ELECTRON TUBE DATA SHEET WESTERN ELECTRIC 425A ELECTRON TUBE ## DESCRIPTION The 425A is a four-electrode, inert-gas filled cold cathode tube for use as a relay device. The tube is provided with an anode-cathode gap and a starter anode-starter cathode gap such that isolation of the control (starter gap) and controlled (main gap) portions of a circuit may be obtained. This tube is designed with an integral special mounting bracket. It is available in an electrically equivalent, socket mounting form, as the 451A. ## CHARACTERISTICS | Peak Anode Voltage | | | | | | | | | | 180 | 180 | volts ✓ | |----------------------------------|---|---|---|---|---|---|---|-----|----|------|-----|----------------------| | Average Starter Cathode Current. | | • | | | • | • | • | • | • | 0.7 | 7.0 | milliamperes | | Average Main Cathode Current | | | | | | | | | | | 50 | milliamperes | | Average Life, Approximate · · · | • | • | • | • | • | • | • | • ' | •1 | 0000 | 10 | hours | FILE: COLD CATHODE SECTION ✓—Indicates a change C) American Telephone and Telegraph Company 1962 | | MAXIMUM RATINGS, | Absolut | e Sys | tem | (Not | 1) | | | | | | | | | | | | |----------|---|--|--|-----------------------------|--------------------------------|---------------------|---------------------------------------|-----|---|---|----|--------------------------|-----|------------------------------------|-----------------------------|---------------------------------|--| | | Peak Voltage, For Anode to all Ot Cathode to all | her Elec | trodes | s . | | | | | | | | | | | | | | | _ | | - | ectro | ies | • • | • | | • | ٠ | • | • | • | • | • • | • | 180 | volts | | | -Cathode Current
Peak · · · · | | | | | | | | | | | | | | | EΩ | milliampawaa | | | Average | | | | | | | | | | | | | | | | milliamperes | | | • | | | | | | | | | | | | | | | | milliamperes | | | Averaging Time
Starter Cathode | | | | • • | • | | • | • | • | • | | • | • • | • | 4 | seconds | | | Peak | | | | | | | | | | | | | | | 7 | milliampawag | | | Average · · · | - | | _ | Averaging Time | | | • | | • | • • | • | • | • | • | • | • | • | • | 2 | seconds | | _ | -Peak Inverse Cur | - | - | | | | | | | | | | | | | _ | millionnesse | | | Anode · · · · · Starter Anode · | Ambient Temperat | ure Limi | ts | • | • • | • | • • | • | • | ٠ | • | • | | ออ ° | τo | +85* | centigrade | ELECTROTORI DAMA | Mh manah. | + T i | . e. | | | | | | | | | | | | | | | | ELECTRICAL DATA, | Through | out Li | ife | | | | | | | Mi | n | D. | 0001 | , l | lov | | | | ELECTRICAL DATA, | Through | out Li | ife | | | | | | | Mi | n. | В | ogey | <u> </u> | lax. | | | | | | | | | • | | | | | | | B | | | | volts | | | Starter Breakdow | m Voltage | e (Note | 3) | | | | | | | | n.
67
55 | B | 80 | | 90 | volts
volts | | | Starter Breakdow
Starter Voltage | m Voltage
Drop at | e (Note
2.5 Mi | 3)
illia | unpe: | res | | • | | • | | 67 | B | 80 |
)
) | 90 | | | → | Starter Breakdow
Starter Voltage
Anode Voltage Dr | m Voltage
Drop at 1 | e (Note
2.5 Mi
Milli | 3)
illia | umpe:
eres | res | | • | | • | | 67
55
58 | | 80
70
70 |
)
) | 90
75
80 | volts
volts | | → | Starter Breakdow
Starter Voltage
Anode Voltage Dr
Transfer Current | n Voltage
Drop at 10
op at 10 | e (Note
2.5 Mi
Milli | 3)
illia
iampe | umpe:
eres | res |
 | • | | • | | 67
55
58 | | 80
70
70 |
)
)
! rv e | 90
75
80 | volts | | ->- | Starter Breakdow
Starter Voltage
Anode Voltage Dr
Transfer Current
Negative Cathode | n Voltage Drop at 10 cop at 10 (Note 4) | e (Note
2.5 Mi
Milli

r Volt | 3)
illia
iampe | impe:
eres

(Note | res
e 5) |
 | • | ·
· | • | | 67
55
58 | | 80
70
70
e Cu |
)
)
! rv e | 90
75
80
e, Fig | volts
volts
gure 3, Page4
volts | | ->- | Starter Breakdow
Starter Voltage
Anode Voltage Dr
Transfer Current
Negative Cathode
Ionization Time, | m Voltag
Drop at 10
cop at 10
(Note 4)
Transfer
Starter | e (Note
2.5 Mi
Milli

r Volt
Gap (| 3) illia iampe . tage | mpe:
eres
(Note | res
e 5)
) (N |

 | | | • | | 67
55
58 | | 80
70
70
e Cu |
)
)
irve | 90
75
80
e, Fig | volts
volts
gure 3, Page4 | | ->- | Starter Breakdow
Starter Voltage
Anode Voltage Dr
Transfer Current
Negative Cathode | m Voltag
Drop at 10
cop at 10
(Note 4)
Transfer
Starter | e (Note
2.5 Mi
Milli

