPE CHANNEL BANKS 33
dIGITAL MULTIPLEXES 33
DATA BANKS AND MODEMS 33
MISCELIANEOUS 33
15. TIME ASSIGNMENT SPEECH INTERPOLATION (TASI) 34
TASI 34
TASI B 34
16. COIN CONTROL 34
17. 20-HZ RINGING 35
CONTINUOUS RINGING
SUPPLIES - CENTRAL OFFICES 35
MACHINE RINGING 38
18. SIGNALS AND TONES 39
PRECISE CALL PROGRESS TONES 39
NONPRECISE CALL PROGRESS TONES 42
19. AC SUPPLIES-MISCELLANEOUS 60 HZ 44
20. MAGNETIC RECORDERS AND ASSOCIATED COMPONENTS 45
21. MISCELLANEOUS APPARATUS OR EQUIPMENT 46
TRANSMISSION MEASURING 46

1. GENERAL
SCOPE1.01 This specification, together with the supple-mentary information listed herein, covers the
requirements for battery, $60-\mathrm{Hz}$ ac, ringing, signal, and tone voltage limits.
1.02 The information contained herein has been compiled from design parameters of the equipment listed in Parts 4 through 21 of this specification. Changes and additions shall be transmitted by the Divisional Coordinator involved to the Bell Laboratories Standards and Materials Engineering Department (8251) for revision. 37
1.03 This specification includes information formerly specified in Section 802-004-150 (J86718), together with information pertinent to recently introduced new systems.
1.04 This specification is reissued to add information pertinent to newly introduced systems and to clarify and update previous information.
1.05 The dc voltage limits listed herein, together with current drains, provide information for planning and engineering suitable power plant arrangements with required battery end voltage and reserve time for central office installations as follows:
(a) Summary of voltage supplies used by various systems. In this regard only "primary" voltages are listed and generally not the outputs of power conversion or regulating units which are always a required component of equipment. The power unit code may be listed under supplementary information.
(b) Working voltage range requirements which are the same as specified by the system drawings.
(c) Supplementary information covering special power supply requirements and distribution feeder design.
(d) Unless otherwise specified, the voltage limits given herein are at the supply side of the frame fuse panel, frame power converter, or individual circuit fuse.

It is not the intention of this specification to provide complete and comprehensive power requirements for the various systems. For example, specific directives concerning equipment which must share the same power plant or which have special requirements for distribution feeder design are not included. This type of information is usually provided in the general
specification covering the particular system, such as J69202 for the 4A Toll Switching System, or in information drawings such as SD-81228-01 for broadband carrier equipment, or SD-1A148-01 for the No. 1 ESS System.
1.06 The information for ringing and tone sources listed herein represents the performance characteristics of these sources for central office equipment. It is arranged into four sections as follows:
(a) Continuous ringing supplies.
(b) Machine ringing and associated ground codes.
(c) Nonprecise call progress tones.
(d) Precise call progress tones.

Typical applications and associated switching systems are listed for each supply. However, it should be noted that all systems which use a given ringing and tone supply may not be listed and that certain supplies are used for miscellaneous purposes not listed herein. For these reasons, the information in this section should not be used to determine the ringing and tone requirements for any given office.

DEFINITION OF TERMS

1.07 Nominal voltage represents a voltage value understood to be approximate and commonly used for easy reference.
1.08 Normal voltage range represents overall range of normal day-to-day voltage operating values, resulting primarily from variations in feeder voltage drops due to load changes and from small variations in voltage regulators.
1.09 Emergency voltage limits represent the variations in voltage which may occur under unusual conditions such as interruption of commercial power service. These generally wide voltage excursions may be expected to occur infrequently and for only a small portion of the time. The lower voltage point of the emergency limits provides satisfactory - operation for even worst-circuit conditions. Special power arrangements will generally be required for those cases where satisfactory circuit operation demands that emergency voltage limits must be the same as the normal range.
1.10 Maximum transient voltage represents the limit that shall be allowed to occur due to any cause whatsoever. This limit is typically imposed by the characteristics of electronic devices that could be damaged if the limit were exceeded.
\rightarrow I.ll Voltage requirements for specific circuits may be listed within certain paragraphs. The systems served by these specific circuits do not necessarily have the same voltage requirements.

2. SUPPLEMENTARY INFORMATION

Power Data Book

X-64644- Commercial Power Service in USA
800-600-000-Checking List-General Equipment Requirements

802-000-000- Numerical Index - Power Systems	
802-001-150- J86600-Reserve Engine-Generator	
	Power Plants
802-001-151- J86500 - List of Power Plants	
802-001-152-	J86200 - Power Supply
Units - Rectifiers and Voltage Regula-	
tors	

3. DRAWINGS

SD-80700-01 - Power Keysheet
SD-90250-01 - Master Keysheet

4. SWITCHING SYSTEMS

NOMINAL VOLTAGE

NORMAL
VOLTAGE RANGE
EMERGENCY
VOLTAGE
LIMITS

VOLTAOE
LIMITS

MAXIMUM
TRANSIENT TRANSIENT
VOITAGE

STEP-BY-STEP (SXS) SYSTEMS
No. $1 \quad-24$

No. 1
-48
-50 Accumulators (CDA)

No. 1 -	Message Register
	Service
No. 1 -	Coin Service
	Improvement and Dial Long Line

$$
\begin{gathered}
+60 \text { to }+75 \\
+130
\end{gathered}
$$

$$
+48
$$

Dial Lons
(DLL) Circuits

350A -24

22 to 26	22 to 26 or 20 to 28
48 to 50	45 to 52
or	
50 to 52^{*}	

4. SWITCHING SYSTEMS (Cont)

	,		NOMINAL voltage	NORMAL voltage RANGE	EMERGENCY voltage limits
350A	-	Call Data Accumulators (CDA)	-50	48 to 50	46 to 52
350A	-	Message Register Supply	$\begin{gathered} +60 \text { to }+75 \\ +130 \end{gathered}$	$125 \text { to } 135$	$\begin{gathered} 60 \text { to } 75 \\ 125 \text { to } 135 \end{gathered}$
350A	-	Coin Service Improvement and DLL Circuits	+48	48 to 50	44 to 52
355A			-24	22 to 26	$\begin{gathered} 22 \text { to } 26 \\ \text { or } \\ 20 \text { to } 28 \end{gathered}$
355A			-48	$\begin{gathered} 48 \text { to } 50 \\ \text { or } \\ 50 \text { to } 52 \dagger \end{gathered}$	$\begin{aligned} & 44 \text { to } 52^{*} \\ & \text { or } \\ & 44 \text { to } 52 \ddagger \end{aligned}$
355A	-	Call Data Accumulators (CDA)	-50	48 to 50	46 to 52
355 A	-	Coin Service Improvement and DLL Circuits	+48	48 to 50	44 to 52
356A			-48	50 to 52	44 to $52 \ddagger$

MAXIMUM TRANSIENT
\longleftarrow

125 to 135

22 to 26 or 4 to 52^{*} or
44 to $52 \ddagger$

44 to $52 \ddagger$

* A 105C plant using 23-cell battery without CEMF cells giving an overall range of 44 to 52 volts was acceptable on the basis that voltage below 45 volts would occur only at the end of a long power failure.
\dagger Normal 50 - to 52 -, emergency 45^{-}to 52 -volt operation is permissible providing CEMF cells are available to give 48 - to 50 -volt operation during maintenance testing and that neither ANI, SXS CAMA, AIOD station identification equipment, SXS common control, SXS LAMA, SXS noncommon control, TOUCH-TONE calling circuits, nor CDA circuits are supplied from the same 48 -volt power plant.
\ddagger A 105D plant using 24 cells and no CEMF cells except for overcharge or test with overall range of 44 to 52 volts is acceptable, since voltages up to 52 volts are satisfactory and voltage below 45 will occur only at the end of a long power failure.

SECTION 800-610-165

4. SWITCHING SYSTEMS (Cont)

	,	NOMINAL Voltage	normal voltage RANGE	emergency voltage IIMITS	MAXIMUM transient voitage
360 A		-24	22 to 26	$\begin{aligned} & 22 \text { to } 26 \\ & \text { or } \\ & 20 \text { to } 28 \end{aligned}$	
360 A		-48	$\begin{aligned} & 48 \text { to } 50 \\ & \text { or } \\ & 50 \text { to } 52^{*} \end{aligned}$	45 to 52	
$\rightarrow 360 \mathrm{~A}$	- Call Data Accumulators (CDA)	-50	48 to 50	46 to 52	
360 A	- Coin Service Improvement and DLL Circuits	+48	48 to 50	44 to 52	
$\left.\begin{array}{l}370 \mathrm{~A} \\ 370 \mathrm{~B}\end{array}\right]$		-48	$\begin{gathered} (48 \text { to } 50) \\ \text { or } \\ (50 \text { to } 52) \end{gathered}$	44 to 52	
$\rightarrow 35 \mathrm{E} 97$	$\begin{aligned} & - \text { Call Data } \\ & \text { Accumulators } \\ & \text { (CDA) } \end{aligned}$	-50	48 to 50	46 to 52	
35E97	- Coin Service Improvement and DLL Circuits	+48	48 to 50	44 to 52	
Intertoll Dialing		-24	$\begin{aligned} & 23 \text { to } 25 \\ & 24 \text { to } 26 \end{aligned}$	22 to 26	
		-48	48 to 50 or 50 to 52*	45 to 52	
		+130	125 to 135	120 to 140	

[^0]
4. SWITCHING SYSTEMS (Cont)

	NOMINAL VOLTAGE	NORMAL VOLTAGE RANGE	EMERGENCY VOITAGE LIMITS
PANEL SYSTEM			
	-24	24 to 26	22 to 26
	-48	48 to 50	45 to 50

MAXIMUM TRANSIENT voltage

PANEL SYSTEM

CROSSBAR SYSTEMS (CSBR)-LOCAL

[^1]
4. SWITCHING SYSTEMS (Cont)

* Measured at power distributing frame.
\dagger Measured at frame filter outputs.
\ddagger Measured line to line.
§ Measured line to neutral.

4. SWITCHING SYSTEMS (Cont)

4. SWITCHING SYSTEMS (Cont)

	NORMAL	EMERGENCY	MAXIMUM
NOMINAL	VOITAGE	VOITAGE	TRANSIENT
VOITAGE	RANGE	LIMITS	VOLTAGE

NO. 2 ESS

+24	$\begin{aligned} & 25 \text { to } 26.25^{*} \\ & 24 \text { to } 26.25 \dagger \end{aligned}$	$\begin{aligned} & 21.75 \text { to } 26.25^{*} \\ & 20.75 \text { to } 26.25^{\dagger} \end{aligned}$	+30
-48	$\begin{aligned} & 50.75 \text { to } 52.50^{*} \\ & 49.75 \text { to } 52.50^{*} \end{aligned}$	$\begin{aligned} & 43.75 \text { to } 52.50^{*} \\ & 42.75 \text { to } 52.50^{\dagger} \end{aligned}$	-55
+6	$\begin{aligned} & 6.5 \text { to } 6.9 \ddagger \\ & 5.9 \text { to } 6.9 \S \end{aligned}$	$\begin{aligned} & 6.5 \text { to } 6.9 \neq \\ & 5.9 \text { to } 6.9 \S \end{aligned}$	
+130	125 to 135	125 to 135	
-130	125 to 135	125 to 135	
$\begin{aligned} & 1 \phi, 60 \mathrm{~Hz} \\ & \text { rotected ac) } \end{aligned}$	$\begin{gathered} 109 \text { to } 125 \mathrm{f}, \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 104 \text { to } 129 \mathrm{q}, \\ & 58 \text { to } 60 \mathrm{~Hz} \end{aligned}$	
$\begin{aligned} & 3,3 \phi, 60 \mathrm{~Hz} \\ & \text { ssential ac) } \end{aligned}$	$\begin{gathered} 188 \text { to } 216^{* *} \text {, } \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 180 \text { to } 224^{* *}, \\ & 58 \text { to } 62 \mathrm{~Hz} \end{aligned}$	
$\begin{aligned} & \text { 7, } 1 \phi, 60 \mathrm{~Hz} \\ & \text { ssential ac) } \end{aligned}$	$\begin{gathered} 109 \text { to } 1254 \text {, } \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 109 \text { to } 129 \mathrm{q}, \\ & 58 \text { to } 62 \mathrm{~Hz} \end{aligned}$	

* Measured at power distributing frame.
\dagger Measured at frame filter outputs.
\ddagger Measured at converter output.
§ Measured at equipment frame fuse panel bus bar.
T Measured line to neutral.
** Measured line to line.

4. SWITCHING SYSTEMS (Cont)

	NOMINAL VOITAGE	NORMAL VOLTAGE RANGE	EMERGENCY vOITAGE LIMITS	MAXIMUM TRANSIENT voltage
NO. 3 ESS				
	+24	24.5 to 26 *	22.0 to $26.5 *$	$+30$
	-48	50.75 to $52.5{ }^{\dagger}$	42.75 to $52.5 \dagger$	
	+48	50.0 to 52.0*	47.0 to 53.0 *	+55
	-130	126 to $134 *$	122 to 138^{*}	-142
	+130	126 to 134*	122 to 138*	+142
	$117,1 \phi, 60 \mathrm{~Hz}$ (Protected)	$\begin{gathered} 110 \text { to } 125 \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 100 \text { to } 130 \\ & 59 \text { to } 61 \mathrm{~Hz} \end{aligned}$	
	$117,1 \phi, 60 \mathrm{~Hz}$ (Essential)	$\begin{gathered} 109 \text { to } 125 \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 109 \text { to } 129 \\ 58 \text { to } 62 \mathrm{~Hz} \end{gathered}$	

* Measured at power distributing frame.
\dagger Measured at 151A DC Power Plant.

4. SWITCHING SYSTEMS (Cont)

	nominal voltage	NORMAL voltage RANGE	EmERGENCY voltage LIMITS	MAXIMUM TRANSIENT voltage
NO. 101 ESS CONTROL UNIT	-			
	-48	49.75 to 52.50	43.75 to 52.5	-
	+24*	23.35 to 24.95	23.35 to 24.95	+30
	$+12^{*}$	11.20 to 12.0	11.20 to 12.0	+18
	+6*	6.1 to 6.4	6.1 to 6.4	+9
2A Switch Unit (Nonreserve and Reserve)				
AC Input to 2 A SU Power Supply	$\begin{gathered} 117 \pm 10 \% \\ 1 \phi, 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 105 \text { to } 129, \\ 59.9 \text { to } 60.1 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 105 \text { to } 129, \\ 59.9 \text { to } 60.1 \mathrm{~Hz} \end{gathered}$	-
DC Output From 2A SU Power Supply	$+6 \dagger$	6.0 to 7.2	6.0 to 7.2	+9
	+24 \dagger	20.9 to 26.4	20.9 to 26.4	+30
	$+24 \dagger$ Filtered	20.5 to 26.4	20.5 to 26.4	+30
	$-24 \dagger$	22.5 to 26.4	22.5 to 26.4	-30
3A Switch Unit (Nonreserve)				
AC Input to 3A SU Power Supply	$\begin{gathered} 117,1 \phi \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 105 \text { to } 129,1 \phi \\ & 59.9 \text { to } 60.1 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 105 \text { to } 129,1 \phi \\ & 59.9 \text { to } 60.1 \mathrm{~Hz} \end{aligned}$	-
DC Output to 3A SU System	+6	6.0 to 7.2	6.0 to 7.2	+9
	$+24$	20.9 to 26.4	20.9 to 26.4	$+30$
	$+24$ Filtered	20.5 to 26.4	20.5 to 26.4	+30
	-24	22.5 to 26.4	22.5 to 26.4	-30

[^2]
4. SWITCHING SYSTEMS (Cont)

	NOMINAL voltage	NORMAL VOITAGE RANGE	EmERGENCY voltage tIMITS	MAXIMUM TRANSIENT VOITAGE
3A Switch Unit (Reserve)				
DC Input to 3A SU Converter	+24	20.9 to 26.4	20.9 to 26.4	$+30$
DC Output to 3A SU System	$+6^{*}$	6.0 to 7.2	6.0 to 7.2	+9
	$+24^{*}$ Filtered	20.5 to 26.4	20.5 to 26.4	+30
	-24^{*}	22.5 to 26.4	22.5 to 26.4	-30
4A Switch Unit (Nonreserve)				
AC Input to 4A SU Power Supply	$\begin{aligned} & 117,1 \phi, \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 105 \text { to } 129,1 \phi, \\ 59.9 \text { to } 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 105 \text { to } 129,1 \phi, \\ 59.9 \text { to } 60 \mathrm{~Hz} \end{gathered}$	-
DC Output to 4A SU System	$+6{ }^{+}$	6.0 to 7.2	6.0 to 7.2	+9
	$+24 \dagger$	20.9 to 26.4	20.9 to 26.4	+30
	$+24^{+}$ Filtered	20.5 to 26.4	20.5 to 26.4	$+30$
	$-24 \dagger$	22.5 to 26.4	22.5 to 26.4	-30
4A Switch Unit (Reserve)				
DC Input to 4A SU Converter	+24	20.9 to 26.4	20.9 to 26.4	$+30$
	-48	49.75 to 52.5	43.75 to 52.5	-55
DC Output to 4A SU System	+6*	6.0 to 7.2	6.0 to 7.2	$+9$
	$+24^{*}$ Filtered	20.5 to 26.4	20.5 to 26.4	+30
	$-24 *$	22.5 to 26.4	22.5 to 26.4	-30

[^3]
5. SIGNALING CIRCUITS AND EQUIPMENT

	nominat VOLTAGE	NORMAL VOLTAGE RANGE	EMERGENCY voltage limits
MULTIFREQUENCY SIGNALING			
Multifrequency Pulsing Receiving Circuit (SD-95536-01; Common Systems)	$\begin{aligned} & +130 \\ & -48 \end{aligned}$	$\begin{gathered} 125 \text { to } 135 \\ 48 \text { to } 50 \\ \text { or } \\ 50 \text { to } 52 \end{gathered}$	$\begin{gathered} 125 \text { to } 135 \\ 45 \text { to } 50 \\ \text { or } \\ 45 \text { to } 52 \end{gathered}$
	$115,60 \mathrm{~Hz}$	$\begin{gathered} 108 \text { to } 126, \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 108 \text { to } 126, \\ 60 \mathrm{~Hz} \end{gathered}$
Multifrequency Pulsing Receiving Circuit (SD-95087-01; Common Systems)	-48	$\begin{aligned} & 48 \text { to } 50 \\ & \text { or } \\ & 50 \text { to } 52 \end{aligned}$	$\begin{aligned} & 45 \text { to } 50 \\ & \text { or } \\ & 45 \text { to } 52 \end{aligned}$
Multifrequency Current	-24	22 to 26	20 to 28
Supply Circuit	$\begin{gathered} \text { or } \\ -48 \end{gathered}$	$\begin{aligned} & 48 \text { to } 50 \\ & \text { or } \\ & 50 \text { to } 52 \end{aligned}$	$\begin{aligned} & 45 \text { to } 50 \\ & \text { or } \\ & 45 \text { to } 52 \end{aligned}$
	+130	125 to 135	120 to 140
Multifrequency Pulsing Receiving Circuit (SD-99493-01; Common Systems)	-48	48 to 50 or 50 to 52	$\begin{aligned} & 45 \text { to } 50 \\ & \text { or } \\ & 45 \text { to } 52 \end{aligned}$
Multifrequency Receiving Circuit (SD-1A246-01;	-48	*	42.75 to 52.5
$\begin{aligned} & \rightarrow \text { No. } 1 \text { ESS, SD-3H402-01, } \\ & \quad \text { No. } 3 \text { ESS) } \end{aligned}$			
Multifrequency Transmitter Circuit (SD-1A175-01; \rightarrow No. 1 ESS, SD-3H404-01, No. 3 ESS)	-48	*	42.75 to 52.5
SINGIE FREQUENCY SIGNALING			
Electron Tube Single	-24	22 to 26	22 to 26
Frequency Signaling	or	48 to 50	45 to 50
Circuits $-1600-2000 \mathrm{~Hz}$	-48	$\begin{gathered} \text { or } \\ 50 \text { to } 52 \end{gathered}$	$\begin{gathered} \text { or } \\ 45 \text { to } 52 \end{gathered}$
	$+130$	125 to 135	125 to 135
Electron Tube Single	-48	45 to 50	45 to 50
Frequency Signaling		or	or
Circuit-2600 Hz		50 to 52	50 to 52
	+130	125 to 135	125 to 135

[^4]5. SIGNALING CIRCUITS AND EQUIPMENT (Cont)

	NOMINAL VOLTAGE	NORMAI voltage RANGE	EMERGENCY voltage LIMITS	MAXIMUM TRANSIENT voltage
Type E Single Frequency				
Signaling Circuits-2600 Hz				
E1A, E1B, E2B, E3B, E1C,	-48	45 to 50	45 to 50	
E1D, E1E, E1EK, E1F,				
E1FK, E1S, E1L, E1LA,				
E1SA, E2L-21				
E1AK, E1AKD, E1BK,				
E1BKD, E2BK, E2BKA,				
E3BK, E3BKA, E4B, E1CK, 45 to $52-48$ to 53				
E1CKB, E2C, E3C, E4C,	-48	45 to 52	42 to 53	
E1DK, E1DKC, E2D, E3D,				
E4D, E5D, E1J, E2L (except				
E2L-21), E1P, E1R, E2S,				
E2LA, E2SA				
Type F Single Frequency	-48	45 to 52	42 to 53	
Signaling Circuits-2600 Hz	-24*	22.5 to 25.5	-	

* The -24 volt nominal voltage for type F single frequency signaling is derived from regulated J87304A 48 - to 24 -volt power converter only.