r Volt
Gap (| 3) illia iampe . tage | mpe:
eres
(Note | res
e 5)
) (N |

 | | | • | | 67
55
58
- | | 80
70
70
e Cu
-25 |
)
)
irve | 90
75
80
e, Fig
-40 | volts volts gure 3, Page4 volts milliseconds | | ->- | Starter Breakdow
Starter Voltage
Anode Voltage Dr
Transfer Current
Negative Cathode
Ionization Time, | m Voltag
Drop at 10
cop at 10
(Note 4)
Transfer
Starter | e (Note
2.5 Mi
Milli

r Volt
Gap (| 3) illia iampe . tage | mpe:
eres
(Note | res
e 5)
) (N |

 | | | • | | 67
55
58
- | | 80
70
70
e Cu
-25 |
)
)
irve | 90
75
80
e, Fig
-40 | volts volts gure 3, Page4 volts milliseconds | | ->- | Starter Breakdow
Starter Voltage
Anode Voltage Dr
Transfer Current
Negative Cathode
Ionization Time,
Deionization Time | on Voltage
Drop at 10
cop at 10
(Note 4)
Transfer
Starter
ne, Main (| e (Note
2.5 Mi
Milli

r Volt
Gap (A | 3) illia iampe . cage (Appr | eres
(Note
OX. | res
e 5)
) (N |

ote | 6). | | • | | 67
55
58
-
- | Se | 8(
7(
7(
e Cu
-25 |
)
)
irve | 90
75
80
e, Fig
-40 | volts volts gure 3, Page4 volts milliseconds millisecond | | ->- | Starter Breakdow
Starter Voltage
Anode Voltage Dr
Transfer Current
Negative Cathode
Ionization Time,
Deionization Time
MECHANICAL DATA | n Voltag
Drop at 10
cop at 10
(Note 4)
Transfer
Starter
me, Main (| e (Note
2.5 Mi
Milli

r Volt
Gap (A | 3) illia iampe . tage (Appr | impe:
eres
(Note
Ox.) | res
e 5)
) (N | • • • • • • • • • • • • • • • • • • • | 6). | | • | | 67
55
58
-
- | Sec | 80
70
70
e Cu
-25
5 | rve | 90
75
80
e, Fig
-40 | volts volts gure 3, Page4 volts milliseconds millisecond | | ->- | Starter Breakdow
Starter Voltage
Anode Voltage Dr
Transfer Current
Negative Cathode
Ionization Time,
Deionization Time | m Voltag
Drop at 10
(Note 4)
Transfer
Starter
ne, Main (| e (Note
2.5 Mi
Milli

r Volt
Gap (A | 3) illia iampe . tage (Appr | eres
(Note
(ox.) | res
. 5)
) (N | | 6). | • | • | | 67
55
58
-
- | Sec | 80
70
70
e Cu
-25
1 |))))irve | 90
75
80
e, Fig
-40 | volts volts gure 3, Page4 volts milliseconds millisecond Any position ounce | ## HANDLING This tube contains a small amount of krypton-85 gas which is a by-product radioactive material. The amount of krypton-85 is less than five microcuries, which is too small an amount to require any special care in use. Atomic Energy Commission regulations require that the individual tube carton for tubes containing by-product radioactive material be appropriately marked. The marking includes the statement that tube disposal should be in approved manner. Approved instructions for disposal of tubes containing krypton-85 are as follows: Tubes to be disposed of should be broken or crushed in a well ventilated place releasing any resulting vapors to the outside atmosphere. The residual broken or crushed tubes should be disposed of in a normal public trash disposal system. Tubes should be disposed of at a rate of not more than 100 each week from any one location. Avoid breathing vapors from broken tubes. Note 1: In the "Absolute System" the maximum ratings specified are limiting values above which the serviceability of the device may be impaired from the viewpoint of life and satisfactory performance. Maximum ratings, as such, do not constitute a set of operating conditions and all values may not, therefore, be attained simultaneously. Note 2: Sufficient resistance must be used in series with the tube discharge paths to assure that the electrode currents do not exceed their maximum rated values. Note 3: Limits apply immediately after the tube has conducted current. These values may be initially as much as 3 volts higher or lower if the tube has been idle. Note 4: To assure transfer of conduction from the starter anode-starter cathode gap to the anode-starter cathode gap. Note 5: To assure transfer of conduction from the anode-starter gap to the anode-cathode gap with 1.5 milliamperes flowing from anode to starter cathode. Cathode voltage is measured with respect to starter cathode. Note 6: With 15 volts starter overvoltage (15 volts above Starter Breakdown Voltage) and with the tube in total darkness. Note 7: Tube is permanently mounted on plastic angle bracket. Pin connections are terminated in flexible connector leads. I A development of Bell Telephone Laboratories, the research laboratories of the American Telephone and Telegraph Company and the Western Electric Company.