6. TRAFFIC SERVICE SYSTEMS

	NOMINAL VOLTAGE	NORMAL voltage RANGE	EMERGENCY voltage LIMITS
SWITCHBOARDS			
No. 1*	-24	22 to 26	20 to 28
	-48	48 to 50	40 to 56
No. 3, 3C, 3CF, 3CL*	-24	23 to 26	22 to 26
	-48	48 to 50	45 to 52
No. 5, 5C, 5D	-24	23 to 26	21 to 26
	-48	48 to 50	45 to 50
No. 11 Manual Machine	-24	22 to 26	22 to 28
Ringing	-48	48 to 50	45 to 50
No. 12 Manual	-48	$\begin{gathered} 48 \text { to } 50 \\ \text { or } \end{gathered}$	40 to 56
DSA Switchboard No. 13C,	-24	24 to 26	22 to 26
13D, 14C, 14D, 15C, 15D*	-48	48 to 50	45 to 52
DESKS			
Information Desk No. 2	-24	22 to 26	20 to 28
	$-48 \dagger$	48 to 50	45 to 50

* Switchboards No. 1, 3C, 3CF, 3CL, and DSA also require +48 volt battery supplied by the central office when used with dial-tone-first feature in same buildings with SXS or CSBR No. 1. These switchboards, when located in the same building as CSBR No. 5, require +130 and -130 volt battery for coin control. Otherwise, coin control supply of central office is used.
\dagger Required when used for regular intercept service and two or more classes of intercept service are provided.

6. TRAFFIC SERVICE SYSTEMS (Cont)

,	nominal Voltage	NORMAL VOLTAGE RANGE	EMERGENCY VOLTAGE LIMITS	maximum tRANSIENT voltage
Information Desk No. 3, 4,	-24	22 to 26	20 to 28	
6 A , or 6B	-48*	48 to 50	45 to 50	
Information Desk No. 3A,	-24	22 to 26	20 to 28	
$3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B}, 6 \mathrm{C}, 6 \mathrm{D}, 6 \mathrm{E}$, or 6F	-48	48 to 50	45 to 50	
Information Desk No. 7	-24	22 to 26	20 to 28	
or 7A	-48*	48 to 50	45 to 50	
Operating Room Desk No. 19	-24	22 to 26	20 to 28	
	-48*	48 to 50	45 to 50	
Operating Room Desk No.	-48	48 to 50	45 to 50	
$23 \mathrm{~A}, 23 \mathrm{~B}$, or 23C	+100 Coin \dagger	100 to 120	-	
	+130 PLT and	125 to 135	-	

AUXILIARY SERVICES POSITIONS

No. 1A, 2A, 2B, 2C	-48	48 to 50	45 to 50
No. 3A, 3B	+24	24.0 to 26.5	20.75 to 26.25
No. 4A	-48	50.75 to 52.5	42.75 to 52.5

TRAFFIC SERVICE POSITION SYSTEM (TSPS) NO. $1 \ddagger$

$\left.\begin{array}{lccc} & 25.0 \text { to } 26.25 \S & 21.75 \text { to } 26.75 \S & +30 \\ +24 & 24.0 \text { to } 26.25 & 20.75 \text { to } 26.259 & \\ & & 50.75 \text { to } 52.5 \S & 43.75 \text { to } 52.5 \S\end{array}\right]-55$

[^5]\| Measured at frame filter outputs.
6. TRAFFIC SERVICE SYSTEMS (Cont)

,	NOMINAL voltage	NORMAL voltage RANGE	EmERGENCY VOITAGE LIMITS
	$\begin{aligned} & 208,3 \phi, \\ & 60 \mathrm{~Hz} \\ & \text { (Protected) } \end{aligned}$	$\begin{gathered} 188 \text { to } 216^{*}, \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 182 \text { to } 224^{*} \\ & 58 \text { to } 62 \mathrm{~Hz} \end{aligned}$
	$117,1 \phi, 60 \mathrm{~Hz}$ (Protected)	$\begin{gathered} 109 \text { to } 125 \dagger, \\ 60 \mathrm{~Hz} \end{gathered}$	104 to $129 \dagger$, 58 to 62 Hz
	$117,1 \phi, 60 \mathrm{~Hz}$ (Essential)	$\begin{gathered} 109 \text { to } 125 t \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 109 \text { to } 125 \dagger \text {, } \\ & 58 \text { to } 62 \mathrm{~Hz} \end{aligned}$
AUTOMATIC INTERCEPT SYSTEM (AIS)			
	+24	25.0 to $26.25 \ddagger$	21.75 to $26.25 \ddagger$
		24.0 to $26.25 §$	20.75 to $26.25 §$
	-48	50.75 to $52.50 \ddagger$	43.75 to $52.50 \ddagger$
		49.75 to $52.50 \$$	42.75 to 52.50 §
	$117,1 \phi, 60 \mathrm{~Hz}$ (Protected)	$\begin{gathered} 109 \text { to } 1254, \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 104 \text { to } 129 丹, \\ & 58 \text { to } 60 \mathrm{~Hz} \end{aligned}$
	$117,1 \phi, 60 \mathrm{~Hz}$ (Essential)	$\begin{gathered} 109 \text { to } 125 \text {, } \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 109 \text { to } 125 \mathrm{I}, \\ & 58 \text { to } 60 \mathrm{~Hz} \end{aligned}$
		$6.5 \text { to } 6.9^{* *}$	$6.5 \text { to } 6.9^{* *}$
	+6	$5.9 \text { to } 6.9 \dagger \dagger$	$5.9 \text { to } 6.9 \dagger \dagger$
* Measured line to line. \dagger Measured line to neutral.			
\# Measured at the power distributing frame.			
§ Measured at the equipment frame filter output.			
$\$_{\text {Measured between line and neutral. }}$			
** Measured at converter output.			
$\dagger \dagger$ Measured at equipment frame fuse panel bus bar.			

maximum TRANSIENT voltage

182 to 224^{*}, 58 to 62 Hz

104 to $129 \dagger$, 58 to 62 Hz

109 to 125 t, 58 to 62 Hz
21.75 to $26.25 \ddagger$
20.75 to $26.25 \S$
43.75 to $52.50 \ddagger$
42.75 to 52.50 §

104 to 129 (58 to 60 Hz

109 to 125 II, 58 to 60 Hz
6.5 to $6.9^{* *}$ 5.9 to $6.9 \dagger \dagger$

7. TRAFFIC MANAGEMENT SYSTEMS

7. TRAFFIC MANAGEMENT SYSTEMS (Cont)

7. TRAFFIC MANAGEMENT SYSTEMS (Cont)

	NOMINAL voltage	NORMAI voltage RANGE	Emergency VOITAGE LIMITS	MAXIMUM TRANSIENT VOITAGE
TEST DESKS				
Repair Service Desk No. 2	-24	22 to 26	20 to 28	
	-48	48 to 50	40 to 56	
Cable Test Desk No. 3	-24	22 to 26	20 to 28	
	-48	48 to 50	40 to 56	
Local Test Cabinet No. 3	-24	22 to 26	20 to 28	
	-48	48 to 50	40 to 56	
		or 50 to 52		
Local Test Desk No. 14	-24	22 to 26	20 to 28	
			Manual	
			22 to 26 Dial	
	-48	48 to 52	40 to 56	
			Manual	
			45 to 52 Dial	
	+48	48 to 52	45 to 52	
	-72	71 to 75	66 to 75	
	+130	125 to 135	125 to 135	
	-130	125 to 135	125 to 135	
Local Test Desk No. 15B	-48	48 to 52	45 to 52	
	+130	125 to 135	125 to 135	
	$117,60 \mathrm{~Hz}$	105 to 129	$\begin{gathered} 105 \text { to } 129, \\ 60 \mathrm{~Hz} \end{gathered}$	
Local Test Desk No. 16	-24	22 to 26	20 to 28	
			Manual	
			22 to 26 Dial	
	-48	48 to 52	40 to 56	
			Manual	
			45 to 52 Dial	
	+48	48 to 52	45 to 52	
	-72	71 to 75	66 to 75	
	+130	125 to 135	125 to 135	
	-130	125 to 135	125 to 135	

7. TRAFFIC MANAGEMENT SYSTEMS (Cont)

	NOMINAL COLTAGE	NORMAL VOITAGE RANGE	EMERGENCY VOLTAGE LIMITS
Line Status Verifier (LSV)	-24	22 to 26	MAXIMUM TRANSIENT VOITAGE
Manual			

TESTBOARDS

No. 5

No. 17B, 17C, 17D

No. 18B

No. 17E, 19A, 20A, 21A 22A, 24A

No. 23B
-48
+130
$117,1 \phi, 60 \mathrm{~Hz}$
-24
$+130$
-48
-24
$+130$
$-24 \quad 22$ to 26

-48	48 to 50	45 to 50
-24	22 to 26	21 to 26
+130	125 to 135	125 to 135
-48	48 to 50	45 to 50
-48	45 to 50	43 to 52
-24	23 to 25	22 to 26
+24	23 to 25	22 to 26

45 to 50
21 to 26
125 to 135

48 to 50

45 to 50
23 to 25
23 to 25

48 to 50
22 to 26

48 to 50
22 to 26
125 to 135

48 to 50
or
50 to 52

48 to 50
125 to 135
105 to 129 , 60 Hz

45 to 50 22 to 26

45 to 50
21 to 26
120 to 140

45 to 50

22 to 26
125 to 135
21 to 26 120 to 140

45 to 50
22 to 26
125 to 135

22 to 26
45 to 50
125 to 135 105 to 129 , 60 Hz

SWITCHED MAINTENANCE ACCESS SYSTEMS (SMAS)

SMAS No. 1A

SMAS No. 2A

SMAS No. 3A

8. "TOUCH-TONE" CALIING

[^6]
9. REPEATERS AND CARRIERS

	NOMINAL VOLTAGE	NORMAI voltage RANGE		EMERGENCY voltage limits	REMARKS
Vf REPEATERS					
22 Al 1	-24 or	20 to 26.257	$\pm 2 \% *$	$\pm 3^{*}$	
44 Al	-48 and	40 to 56		1	
V1	+130 or	125 to 136		115 to 140	
V3	+152	151.8 J		130 to 160	
V4	$\left[\begin{array}{l}-24 \\ -48\end{array}\right.$	$\begin{aligned} & 20 \text { to } 26 \\ & 40 \text { to } 52 \end{aligned}$	$\begin{aligned} & 19 \text { to } 28 \\ & 38 \text { to } 54 \end{aligned}$		
E1 7	-24 or	20 to 28		17 to 29	
E2	-48 and	40 to 56		34 to 62	
E3 $]$	+130	125 to 136		115 to 140	
E6 7		40 to 56		$\pm 6^{*}$	
E7	-48	$\pm 5 \% *$			
306A (Unigauge)					
WIDEBAND LOOP REPEATERS (WLRs)					
WLR1 to WLR5	-48	42 to 54	$\pm 2 \% *$	$\pm 6^{*}$	\dagger
	+130	125 to 136		115 to 140	
	-130	125 to 136		115 to 140	
AMPLIFIERS					
$12 \mathrm{C}]$	-24 or	20 to 26.25	$\pm 2 \% *$	$\pm 3^{*}$	
14C	-48 and	40 to 56		± 6	
	+130 or	125 to 136		115 to 140	
	+152	151.8 J		130 to 160	
258A\&B	-48	$\begin{gathered} 40 \text { to } 56 \\ \pm 2 \%^{*} \end{gathered}$		$\pm 6^{*}$	
ECHO SUPPRESSORS					
1 A	-24 or	20 to 26.5			
	+130	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \% \end{gathered}$		115 to 140	
$2 \mathrm{~A}]$	-24	22 to 26		20 to 27	
$3 \mathrm{~A}]$	-48	49 to 52		43 to 52	
4 A	-48	48 to 50		42.75 to 51.5	
		51 to 52		42.75 to 52.5	
MUITIPORT CONFERENCE	-48	48 to 50 or		42.75 to 51.5	
BRIDGE (J68657)		51 to 52		42.75 to 52.5	

[^7]9. REPEATERS AND CARRIERS (Cont)

,	NOMINAL VOLTAGE	NORMAI voltage RANGE	EmERGENCY voitage LIMITS
C CARRIER			
$\text { C1 Carrier Repeater }]$	$\begin{aligned} & 115, \\ & 60 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} 105 \text { to } 125 \\ 60 \mathrm{~Hz} \end{gathered}$
C5 Carrier Terminal $]$	$\begin{aligned} & -24 \\ & +130 \\ & 55,60 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 22 \text { to } 26 \\ 125 \text { to } 135 \end{gathered}$	$\begin{gathered} 20 \text { to } 28 \\ 120 \text { to } 140 \end{gathered}$
C5 Terminal	$\begin{aligned} & 22,50 \text { or } \\ & 60 \mathrm{~Hz} \end{aligned}$		
J AND K CARRIERS - MAIN			
OR TERMINAL STATIONS			
J and K1-Filament	-24	$\begin{gathered} 20 \text { to } 26.25 \\ \pm 2 \%^{*} \end{gathered}$	$\pm 3^{*}$
Plate	+130	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \%^{*} \\ 125 \text { to } 135 \\ \pm 2 \%{ }^{*} \end{gathered}$	$\begin{aligned} & 120 \text { to } 140 \\ & \text { (Main) } \\ & 125 \text { to } 135 \\ & \text { (Terminal) } \end{aligned}$
J and K1-Grid	-16		15.5 to 17.25
K2 NontwistTwist	$\begin{aligned} & -24 \\ & -40 \\ & +130 \end{aligned}$	$\begin{gathered} 24.5 \text { to } 26.5 \\ 47 \text { to } 49 \\ 125 \text { to } 135 \end{gathered}$	$\begin{gathered} 20 \text { to } 26.5 \\ 46 \text { to } 50 \\ 125 \text { to } 135 \end{gathered}$

JAND KI CARRIERS -
 AUXILIARY STATION

Filament	$[+21.7$ Volt Tap on Plate Battery		
	+43.4		
	+65.1		
	+86.8		
	+108.5		
	+130.2		
	+152		
Plate	$[+152$	140 to 160	131 to 160
	or		
	+130	125 to 135	120 to 140
	-24	22 to 26	20 to 28
Grid	-16		15.5 to 17.25

[^8]
9. REPEATERS AND CARRIERS (Cont)

K2 CARRIER-MAIN,
TERMINAL, AND AUXILIARY
STATIONS

nominal voltage

 NORMALVOILAGE
RANGE emergency voltage umits

MAXIMUM TRANSIENT

 voltage
TERMINAL, AND AUXILIARY STATIONS

Filament	$60,60 \mathrm{~Hz}$	$\pm 3 \%$	$\begin{gathered} 54 \text { to } 66 \\ 60 \mathrm{~Hz} \end{gathered}$
K2 CARRIER - AUXILIARY STATIONS			
	$\left[\begin{array}{c}+152 \\ \text { or }\end{array}\right.$	140 to 160	131 to 160
Plate	+130	125 to 135	120 to 140
	-24	22 to 26	20 to 28
J and K 1 -Grid	-16		

LI CARRIER-MAIN

AND TERMINAI STATIONS

-24	22.5 to	$\pm 3^{*}$
	25.75 ± 0.5	
-48	48 to 50	44 to 52
	or	
	50 to 52	
+130	125 to 135	125 to 135
$230,60 \mathrm{~Hz}$		
(From Motor-		
Alternator		
Plant)		

13 CARRIER - MAIN

AND TERMINAL STATIONS

$\left.\begin{array}{lcc}{\left[\begin{array}{lc}-24 & 22.5 \text { to } \\ 25.75 \pm 0.5\end{array}\right.} & \begin{array}{c} \pm 3^{*} \\ \\ +130 \\ 230,60 \mathrm{~Hz}\end{array} & 125 \text { to } 135\end{array}\right]$

13 CARRIER-TELEVISION TERMINALS

T3, R3

[^9]
9. REPEATERS AND CARRIERS (Cont)

,	NOMINAL voltage	normal VOLTAGE RANGE	EmERGENCY voltage LIMITS
14 CARRIER			
Main Station	-24	22 to 23.9	20.0* to $28 \dagger$
11-Cell Battery Plant	+130	125 to 135	125 to 135
	-130	125 to 135	125 to 135
	$115,60 \mathrm{~Hz}$	-	90 to 136
12-Cell Battery Plant	-24	23.5 to 26.0	$21.5 \ddagger$ to $28.0 \dagger$
	+130	125 to 135	125 to 135
	-130	125 to 135	125 to 135
	$115,60 \mathrm{~Hz}$	-	90 to 136
15 CARRIER			
Main Station			
11-Cell Battery Plant With End Cells (300 Type)	-24	22.5 to 23.9	20.5 to 28.0
12-Cell Battery Plant With End Cells (300 Type)	-24	24.0 to 26.0	22.0 to 28.0
12-Cell Battery Plant Without End Cells (100 Type)	-24	24.5 to 26.0	20.5 to 28.0
413A Plant	140	149 to 152	120 to 159
620A Plant	-24 reg	-24 reg	-24 reg
CARRIER TELEPHONE TERMINALS			
LMX-2, L-Type Multiplex Equipment per J68857, J68858, J68867, and J68918	-24	22 to 26	$20 \S$ to 29
N1 CARRIER SYSTEM			
Terminals	$\left[\begin{array}{l}-48 \\ +130\end{array}\right.$	$\left.\begin{array}{c}46 \text { to } 52 \\ 125 \text { to } 136\end{array}\right]$	$\begin{aligned} & \pm 6 \pi \\ & \pm 8 \pi \end{aligned}$
Repeaters	$\left[\begin{array}{l}+130 \\ -130\end{array}\right.$	$\left.\begin{array}{l}125 \text { to } 136 \\ 125 \text { to } 136\end{array}\right]$	$\begin{aligned} & 115 \text { to } 140 \\ & 110 \text { to } 140 \end{aligned}$

[^10]9. REPEATERS AND CARRIERS (Cont)

	NOMINAL VOLTAGE	NORMAL voitage RANGE	EMERGENCY voltage himits	maximum transient voltage
N2 CARRIER SYSTEM	-			
Terminals	-48	46 to 52	42.7 to 52.5	
	+130	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \% \end{gathered}$	$\pm 8^{*}$	
	-130	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \% \end{gathered}$	$\pm 8^{*}$	
Packaged Terminals	-48	46 to 52	$45 \dagger$ to 52.5	
			$\begin{gathered} \text { or } \\ 42.75 \dagger \text { to } 52.5 \end{gathered}$	
	$+130$	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \% \end{gathered}$	$\pm 8^{*}$	
	-130	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \% \end{gathered}$	$\pm 8^{*}$	
Repeaters	$+130$	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \% \end{gathered}$	115 to 140	
	-130	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \% \end{gathered}$	110 to 140	
N3 CARRIER SYSTEM				
Packaged Terminals	-48	46 to 52	$\begin{gathered} 45 \dagger \text { to } 52.5 \\ \text { or } \\ 42.75 \ddagger \text { to } 52.5 \end{gathered}$	
	$+130$	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \% \end{gathered}$	$\pm 8^{*}$	
	-130	$\begin{gathered} 125 \text { to } 136 \\ \pm 2 \% \end{gathered}$	$\pm 8^{*}$	

N3.1 JUNCTIONS

	$\begin{aligned} & -48 \\ & +130 \\ & -130 \end{aligned}$	$\begin{aligned} & 125 \text { to } 136 \\ & 125 \text { to } 136 \end{aligned}$		$\begin{gathered} 42.75 \text { to } 52 \S \\ \pm 8^{*} \\ \pm 8^{*} \end{gathered}$
O-1 CARRIER				
Terminals	$\left[\begin{array}{l}-48 \\ +130\end{array}\right.$	$\left.\begin{array}{c}46 \text { to } 52 \\ 125 \text { to } 136\end{array}\right]$		$\begin{aligned} & \pm 6^{*} \\ & \pm 8^{*} \end{aligned}$
Repeaters	$\left[\begin{array}{l} -48 \\ +130 \end{array}\right.$ or	$\left.\begin{array}{c} 46 \text { to } 52 \\ 125 \text { to } 136 \end{array}\right]$	$\pm 2 \%$	$\begin{gathered} \pm 6^{*} \\ 115 \text { to } 140 \end{gathered}$
	+130	125 to 136		115 to 140
U-1 CARRIER TERMINAL				
U-1 Subscriber Loop Carrier	-48	46 to 52		42 to 53

[^11]| | NOMINAL voltage | NORMAL voitage RANGE | emergency voltage limits |
| :---: | :---: | :---: | :---: |
| MISCELLANEOUS CARRIER EQUIPMENT | | | |
| Wire Line Entrance Links (J68874) $64-\mathrm{kHz}$ Preamplifier (J68909) | | | |
| Independent $64-\mathrm{kHz}$ Line Pilot Supply (J68911) $64-\mathrm{kHz}$ Line Pilot Monitor (J68872) | -24 | 22 to 26 | 20 to 29 |
| Restoration Patch Bay (J68876)
 A5 Channel Barrk (J68853) | | | |
| 1A Compandor | $\begin{aligned} & -24 \\ & +130 \end{aligned}$ | $\begin{gathered} 20 \text { to } 28 \\ 125 \text { to } 135 \end{gathered}$ | $\begin{gathered} 20 \text { to } 28^{*} \\ 115 \text { to } 140^{*} \end{gathered}$ |
| $\left.\begin{array}{l}\text { 308- to } 64-\mathrm{kHz} \text { Converter } \\ \text { PFS-2A Primary } \\ \text { Frequency Supply } \\ \text { PFS-2B Primary } \\ \text { Frequency Generator } \\ \text { LMW-1 through -6 } \\ \text { Wideband Modems }\end{array}\right]$ | -24 | 22 to 26 | 20 to 28 |
| N2WT-1 Wideband Terminal | -48 | 44 to 52 | 40 to 52 |
| 10. RADIO TELEPHONE SYSTEMS | | | |
| Mobile Radio Land Transmitters | $\begin{aligned} & 117, \\ & 50 \text { or } 60 \mathrm{~Hz} \end{aligned}$ | $\left[\begin{array}{l}102 \text { to } 112 \\ 112 \text { to } 122 \\ 122 \text { to } 132\end{array}\right]$ | $\begin{aligned} & 102 \text { to } 132 \\ & 50 \text { or } 60 \mathrm{~Hz} \end{aligned}$ |
| Mobile Radio Land Receivers | $\begin{aligned} & 117, \\ & 50 \text { or } 60 \mathrm{~Hz} \\ & +6 \mathrm{dc} \end{aligned}$ | $\begin{gathered} 103.5 \text { to } 128.5 \\ 50 / 60 \mathrm{~Hz} \\ \text { or } \\ 5.7 \text { to } 6.6 \mathrm{dc} \end{gathered}$ | $\begin{gathered} 103.5 \text { to } 128.5 \\ 50 / 60 \mathrm{~Hz} \\ \text { or } \\ 5.7 \text { to } 7.5 \mathrm{dc} \end{gathered}$ |
| $\begin{aligned} & \text { Mobile Radio Transmitters } \\ & \text { and Receivers } \end{aligned}$ | $\begin{aligned} & +6 \text { or } \\ & +12 \end{aligned}$ | - | $\begin{aligned} & 5.7 \text { to } 7.5 \\ & 10.7 \text { to } 15 \end{aligned}$ |
| 221A, 221B, Radio Telephone Equipment | $\begin{aligned} & 115,50 \text { or } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 110 to 117 | 105 to 125 |
| $\begin{aligned} & \text { LD-T2 Transmitter } \\ & \text { LD-B1 Branching Amplifier } \end{aligned}$ | $\begin{aligned} & 3 \phi, 230, \\ & 1 \phi, 115, \\ & 50 \text { or } 60 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 225 \text { to } 232 \\ & 110 \text { to } 117 \end{aligned}$ | $\begin{gathered} 218.50 \text { to } 241.50 \\ 105 \text { to } 126 \end{gathered}$ |
| $\left.\begin{array}{l}\text { LE-T1 Transmitter } \\ \text { LE-R1 Receiver }\end{array}\right]$ | $\begin{aligned} & 1 \phi, 115 \\ & 50 \text { or } 60 \mathrm{~Hz} \end{aligned}$ | 110 to 117 | 109.25 to 120.75 |

[^12]11. TELEVISION SYSTEMS

,	NOMINAL voltage	NORMAL voltage RANGE	emergency voltage limits	maximum transient voltage
A2 Video System	$115,60 \mathrm{~Hz}$	105 to 125	-	
A2A or A2B Video System	$115,60 \mathrm{~Hz}$	$\begin{gathered} 105 \text { to } 125 \\ 60 \pm 0.7 \mathrm{~Hz} \end{gathered}$	-	
A2AT Video System	$\left[\begin{array}{l} -24 \\ +24 \\ \text { or } \\ 115,60 \mathrm{~Hz} \end{array}\right.$	$\begin{aligned} & 22 \text { to } 28 \\ & 22 \text { to } 28 \\ & 105 \text { to } 125 \end{aligned}$	$\begin{aligned} & 21 \text { to } 28 \\ & 21 \text { to } 28 \\ & \\ & 100 \text { to } 130 \\ & 58 \text { to } 63 \mathrm{~Hz} \end{aligned}$	
	-48*	45 to 50	40 to 56	
A4 Video System	$\left[\begin{array}{l} -24 \\ +24 \\ \text { or } \\ 115,60 \mathrm{~Hz} \end{array}\right.$	$\begin{gathered} 22 \text { to } 28 \\ 22 \text { to } 28 \\ 105 \text { to } 125 \end{gathered}$	$\begin{aligned} & 21 \text { to } 30 \\ & 21 \text { to } 30 \\ & 100 \text { to } 130 \\ & 58 \text { to } 63 \mathrm{~Hz} \end{aligned}$	
	-48*	45 to 50	40 to 56	
J-44102 Television	-24	22 to 26	20 to 28	
Operating Center (TOC)	$\begin{aligned} & +130 \\ & 115,60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 125 \text { to } 135, \\ & 50 \text { to } 60 \mathrm{~Hz} \end{aligned}$	$120 \text { to } 140$	
J-44107 Television	-24	22 to 26	20 to 28	
Operating Center (TOC)	$\begin{aligned} & 115,60 \mathrm{~Hz} \\ & 115,60 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 105 \text { to } 125, \\ 60 \pm 0.7 \mathrm{~Hz} \\ 105 \text { to } 125, \\ 50 \text { to } 60 \mathrm{~Hz} \end{gathered}$	- -	
1B Clamper Amplifier	$115,60 \mathrm{~Hz}$	$\begin{aligned} & 105 \text { to } 125, \\ & 50 \text { to } 60 \mathrm{~Hz} \end{aligned}$	-	
	$\left[\begin{array}{l}-24 \\ \text { or } \\ -24\end{array}\right.$	22 to 28	21 to 28	
J-44107AH Video	-24	22 to 28	21 to 28	
Amplifier	$\left[\begin{array}{l}\text { +24 } \\ \text { or } \\ \text { 115, } 60\end{array}\right.$	$22 \text { to } 28$	$21 \text { to } 28$	
	$[115,60 \mathrm{~Hz}$	$105 \text { to } 125$	$\begin{aligned} & 100 \text { to } 130, \\ & 57 \text { to } 63 \mathrm{~Hz} \end{aligned}$	
	-48*	45 to 50		
	$\left[\begin{array}{l}-24 \\ \text { or }\end{array}\right.$	21 to 28	20 to 28	
J-44107AJ-1X3 Splitting	-24	21 to 28	17 to 28	
Amplifier	$\left[\begin{array}{l}+24 \\ \text { or } \\ 115,60 \mathrm{~Hz}\end{array}\right.$	$\begin{aligned} & 21 \text { to } 28 \\ & 100 \text { to } 125 \end{aligned}$	$\begin{gathered} 17 \text { to } 28 \\ 90 \text { to } 130, \\ 58 \text { to } 63 \mathrm{~Hz} \end{gathered}$	
TIDI Sound	$\begin{aligned} & 115, \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 110 \text { to } 120, \\ 58 / 63 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 58 / 63 \mathrm{~Hz} \end{gathered}$	

[^13]
12. MICROWAVE RADIO TELEPHONE SYSTEMS

	NOMINAL VOLTAGE	NORMAL VOLTAGE RANGE	EMERGENCY VOITAGE LIMITs
TD-2 Radio Relay	-12	11 ± 0.1	9.9 to 11.5
	-24	22 to 26	20 to 26
	+130	135 to 137^{*}	116 to 140
	+250	255 to 259	224 to 266

[^14]
13. SURVEILIANCE AND CONTROL SYSTEMS

	NOMINAL VOITAGE	NORMAL VOITAGE RANGE	EMERGENCY VOITAGE LIMITS	MAXIMUM TRANSIENT VOITAGE
E1 and E2 Status Reporting	-24	21 to 27	20 to 29	
and Control System	+24	21 to 27	20 to 29	

SUPERVISORY CONTROL

Broadband Restoration	-24
Status Assembling System	+24

Cable Pressure Telemetry 115,

21 to 27	19 to 29
21 to 27	19 to 29

$50 / 60 \mathrm{~Hz}$

BROADBAND RESTORATION-ORDER WIRES

$\left.\begin{array}{l}\text { Order Wire, Data Order } \\ \text { Wire and Order Wire } \\ \text { Conference Circuits }\end{array}\right]$

2-Wire Key Conference -24
-24
-48

-24
-48
-24
Automatic Continuity for Order Wires
-48
$+130$
-24
Local Manual Control and
Local Status Indicating
$+24$
Circuit for Restoration Office
$+130$
Requiring Locked Commands
Office Display Circuit $\quad+24$
-48
A. Broadband Switching Systems
$1 \mathrm{x} 8,8 \mathrm{x} 8$, and 16×16 Switch
-24
Matrix, Switch Network and
Control Circuits
B. Order Wires

General Purpose 4-Wire -24
Order Circuit
$+24$

22 to 26
45 to 50

20 to 28
20 to 29
40 to 56
40 to 56

22 to 26
20 to 29
45 to 50
44 to 52
125 to 135
120 to 140
21 to 27
20 to 29
21 to 27
20 to 29
125 to 135
120 to 140

20 to 28
20 to 29
40 to 56
40 to 56

21 to 27
20 to 29

22 to 27
20 to 29
22 to 27

20 to 29

-48	46 to 52	42.5 to 53
+130	125 to 135	115 to 140
-130	125 to 135	110 to 140

T2 DIGITAL IINE

Intermediate Power
Station Bay

Span Terminating Bay

$$
-48
$$

$+130$
-130
-48
$+130$
-130
-48
D1A，D1B，D1C，D1D，D2，
D3，Unitized D3，D4，and DCT

DIGITAL MUITIPLEXES

M12 and M12A Digital

Multiplex／Demultiplex

DATA BANKS AND MODEMS

T1WB－1，T1WB－2，T1WB－3
Wideband Banks
T1WB－4 and T1WB－5 Wideband Banks

miscellaneous

$\begin{array}{ll}\text { Combined D1B Bank } & -48 \\ \text { and Repeaters；also T1／OS－D3 } & +13\end{array}$
and T1／OS－D4

DSX1 and DSX2 Patch and
Cross－Connect

[^15]$$
-24
$$
$$
-48
$$
-48
46 to 50
42 to 52.8

115,
110 to 120
105 to 135

$$
+130
$$

20 to 26
48 to 52
42.75 to $53+$

60 Hz

$$
-130
$$

-24
20.5 to 28^{*}
-48

45 to 50
125 to 135
125 to 135

22 to 26
45 to 50
42.5 to 53

115 to 140
110 to 140

20 to 29
42.5 to 53
15. TIME ASSIGNMENT SPEECH INTERPOIATION (TASI)

	NOMINAL voltage	NORMAL voltage RANGE	emergency voltage IIMITS	maximum transient VOLtage
TASI ${ }^{\text {S }}$,				
	-24	24 to 26	22 to 26^{*}	
	+24	24 to 26	22 to 26	
	-48	44 to 52	40 to 56	
	$+130$	125 to 135	120 to 140	
TASI B \dagger				
	$+24$	21 to 28	21 to 28	

16. COIN CONTROL

[^16]17. 20-HZ RINGING

CONTINUOUS RINGING SUPPLIES - CENTRAL OFFICES
A. 105 Volts \pm Continuous, Not Audible
GENERATOR AC VOLTAGE DC COMPONENT SYSTEM OF USE

KS-5430-01	100 to 120	-	PBX Kinging Feeders
KS-5492-01	95 to 130	-	35 E 97
KS-5523	95 to 130	-	35 E 97
KS-5546	$\begin{gathered} 90 \text { to } 130 \\ 110 \text { to } 130^{*} \end{gathered}$		No. 1, 350, 355 SXS. 35 E 97
KS-15532	100 to 120	-	No. 1 CSBR, No. 5 CSBR, No. 1 SXS
KS-15670	101 to 110	-	PBX Ringing Feeders
KS-15816	101 to 110	-	Panel, No. 1 CSBR, No. 5 CSBR, No. 1 SXS
KS-15529 (109B)	102 to $110 \dagger$	-	355 SXS, No. 5 CSBR
110 A	102 to 110	-	No. 1 ESS
J87266E	102 to 110^{+}	-	No. 1 ESS, PBX Ringing Feeders, No. 5 CSBR. No. 1 SXS
J87322	102 to $110{ }^{+}$	-	No. 1 ESS, PBX Ringing Feeders, No. 5 CSBR, No. 1 SXS
J87326	102 to 110^{+}	-	No. 2 ESS, PBX Ringing Fetders. No. 1 SXS
J87824	102 to 110^{+}	-	No. 3 ESS

B. 85 Volts \pm Continuous, Not Audible

KS-15532	80 to 95	-	No. 1 CSBR, No. 5 CSBR. No. 1 SXS (AC/DC Offices Only
KS-15816	81 to 90	-	Panel, No. 1 CSBR, No. \bar{j} CSBR No. 1 SXS (AC/DC Offices Only
\ddagger	80 to 130		Traffic Management, Line Status

C. \pm Audible, Continuous Audible

KS-5319-04	75 to 90	-	CADW System
KS-5492-01	75 to 90	-	35 E 47

[^17]
17. 20-HZ RINGING (Cont)

generator	ac voitage	dC COMPONENT	SYSTEM OF USE
KS-5523	75 to 90	- -	35 E 97
KS-5546	84 to 88*	-	No. 1, 350 SXS
	72 to 88	-	350 SXS
	65 to 90	-	355 SXS
KS-15532	84 to 88	-	No. 1 CSBR, No. 5 CSBR, No. 1 SXS (Superimposed Office Only)
KS-15816	84 to 88	-	Panel, No. 1 CSBR, No. 5 CSBR (Superimposed Office Only)
KS-5756	94 to 101	-	No. 1 CSBR, No. 5 CSBR, SXS (DLL in Superimposed Office or With 8-Party SXS in AC/DC Office)
KS-5815	94 to 101	-	No. 1 CSBR, No. 5 CSBR, SXS (DLL in Superimposed Office or With 8-Party SXS in AC/DC Office)
KS-20392	94 to 101	-	No. 1 CSBR, No. 5 CSBR, SXS (DLL in Superimposed Office or With 8-Party SXS in AC/DC Office)

D. AC/DC Audible Continuous With Negative DC Component (Except as Specified)

KS-5546	$\begin{gathered} 84 \text { to } 88^{*} \\ 72 \text { to } 88 \\ 75 \text { to } 110 \end{gathered}$	$\begin{aligned} & 45 \text { to } 50 \dagger \\ & 45 \text { to } 50 \dagger \\ & 45 \text { to } 50 \dagger \end{aligned}$	No. 1, 350, 355 SXS No. 1, 350 SXS 355 SXS, 35E97
KS-15532	84 to 88	$\begin{aligned} & 45 \text { to } 50 \\ & 66 \text { to } 75 \end{aligned}$	No. 1 CSBR, No. 5 CSBR, No. 1 SXS No. 5 CSBR (Unigauge)
KS-15816	84 to 88	$\begin{aligned} & 45 \text { to } 50 \\ & 45 \text { to } 50 \end{aligned}$	Panel, No. 1 CSBR, No. 5 CSBR, SXS Panel (AC/DC Office Arranged for Flash Removal)
		66 to 75	No. 5 CSBR (Unigauge)
KS-15529 (109B)	84 to $88 \ddagger$	45 to $50{ }^{+}$	355 SXS, No. 5 CSBR
J87322	84 to $88 \ddagger$	45 to 50	No. 1 CSBR, No. 1 SXS
J87326	84 to $88 \ddagger$	45 to 50	No. 1 SXS

* With voltage regulator.
+ The 45 - to 50 -volt range will be 45 to 52 volts when the 48 -volt plant is arranged for these limits.
\ddagger Under power failure conditions, the 84 - to 88 -volt range may be 75 to 90 volts.

17. 20-HZ RINGING (Cont)

generator	ac voltage	dC COMPONENT	SYSTEM OF USE
KS-5546	84 to 88*	36 to 40	No. 1, 350, 355 SXS
	72 to 88	36 to 40	No. 1, 350 SXS
	65 to 90	36 to 40	355 SXS
	84 to 88	45 to 50	$\left.\begin{array}{ll}\text { No. 1, 350, } \\ 355 \text { SXS }\end{array}\right] \quad$8-Party Semiselective
	72 to $88 *$	45 to 50	No. 1.350 Ringing in
			SXS AC/DC
	75 to 110	45 to 50	355 SXS
KS-15532	84 to 88	36 to 40	No. 1 CSBR, No. 5 CSBR, SXS
	84 to 88	45 to 50	$\text { No. } 1 \text { CSBR, SXS }] \quad \begin{aligned} & \text { 8-Party Semi- } \\ & \text { selective Ringing in } \\ & \text { AC/DC Offices } \end{aligned}$
KS-15529 (109B)	84 to $88 t$	36 to 40	No. 5 CSBR
	84 to $88{ }^{+}$	45 to 52	355 SXS
	94 to 101*	45 to 50	No. 5 CSBR, 355 SXS (DLL)
J87322	84 to $88{ }^{+}$	36 to 40	No. 5 CSBR, No. 1 SXS
	94 to 101*	45 to 50	
J87326	84 to $88+$	36 to 40	No. 1 SXS
	94 to 101*	45 to 50	

F. AC/DC (Not Audible) Continuous With Negative DC Component

110A	84 to 88	42.75 to 52.5	No. 1 ESS
J87266	84 to 88	42.75 to 52.5	No. 1 ESS
J87322	84 to 88	42.75 to 52.5	No. 1 ESS
J87326	84 to 88	42.75 to 52.5	No. 2 ESS
J87824	84 to 88	42.75 to 52.5	No. 3 ESS

G. Superimposed-Superimposed + (Not Audible) Continuous With Positive and Negative DC Component
110A 84 to $88 \quad 36$ to $40 \quad$ No. 1 ESS

J 87266	84 to 88
J 87322	84 to 88
J 87326	84 to 88
J 87824	94 to 101

42.75 to 52.5 No. 1 ESS (DLL)

36 to 40 No. 1 ESS
36 to 40 No. 1 ESS
36 to 40 No. 2 ESS
J87824 94 to $101 \quad 42.75$ to $52.5 \quad$ No. 3 ESS

| H. AC/DC (Not Audible) Continuous With Positive DC Component | (No. 3 ESS | |
| :---: | :---: | :---: | :---: |
| J 87824 | 84 to 88 | 42.75 to $52.5 \quad$ No |

[^18]
17. 20-HZ RINGING (Cont)

MACHINE RINGING

RINGING SUPPIY	description	SYSTEM
MR R1 BR1,2,3	Machine ringing "one ring"; consists of ac/dc aud interrupted, with -48 volts dc during silent interval; for 2-party selective ringing (ac/de is not audible in ESS No. 1 and No. 2)	Panel, No. 1 CSBR, No. 1 SXS, and 350A
Code 1 Gen BR1,2,3		No. 5 CSBR, 355A SXS, ESS No. 1, and No. 2
MR SupMR Sup+ BR1,2,3	Machine ringing "one ring"; consists of sup- aud, sup + aud interrupted, with -48 or +48 volts dc during silent interval; for 4 -party selective ringing	Panel, No. 1 CSBR, No. 1 SXS, and 350A
Code 1 Gen BR1,2,3 Code 1+		No. 5 CSBR, 355A SXS
MR R2 BR1,2,3	Machine ringing "two rings"; consists of ac/dc aud interrupted, with -48 volts dc during silent interval; for 4-party semiselective ringing	Panel, No. 1 CSBR, No. 1 SXS, and 350A
Ring 2 Gen		SXS 355A
Code 2 Gen		CSBR No. 5
Code 2+ Code 2 Gen	Machine ringing "two rings"; consists of sup- aud, sup + aud interrupted with -48 or +48 volts dc during silent interval; for 8 -party semiselective ringing	CSBR No. 5
R1 GRD R2 GRD	Ground interrupted at one-ring and 2 -ring rate; operates ringing relay in connector circuit; for 8 party semiselective ringing	No. 1 SXS
Code 1 GRD Code 2 GRD		355A SXS
Code 3,4,5 Gen	Code ringing; consists of ac/dc aud interrupted, with -48 volts de during silent interval; used with code 1 and code 2 gen for 5 -code, 10 -party ringing	CSBR No. 5
Code 1,2,3,4,5 GRD	Interrupted grd; operates ringing relay in connector circuit; for 5 -code, 10 -party ringing	SXS No. 1, 350A, and 355A
Code 3+	Code ringing consists of sup + aud interrupted, with +48 volts dc during silent interval; replaces code $2+$ and code 3 - when both 5 -code, 10 -party, and 8 party semiselective ringing are required in an office	CSBR No. 5

17. 20-HZ RINGING (Cont)

RINGING SUPPIY	description	SYSTEM
Code 1 Gen	Simulated one brush machine ringing. Processor controlled "one ring"; consists. of ac/dc (not audible) interrupted with - 48 volts de during silent interval	No. : ELS
$\begin{aligned} & \text { Coded A,B,D.E, } \\ & \text { F GRD } \\ & \text { Code } 1 \text { GRD } \\ & \text { Code } 2 \text { GRD } \end{aligned}$	Ground codes for use in connection with reverting call selectors	SXS No. 1, 250A, 35\%A
Codes A.B.C GRD Code 1 GRD Code 2 GRD	Ground codes for use in connection with reverting call trunks with 4 -party selective and 8 -party semiselective offices	CSBR Nぃ. 5
RR	Ground pulse for revertive ringing for 5-code ringing	CSBR No. $\overline{3}$. SXS No. 1 350A, 355A
Code 1 HV BR1.2.3	Machine ringing "one ring"; consists of ac/dc audible (-72 volts de) interrupted, with -72 volts de during silent interval; for 2-party selective ringing in Unigauge offices	CSBR No. ${ }^{\text {\% }}$

18. SIGNALS AND TONES

PRECISE CALL PROGRESS TONES
A. Audible Ringing ($440+\mathbf{4 8 0} \mathbf{H z}$)

designation	nominal voltage VRMS	\qquad OR UNBALANCED DISRRBUTION	SUPER- IMPOSED ON	primary use	principal system of appIICATION
$\rightarrow \mathrm{AR}$	0.36	Balanced	-	Continuous Audible Ring	No. 1, No. 2. No. 3 ESS. TSPS Nio. 1
AR1	0.79	Balanced	-	Continuous Audible Ring	Nu. 5 CSBR-4W Autovon. Autovion PBX and Stations
AR2	3.80	Balanced	-	Continuous Audible Ringing Superimposed on 20 Hz	No. 1. $350 \mathrm{~A} .35 \mathrm{FA} . \mathrm{SXS}$ No. 1. Nu. i C CSBR
AR30	0.36	Balanced	-	Precedence Audible Ringing	No. 1 ESS-4W Autovon. 2W Autovon Centres
AR BR1.2.3	0.36	Balanced	-	Audible Ringing Interrupted To Agree With Machine Ringing Cadence	No. 1, No. 2 ESS

18. SIGNAIS AND TONES (Cont)

B. Busy Tone $(480+620 \mathrm{~Hz})$

designation	NOMINAI voltage VRMS	balanced OR UNBALANCED distribution	SUPERIMPOSED ON	Primary use	PRINCIPAI SYSTEM OF APPLICATION
BT	0.20	Balanced	-	Continuous Busy Tone	No. 1 ESS. No. 2 ESS. No. 3 ESS
$\xrightarrow{\text { BT60* }}$	0.20	Balanced	-	Line Rusy	No. 1 ESS. No. 2 ESS. No. 3 ESS
BT120*	0.20	Balanced	-	Paths Busy (Reorder)	No. 1 ESS, No. 2 ESS. No. 3 ESS, TSPS No. 1
BT1	0.28	Balanced Unbalanced	$-48 \mathrm{~V}$	Continuous Busy Tone	No. 5 CSBR-4W Autovon and CCSA
BT2	0.60	Unbalancer ${ }^{\text {a }}$	-48V	Continuous Busy Tone	No. 1, 350A SXS
BT2	0.60	Unbalance:	GRD	Continuous Busy Tone	No. 355A SXS
BT'2-60	0.60	Unbalar . d	-48V	Line Busy	No. 1, 350A
BT2-60	0.60	Unbalanced	GRI)	Line Busy	355 A SXS
BT2-120	0.60	Unbalanced	-48V	Paths Busy (Reorder)	No. 1, 350A
BT2-120	0.60	Unbalanced	GRD)	Paths Busy (Reorder)	355 A SXS
BT*3	0.49	Unbalanced	-48V	Continuous Busy Tone	No. 1 (SBR. No. 5 CSBR
BT4	1.38	Unbalanced	-48V	Continuous Busy Tone	$\begin{aligned} & \text { No. } 1 \text { CSBR }-4 \mathrm{~W} \\ & \text { CCSA } \end{aligned}$
BT5	0.20	Unbalanced	-48V	Continuous Busy Tone	No. 1 CSBR
LT120	0.686	Balanced	-	Paths Busy	Dual Access Switch Autovon
C. High Tone (480 Hz)					
\rightarrow HT	0.29	Balanced	-	Permanent Signal Tone Zip Tone	TSPS No. 1 , No. 1 ESS, No. 2 ESS. No. 3 ESS
HT60	0.29	Balanced		Unassigned	No. 1 ESS
HT120	0.29	Balanced		Ringer Test	No. 1 ESS
HT1	0.95	Unbalanced	GRD	Permanent Signal Tone Class of Service	No. 1, 350A, 355 A SXS, No. 1 and No. 5 CSBR
HT6	2.8	Unbalanced	GRD	Permanent Signal Tone Class of Service Ringer Tes:	No. 1 CSBR

[^19]18. SIGNALS AND TONES (Cont)
D. Miscellaneous Tone (440 Hz)

designation	NOMINAL voltage VRMS	balanced OR unbalanced dISTRIBUTION	SUPER- IMPOSED ON ON	primary use	PRINCIPAL SYSTEM OF APPLICATION
MT	0.20	Balanced	-	Conference Notification	No. 1 ESS
MT1	0.48	Balanced	-	Call Waiting	No. 1 ESS, No. 2 ESS, No. 3 ESS
MT2	2.00	Balanced	-	Busy Verification	No. 1 ESS
E. Preempl Tone ($440+620 \mathrm{~Hz}$)					
PT	0.36	Balanced	-	Continuous	No. 1 ESS
PT1	0.58	Balanced	-	Preemption Tone	No. 5 CSBR-4W Autovon and Autovon PBXs and Stations
F. Station Alerting Tone (2600 Hz)					
RA	0.32	Balanced	-	Routine Alerting	No. 1 ESS $-4 W$ Autovon
PA	0.32	Balanced	-	Priority Alerting	No. 1 ESS-4W Autovon
G. Simulated Audible Ringing ($520+560 \mathrm{~Hz}$)					
SAR	0.95	Balanced	-	Call Tracing (Inactive)	No. 1 ESS
H. TOUCH-TONE Dial Tone ($350+440 \mathrm{~Hz}$)					
TT	1.20	Balanced	-	Continuous Dial Tone	No. 1 ESS, No. 2 ESS, No. 3 ESS
TT1	1.80	Unbalanced	-48V		No. 1 CSBR, No. 5 CSBR, Panel
TT2	23.0	Unbalanced	GRD		No. 1, 350A, 355A SXS (Selector Shelves)
TT3	1.7	Unbalanced	-48V		No. 1, 350A, 355A SXS (Converters or Originating Registers)
TT5	1.47	Unbalanced	-48V	-	No. 5 CSBR-4W Autovon and CCSA
TT6	0.45	Balanced	-		$\therefore ? \operatorname{Fcc}-10$ Autovon

18. SIGNALS AND TONES (Cont)

NONPRECISE CALL PROGRESS TONES

signal or tone	description	$\begin{gathered} \text { NOMINAL } \\ \text { TONE } \\ \text { vOITAGE } \end{gathered}$	application	srstem
HTJ	High Tone Superimposed on Ground	1-1/2	Trunk Assignment Tone, Permanent Signal	Panel. CSBR, CSBR Tandem
	High Tone Superimposed on Ground	1-1/2	Trunk Assignment Tone, Coin Return	355A SXS
HT3	High Tone Superimposed on Ground	9	Permanent Signal	Panel. CSBR
HT4	High Tone Superimposed on Ground	6	Number Checking Tone	Panel. SXS
LT	Low Tone Superimposed on Ground	-	Class of Service Tone	355 A and 356 A SXS
LT1	Low Tone Superimposed on Ground	1-1/3	Line Busy, Tandem Reorder	Panel
	Low Tone Superimposed on 48 V	1	Line Busy Overflow From Terminating Office Circuits	CSBR
LT1 (LT1R)	LT on Ground	-		355A
$\left.\begin{array}{l} \text { LT1-C } \\ \text { LT1-D } \end{array}\right]$	Low Tone Superimposed on 48 V	2	Prevention of Talk Over Selector Busy Tone	
LT1 120* i/m BR2 Paired With LTR	Low Tone Super imposed on 48 V and Interrupted at 120 i / m; LTR Is Paired Return Path to Ground	2	Paths Busy Toll Line Busy	No. 1, 350A
LT1 $610 \mathrm{i} / \mathrm{m}$ BR7	LT on 48 V	2	Flash and Tone	No. 1 SXS
LT1 $120 \mathrm{i} / \mathrm{mTB}$	Low Tone Superimposed on Ground and Interrupted at $120 \mathrm{i} / \mathrm{m}$	-	Paths (Trunks) Busy	355 A and 356 A SXS
$\begin{aligned} & \text { LT1 } 60 \mathrm{i} / \mathrm{m}^{*} \\ & \text { BT } \end{aligned}$	Low Tone Superimposed on Ground and Interrupted at $60 \mathrm{i} / \mathrm{m}$	-	Line Busy A\&M Only for 355AWhere Connectors Are Not Arranged To Prevent Talking Over Busy Tone	355 A and 356 A SXS

[^20]18. SIGNALS AND TONES (Cont)

SIGNAL OR TONE	description	$\begin{aligned} & \text { NOMINAL } \\ & \text { TONE } \\ & \text { VOITAGE } \end{aligned}$	application	SYStem
LT2	Low Tone Superimposed on 48 V	1/2	Dial Tone	Panel, CSBR
LT2	Low Tone Superimposed on 48 V	10	Dial Tone, Vacant Level, Coin Collect. Dial Jack, Dial Test	No. 1, 350A SXS
	Low Tone Superimposed on Ground	-	Dial Tone	355A SXS
LT4	Low Tone Superimposed on Ground	2/3	Paths Busy, Vacant Code, Coin Collect	Panel
	Low Tone Superimposed on 48 V Battery	2	Vacant Code, Overflow From Local Office Circuits	CSBR
LT4 $60 \mathrm{i} / \mathrm{m}$ BR4	Low Tone Superimposed on 48 V and Interrupted at $60 \mathrm{i} / \mathrm{m}$	1/2	Line Busy (Local) A\&M Only - Where Connectors Are Not Arranged To Prevent Talking Over Busy Tone	No. 1, 350A SXS
LT5 $60 \mathrm{i} / \mathrm{m} \mathrm{BT}$	Low Tone Superimposed on Ground and Interrupted at $60 \mathrm{i} / \mathrm{m}$	2	Line Busy Where Connectors Are Arranged To Prevent Talking Over Busy Tone	355A SXS
LT5 $60 \mathrm{i} / \mathrm{m}$ BR2	Low Tone Super imposed on 48 V Battery and Interrupted at 60 i / m When Obtained From Tone Alternator	2	Line Busy (Local) Where Connectors Are Arranged T_{0} Prevent Talking Over Busy Tone	No. 1, 350A
	When Obtained From Other Than Tone Alternator	1	Line Busy (Local)	No. 1, 350A
LT6 $60 \mathrm{i} / \mathrm{m}$ BR2	Low Tone Superimposed on 48 -volt Battery and Interrupted at 60 i/m Obtained From Other Than Tone Alternator	2	Line Busy (Local) Where Connectors Are Arranged To Prevent Talking Over Busy Tone	No. 1, 350A SXS
PKU	Ground Interrupted	-	Pickup for Ringing	SXS, Panel, CSBR

18. SIGNALS AND TONES (Cont)

SIGNAL OR TONE	DESCRIPTION	NOMINAL TONE VOITAGE	APPLICATION	SYSTEM
$\left.\begin{array}{ll} 30 \mathrm{i} / \mathrm{m} & \text { BR1 } 24 \mathrm{~V} \\ 30 \mathrm{i} / \mathrm{m} & \text { BR3 } 38 \mathrm{~V} \end{array}\right]$	A Long Ground Pulse at $30 \mathrm{i} / \mathrm{m}, 24 \mathrm{~V}$ or 48 V Return, But Not Both	-	No Circuit Signal	Toll, Dial
$60 \mathrm{i} / \mathrm{m} \mathrm{BR1*}$	Ground Interrupted at $60 \mathrm{i} / \mathrm{m}, 24 \mathrm{~V}$ Return	-	Pulsing_Relays in Trunk Busy Circuits	Toll
$60 \mathrm{i} / \mathrm{m} \mathrm{BR} 3^{*}$	Ground Interrupted at $60 \mathrm{i} / \mathrm{m}, 48 \mathrm{~V}$ Return	-	Line Busy and Flashing Recall Signal	No. 5 CSBR, SXS
$120 \mathrm{i} / \mathrm{m} \mathrm{BR} 1$	Ground Interrupted at $120 \mathrm{i} / \mathrm{m}, 24 \mathrm{~V}$ Return	-	Reorder Signal	Toll
$120 \mathrm{i} / \mathrm{m} \mathrm{BR} 3$	Ground Interrupted at $120 \mathrm{i} / \mathrm{m}, 48 \mathrm{~V}$ Return	-	Paths Busy and Flashing Recall Signal	No. 5 CSBR, SXS Line Status Verifier

19. AC SUPPLIES - MISCELLANEOUS $60 \mathrm{HZ} \dagger$ (SEE X-64644)

SUPPLIES	NOMINAL voltage	NORMAL voltage RANGE	EMERGENCY voltage limits
Inwats Timer	22	20 to 24	17 to 28
$\left.\begin{array}{l} \text { Calculagraph Motors } \\ \text { Position Clocks } \end{array}\right]$	$22 \ddagger$	20 to 24	17 to 28
Crossbar Zone and Overtime Timers Crossbar District Junctor Timers	$22 \ddagger$	20 to 24	17 to 28
AMA Master Timers	$22 \ddagger$	20 to 24	17 to 28
$\left.\begin{array}{l}\text { Crossbar District Junctor } \\ \text { Condenser and OGT Test }\end{array}\right]$	12	-	-
Busy Signal and Line Indicating Lamps	$\left[\begin{array}{l} 8 \text { to } 11.5 \text { in } \\ 0.5 \text {-Volt Steps } \\ 5 \text { to } 8.5 \text { in } \\ 0.5-\text { Volt Steps } \end{array}\right.$		

[^21]\ddagger Reserve supplies, when provided for these services, should not exceed 60 Hz in frequency.

Recorder-component	NOMINAL voltage	NORMAI voltage RANGE	emergency voltage umits
KS-12055 Recorder Reproducer	$\begin{gathered} \text { 117. } 60 \mathrm{~Hz} \\ -48 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 48 \text { to } 52 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 44 \text { to } 53 \end{gathered}$
KS-12068 Recorder Reproducer	$\begin{gathered} 117,60 \mathrm{~Hz} \\ -48 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 48 \text { to } 52 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 42.5 \text { to } 52.5 \end{gathered}$
KS-16534 Recorder Reproducer	$\begin{gathered} 117.60 \mathrm{~Hz} \\ -48 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 48 \text { to } 52 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 44 \text { to } 53 \end{gathered}$
KS-16535 Coupling Unit	-48	48 to 52	44 to 53
KS-16537 Control Unit	117, 60 Hz	105 to 129	105 to 129
KS-16586 Coupling Unit	-48	48 to 52	44 to 53
KS-16587 Distribution Unit	-48	48 to 52	44 to 53
KS-16588 Coupling Unit	-48	48 to 52	44 to 53
KS-16657 Recorder Reproducer	117, 60 Hz	105 to 129	105 to 129
KS-16658 Mechanism	117. 60 Hz	105 to 129	105 to 129
KS-16659 Control Unit	117.60 Hz	105 to 129	105 to 129
KS-16660 Reproducer	117.60 Hz	105 to 129	105 to 129
KS-16661 Amplifier	$117,60 \mathrm{~Hz}$	105 to 129	105 to 129
KS-16665 Demagnetizer	$117,60 \mathrm{~Hz}$	105 to 129	105 to 129
KS-16687 Recorder Reproducer	$117,60 \mathrm{~Hz}$	105 to 129	105 to 129
KS-16746 Recorder Reproducer	$117,60 \mathrm{~Hz}$	105 to 129	105 to 129
KS-16765 Announcement Set	$117,60 \mathrm{~Hz}$	105 to 129	105 to 129
KS-19124 Recorder Reproducer	$117,60 \mathrm{~Hz}$	105 to 129	105 to 129
KS-19125 Recorder	+72	72 to 78	63 to 78
KS-19297 Recorder Repeater	$\begin{gathered} 117,60 \mathrm{~Hz} \\ -48 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 48 \text { to } 52 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 44 \text { to } 53 \end{gathered}$
KS-19315 Announcement Equipment	$\begin{gathered} 117,60 \mathrm{~Hz} \\ -48 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 48 \text { to } 52 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 44 \text { to } 53 \end{gathered}$
KS-19325 Recorder	$117,60 \mathrm{~Hz}$	105 to 129	105 to 129
KS-19326 Recorder	$117,60 \mathrm{~Hz}$	105 to 129	105 to 129
KS-19647 Recorder	$208,60 \mathrm{~Hz}$	187 to 229	187 to 229
KS-19671 Recorder Reproducer	$117,60 \mathrm{~Hz}$	105 to 129	105 to 129
KS-19725 Announcement System	$\begin{gathered} 117,60 \mathrm{~Hz} \\ +24 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 24 \text { to } 26 \end{gathered}$	$\begin{gathered} 105 \text { to } 129 \\ 20.75 \text { to } 26.75 \end{gathered}$
KS-19829 Recorder	$\begin{gathered} 117,60 \mathrm{~Hz} \\ \text { or } \\ 208,60 \mathrm{~Hz} \end{gathered}$	105 to 129 187 to 229	105 to 129 187 to 229

recorder-component	nominal voltage
KS-19897 Recorder	$-117,60 \mathrm{~Hz}$
	or KS-20017 Recorder KS-20571 Recorder 53A, B, C Control Unit

NORMAL VOITAGE RANGE	EMERGENCY VOGIAGE HMMITS
105 to 129	105 tu 129
187 to 229	1×7 to 229
48 to 52	42.5 to 52.5
105 to 129	105 to 129
48 to 52	44 to 53

21. MISCEILANEOUS APPARATUS OR EQUIPMENT

apparatus or equipment	NOMINAL voltage
Remote Message Repeater J98623	$\begin{gathered} -48 \\ +48 \\ -130 \end{gathered}$
2A Range Extender	-48
53A1 and 54A1 Power Units (Subscriber Loop Multiplex)	-50
55Al Power Unit (Subscriber Loop Multiplex)	± 130
KS-16001 Dehydrator	$115,60 \mathrm{~Hz}$
KS-16153 Dehydrator	208, 60 Hz
KS-16468 Dehydrator	$115,60 \mathrm{~Hz}$
KS-16432 Air Dryer	$115,60 \mathrm{~Hz}$
KS-16523 Air Dryer	$208,60 \mathrm{~Hz}$
KS-20183 Air Dryer	$115,60 \mathrm{~Hz}$
KS-20336 Air Dryer	$208,60 \mathrm{~Hz}$
D Air Dryer AT-8224	$115,60 \mathrm{~Hz}$
J63006 Cable Pressure Telemetry Central Control Circuit	$115,60 \mathrm{~Hz}$
$1000-\mathrm{Hz}$ Ringers - Oscillators and Receivers	130

TRANSMISSION MEASURING
$\begin{array}{lc}\text { Transmission Test Equipment- } & -25 \\ \text { Rack Mounted } & -48 \\ & 130 \\ & 115,50 / 60 \mathrm{~Hz}\end{array}$

NORMAL voltage
 RANGE

48 to 52
48 to 52
125 to 135
48 to 52
48 to 52

125 to 135

110 to $120 \quad 105$ to 125
198 to $218 \quad 187$ to 253
110 to $120 \quad 105$ to 125
110 to $120 \quad 105$ to 125
198 to $218 \quad 187$ to 253
110 to $120 \quad 105$ to 125
198 to $218 \quad 187$ to 253
110 to 120
110 to 120

125 to 135

22 to 26
44 to 52
125 to 135
105 to 125

120 to $140 \dagger$

105 to 125
105 to 125

120 to 140

22 to 26
EMERGENCY
VOLTAGE IIMITS

44 to 52
44 to 52
125 to 135
45 to 52
42.5 to 52.5^{*}

44 to 52
125 to 135
105 to 125

[^22]
[^0]: \dagger Normal 50- to 52 -, emergency 45 - to 52 -volt operation is permissible providing CEMF cells are available to give 48 - to 50 -volt operation during maintenance testing and that neither ANI, SXS CAMA, AIOD station identification equipment, SXS common control, SXS LAMA, SXS noncommon control, TOUCH-TONE calling circuits, nor CDA circuits are supplied from the same 48 -volt power plant.

[^1]: * Limits with ac power on rectifiers.

[^2]: * Obtained from converter.
 \dagger Obtained from rectifier supply.

[^3]: * Obtained from converter.
 \dagger Obtained from rectifier supply.

[^4]: * The normal voltagerrange is that of switching equipment with which the signaling equipment is associated.

[^5]: * Required when used for regular intercept service and two or more classes of intercept service are provided.
 \dagger Required for test circuit if desk accommodates regular intercept service and machine intercept service.
 \ddagger The $+24,-48,+130$, and -130 volt supplies are all dedicated at the base location. At remote sites, the -48 volts may be obtained from existing power plants, but the $+24,+130$, and -130 volt supplies are dedicated. The +24 and -48 volt power plants must be of the 111 A or 326A type.
 § Measured at power distributing frame.

[^6]: * The normal voltage range is that of switching equipment with which the signaling equipment is associated.

[^7]: * From normal voltage, which may be any value between the normal range shown.
 \dagger Nonregulated supplies with normal limits of 20 to 28,40 to 56 , and 125 to 135 volts, and emergency limits of 20 to 28,40 to 56 , and 115 to 150 volts may be used for message transmission but with some service impairment and reduction in tube life.

[^8]: * From normal voltage, which may be any value between the normal range shown.

[^9]: * From normal voltage, which may be any value between the normal range shown.
 \dagger Normally derived from L3 alternator or inverter.

[^10]: * The minimum extreme voltage is 19.5 , except MMX-2 (master group multiplex) which is 18.5 .
 \dagger The maximum transient voltage is 29.0 .
 \ddagger The minimum extreme voltage is 21.0 , except the high voltage line converter and J68820 switch control which is 19.5 and MMX-2 (master group multiplex) which is 18.5 .
 \S The dc-to-dc converter may not regulate, and some amplifiers may degrade below -22 volts.
 4 From normal voltage, which may be any value between the normal range shown.

[^11]: * From normal voltage, which may be any value between the normal range shown.
 $\dagger \mathrm{N}$ carrier packaged bays, including E-type SF signaling.
 $\ddagger \mathrm{N}$ carrier packaged bays, including F-type SF signaling.
 § Minimum emergency limit measured at frame power, alarm, and miscellaneous panel.

[^12]: * Nonregulated supplies with normal limits of 20 to 28 and 125 to 135 volts and emergency limits of 20 to 28 and 115 to 150 volts may be used for message transmission but with some service impairment and reduction in tube life.

[^13]: * Alarm battery supply.

[^14]: * Where +130 volts is not derived from 425A power plant, normal voltage range may be 124 to 136 .
 $\dagger 70$-cell battery plant.
 \ddagger From normal voltage, which may be any value between the normal range shown.

[^15]: －ーーー－－－
 ＊Maximum allowable transient <1 second 29 ．
 \dagger Maximum allowable transient <1 second 55

[^16]: * Minimum and maximum are not only emergency limits, but also extremes. Voltage in excess of this value may damage solid state circuit components.
 \dagger Battery supply shall be a dedicated 111A battery plant

[^17]: * With woltage regulator
 + Tonder power failure conditions, the $102-10110$-wht range may be 9 (1) 110 wots
 ₹ The line status verfier can use any generator listed in sections 17A and 17B

[^18]: * With voltage regulator.
 + Under power failure conditions, the 84 - to 88 -volt range may be 75 to 90 volts

[^19]: * In initial No. 1 ESS instalations, these tones are deseratal IT I Thill ITES:

[^20]: * The present standard is $60 \mathrm{i} / \mathrm{m}$ for line-busy and $120 \mathrm{i} / \mathrm{m}$ for paths-busy interruptions. This is also required for through toll dialing. Older offices may have both line and paths busy interrupted at either 60 or $120 \mathrm{i} / \mathrm{m}$.

[^21]: * In areas where $120 \mathrm{i} / \mathrm{m}$ is used, the 60 in this designation should be changed to 120 .
 \dagger Voltage and frequency under normal operating conditions are dependent upon variation of the commercial power service and usually may be ${ }^{\circ}$ expected to be ± 5 percent on voltage and $\pm 0.3 \mathrm{~Hz}$ or better on frequency. See X-64644 for details on voltage and frequency in the USA. Voltage and frequency variations during failure of the commercial ac service are dependent on the reserve engine-driven alternator, if provided. These are usually $\pm \overline{5}$ percent on voltage, with a frequency range of 3 Hz , which may be set at either 59 to 62 or 60 to 63 with different reserve plants. If automatic battery-driver converters are provided for particular loads. the voltage is normally about ± 10 percent and irequeres: when speed rezuiated 59 to bu Hz or coser and when not speed regulated 50 to 70 or 40 to 60 Hz dependent upon the converter provided.

[^22]: * Maximum transient limit -60.
 \dagger Maximum transient limit ± 150.

